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Abstract. Pattern detection methods discover recurring solutions, like design 
patterns in object-oriented source code. Usually this is done with a pattern 
library. Hence, the precise implementation of the patterns must be known in 
advance. The method used in our case study does not have this disadvantage. It 
uses a mathematical technique, Formal Concept Analysis, and is applied to find 
structural patterns in two subsystems of a printer controller. The case study 
shows that it is possible to detect frequently used structural design constructs 
without upfront knowledge. However, even the detection of relatively simple 
patterns in relatively small pieces of software takes a lot of computing time. 
Since this is due to the complexity of the applied algorithms, applying the 
method to large software systems like the complete controller is not practical. It 
can be applied to its subsystems though, which are about 5-10% of its size.  

Keywords: Pattern detection, formal concept analysis, object-oriented, reverse 
engineering. 

1   Introduction 

Architecture reconstruction and design recovery are a form of reverse engineering. 
Reverse engineering does not involve changing a system or producing new systems 
based on existing systems, but is concerned with understanding a system. The goal of 
design recovery is to “obtain meaningful higher-level abstractions beyond those 
obtained directly from the source code itself”  [1].  

Patterns provide proven solutions to recurring design problems in a specific 
context. Design patterns are believed to be beneficial in several ways [2,3,4], where 
knowledge transfer is the unifying element. Empirical evidence shows that developers 
indeed use design patterns to ease communication [5]. Given the fact that program 
understanding is one of the most time consuming activities of software maintenance, 
knowledge about applied patterns can be useful for software maintenance. Controlled 
experiments with both inexperienced [6] and experienced [7] software developers 
support the hypothesis that awareness of applied design patterns reduces the time 
needed for maintenance and the number of errors introduced during maintenance. 

For an overview of methods and tools for architecture reconstruction and design 
recovery, see e.g. [8,9,10,11,12]. Architectural clustering and pattern detection are the 
most prominent automatic methods [13]. Pattern-based reconstruction approaches 



detect instances of common constructs, or patterns, in the implementation. Contrary to 
the approach where one uses a library of known patterns to detect these in source 
code, we concentrate in this paper on the detection without upfront knowledge about 
the implemented patterns [14,15]. For this we use Formal Concept Analysis. 

1.1   Formal Concept Analysis 

Formal Concept Analysis (FCA) is a mathematical technique to identify “sensible 
groupings of formal objects that have common formal attributes”  [16,17]. FCA is also 
known as Galois lattices [18]. Note that formal objects and formal attributes are not 
the same as objects and attributes in object-oriented programming!  

The analysis starts with a formal context, which is a triple C= (O,A,R) in which O 
is the finite set of formal objects and A the finite set of formal attributes. R is a binary 
relation between elements in O and A, hence R⊆O×A. If (o,a)∈R it is said that 
object o has attribute a. For X⊆O and Y⊆A, the common attributes σ(X) of X and 
common objects τ(Y) of Y are defined as [19]: 

 ( ) ( ){ }: ,X a A o X o a Rσ = ∈ ∀ ∈ ∈  (1) 

 ( ) ( ){ }: ,Y o O a Y o a Rτ = ∈ ∀ ∈ ∈  (2) 

A formal concept of the context (O,A,R) is a pair of sets (X,Y), with X⊆O and 
Y⊆A, such that: 
 ( ) ( )Y X X Yσ τ= ∧ =  (3)  

Informally a formal concept is a maximal collection of objects sharing common 
attributes. X is called the extent and Y the intent of the concept. The extents and 
intents can be used to relate formal concepts hierarchically. For two formal concepts 
(X0,Y0) and (X1,Y1) the subconcept relation 

�
 is defined [19] as: 

 ( ) ( )0 0 1 1 0 1 1 0, ,X Y X Y X X Y Y≤ ⇔ ⊆ ⇔ ⊆  (4) 

If p and q are formal concepts and p
�

q then p is said to be a subconcept of q and q 
is a superconcept of p. The subconcept relation enforces an ordering over the set of 
concepts that is captured by the supremum �  and infimum ∏  relationships. They 
define the concept lattice L of a formal concept C with a set of concepts I [19]: 
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where I  is the set of concepts to relate. To calculate the supremum (smallest common 
superconcept) of a set of concepts their intents must be intersected and their extents 
joined. The latter set must then be enlarged to fit to the attribute set of the supremum. 
The infimum (greatest common subconcept) is calculated similarly.  



A simple bottom-up algorithm is described in [20] that constructs a concept lattice 
L from a formal context C= (O,A,R) using the supremum relation. It starts with 
the concept with the smallest extent, and constructs the lattice from that concept 
onwards. The algorithm utilizes that for any concept (X,Y) [21]: 

 ( ) { } { }( )
o X o X

Y X o oσ σ σ
∈ ∈
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= = =
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� �
 (7) 

This equation enables calculating the supremum of two concepts by intersecting 
their intents. (8) gives a formalized description of the lattice construction algorithm, 
based on the informal description in [20].  The algorithm starts with the calculation of 
the smallest concept cb of the lattice. The set of atomic concepts, together with cb, is 
used to initialize L. Next the algorithm initializes a working-set W with all pairs of 
concepts in L that are not subconcepts of each other. The algorithm subsequently 
iterates over W to build the lattice using the supremum relation for each relevant 
concept-pair. The supremum of two concepts is calculated using (7). Recall that in 
this calculation the intents of the concepts c1 and c2 are intersected, after which τ is 
applied obtain the extent. If the calculated concept is new, it is added to L and the 
working-set is extended with relevant new concept pairs. 
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The time complexity of algorithm (8) depends on the number of lattice elements. If 
the context contains n formal objects and n formal attributes, the lattice contains 2n 
concepts [21]. This means the worst case running time of the algorithm is exponential 
in n. In practice however, the size of the concept lattice typically is O(n2), or even 
O(n) [21,22,23]. This results in a typical running time for the algorithm of O(n3). 

Algorithm (8) is a very simple lattice construction algorithm that does not perform 
very well. A comparison of algorithms [24] shows that for large contexts the Bordat 
algorithm [25] gives the best performance. For a concept lattice L with |L| formal 
concepts and |O| and |A| formal objects and attributes of the formal context, the 
Bordat algorithm has a worst-case computational complexity of O(|O|·|A|2·|L|). 

1.2   Design pattern detection 

The use of FCA to find recurring design constructs in object-oriented code is 
described in [22]. The key idea is that a design pattern amounts to a set of classes and 
a set of relations between them. Two different instances of a pattern have the same set 
of relations, but different sets of classes. 



Let D be the set of classes in the design and T be the set of relationship-types 
between classes. For example T= { e,a}  defines the relationship types “extends”  and 
“association” . Then the set of inter-class relations P is typed P⊆D×D×T. To find 
pattern instances of k classes, the formal context Ck= (Ok,Ak,Rk) is used with: 
• Ok: set of k-sized sequences of classes in the design. More precisely 

  ( ) [ ]{ }1, , | 1..k k iO x x x D i k= ∈ ∧ ∈�  

where k is called the order of the sequence. 
• Ak: set of inter-class relations within the sequences in Ok. Each is a triple (xi ,xj)t, 

where xi  and xj are classes and t is a relationship-type. Ak is defined by 
  ( ) ( ) [ ]{ }, | , , 1..k i jt t

A i j x x P i j k= ∈ ∧ ∈ . 

• Rk: “possesses”  relation between the elements in Ok and in Ak. 
A formal concept (X,Y) consists of a set of class-sequences X and a set of inter-

class relations Y. Thus the intent Y specifies the pattern and the extent X specifies the 
set of pattern-instances found in the code.  

Before the lattice can be constructed from the context, this context must be 
generated from the class diagram. A simple inductive algorithm [22] is shown in (9). 
Recall that D is the set of classes and P the set of class-relations. 

The initial step generates an order two context. This is done by collecting all pairs 
of classes that are related by a tuple in P; the set O2 of formal objects of the order two 
context consists of all pairs of classes related by a tuple in P. This means that for all 
formal objects in O2 a relation of type t exists from the first to the second class. 
Therefore, the set A2 of formal attributes of the order two context consists of the 
tuples (1,2)t for which a tuple in P exists that relates two arbitrary classes by a 
relation of type t.  

In the inductive step, the order of the context is increased with one. The 
construction of Ok appends one component, xk, to the tuples in Ok-1. This xk is defined 
as any class for which a tuple in P exists that relates xk to some other class xj that is 
present in the tuple of Ok-1. Next, Ak is constructed by extending Ak-1 with two sets of 
tuples. The first set consists of the tuples (k,j )t, for which j  equals the index of the 
class xj that allowed the addition of xk during the construction of Ok, and a relation of 
type t exists in P from xk to xj. The second set is similar, with k and j  exchanged. 
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Note that in (9) the order n context contains the order n-1 context in the sense that 
all lower-order sequences are initial subsequences of the objects in the order n 
context, and that all attributes are retained. The algorithm assumes that design 
patterns consist of connected graphs. This assumption holds for all patterns in [3], so 



provided that sufficient relationships between classes are extracted, it does not impose 
a significant restriction. 

Algorithm (8) is used in [22] to construct the lattice. The concepts directly 
represent patterns, but redundancies can be present. For example, two concepts may 
represent the same pattern. The notions of equivalent patterns and equivalent 
instances to remove redundancies from the lattice, informally defined by [22], are 
given formally by equations (10) and (11). 

Definition 1 (Equivalent patterns). Let (X1,Y1) and (X2,Y2) be two concepts 
representing design patterns that are generated from the same order k context. (X1,Y1) 
and (X2,Y2) are equivalent patterns if an index permutation f on the index set { 1..k}  
exists such that: 

 ( ) ( )( ) ( ){ } ( ) ( )( ) ( ){ }1 12 1 1 1 1 21 1
,..., ,..., ,..., ,...,k kf f k f f k

X x x x x X X x x x x X− −= ∈ ∧ = ∈  (10) 

(X1,Y1) ≅ (X2,Y2) denotes that (X1,Y1) and (X2,Y2) are equivalent patterns. 
According to Definition 1 two patterns (X1,Y1) and (X2,Y2) are equivalent when X2 
can be obtained by reordering the classes in (some of) the elements of X1 and vice 
versa. Consequently, each formal attribute in Y1 can be transformed into one in Y2 and 
vice versa.   

Definition 2 (Equivalent instances). Let (x1,1,…,x1,k) and (x2,1,…,x2,k) be two 
formal objects in the extent X of an order k concept (X,Y) that represents a design 
pattern. These formal objects represent equivalent instances within that concept if an 
index permutation g on the index set { 1..k}  exists such that: 
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Here, (x1,1,…,x1,k) ≅ (x2,1,…,x2,k) denotes that (x1,1,…,x1,k) and (x2,1,…,x2,k) are 
equivalent instances. According to Definition 2, two formal objects in the extent X of 
a concept (X,Y) are equivalent within that concept if an index permutation exists that 
transforms them into each other, and when applied to the formal attributes in Y 
produces attributes that are also part of Y.  

In [26] the method is applied to three public domain applications written in C++ 
(20-100 KLOC). Besides the static inter-class relations (inheritance and association), 
also dynamic inter-class relations (calls and delegates) and class attributes like 
member function definitions are taken into account. They report the detection of 
several recurring design constructs, like the Adapter pattern [3] in several variants. 
The order of the context was chosen between two and four, typically three. Higher-
order patterns did not prove to be a good starting point because “they impose an 
increasing number of constraints on the involved classes and are therefore matched by 
few instances (typically just one)” . For the order three context the number of formal 
objects was 1721 to 34147. The number of formal attributes was 10 in all cases. 



2   Case Study 

The subject for our case study is a printer controller. Such a controller consists of 
general-purpose hardware on which proprietary and third party software runs. Its 
main task is to control (physical) devices such as a print- and scan-engine, and act as 
an intermediate between them and the customer network.  

The software running on the controller has been written in multiple programming 
languages, but mostly in C++.  An as-designed architecture is available, but it is not 
complete and large parts of the architecture documentation are not consistent with the 
implementation.  

Table 1 shows the characteristics of the controller and two of its subsystems, 
Grizzly and RIP Worker. Because of performance limitations it was not feasible to 
apply the design pattern detection to the complete controller. Instead, it has been 
applied to these two subsystems. The Grizzly subsystem provides a framework for 
prototyping on the controller. The RIP Worker subsystem transforms Postscript files 
into printable bitmaps, taking the print-settings the user specified into account 
(“ripping” ). In [27] the architecture of this controller is reconstructed by detecting 
instances of architectural styles and design patterns in the source code by means of a 
pattern library.  

Table 1. Software characteristics of the printer controller of the case study. 

 Controller Grizzly RIP Worker 
Classes 2661 234 108 
Header and source files 7549 268 334 
Functions 40449 2037 1857 
Lines of source code (*1000) 932 35 37 
Executable statements (*1000) 366 18 16 

2.1   Goals  

Our case study investigates the detection of unknown structural design patterns in 
source code, without requiring upfront knowledge, using Formal Concept Analysis 
(FCA). We formulate the following hypothesis (H1): “With Formal Concept Analysis 
frequently used structural design constructs in the source code of the controller can 
be detected without upfront knowledge of the expected structures.”  

The confirmation of H1 does not imply that the found design constructs represent 
a useful architectural view of the controller. We therefore formulate an additional 
hypothesis (H2): “Knowledge of frequently used structural design constructs found 
with Formal Concept Analysis in the controller provides an architectural view that is 
useful to gain insight in the structure of the system.”  

The usefulness of knowledge on structural design constructs depends on the 
amount of information this knowledge gives. The number of classes in the pattern and 
the number of instances of the pattern are two important criteria for this. On average, 
the design patterns in [3] contain about four to five classes. Because we are 
reconstructing an architectural view and not a subsystem-design we want to find 



slightly larger patterns. Hence we decided the patterns must contain at least six 
classes to be useful for architecture reconstruction.  

The other criterion, the minimal number of instances of a useful pattern, is difficult 
to quantify. To our knowledge no work is published on this subject, so we determine 
it heuristically. Because no pattern-library is used, maintainers need to invest time to 
understand the patterns before reaping the benefit of this knowledge. The benefit, 
easier program understanding, must outweigh this investment. Obviously this is not 
the case if the patterns have one instance. Because we search repeated structures and 
not named patterns (like library-based approaches do) the investment is relatively 
high. Hence, we decided that a pattern must have at least four instances to be useful to 
reconstruct an architectural view of the controller.  

To confirm the two hypotheses H1 and H2, a prototype has been built that 
implements the approach Tonella and Antoniol proposed, described in section 1.2. 
Before applying the prototype to the complete controller it has been applied to two of 
its subsystems, namely Grizzly and the RIP Worker. 

2.2   Pattern detection architecture 

The architecture of the pattern detection prototype is based on the pipe and filter 
architectural style [28]. The processing modules have been implemented with two 
third party tools and XSLT transformations. XSLT has been chosen because it is a 
mature and platform independent language, the two third-party tools (Columbus and 
Galicia) both support XML export and import, and finally it allows functional 
programming. This is an advantage because one of the most important algorithms of 
the implemented approach is defined inductively by (9) and maps very well to a 
functional implementation.  

Fig. 1 shows a view of the prototype’s architecture. The blocks represent 
processing modules and the arrows directed communication channels between the 
modules. The latter are implemented with files. Below, these modules are discussed. 
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Fig. 1. Architectural view of the pattern detection prototype. 

Fact extraction. The fact extraction module uses Columbus/CAN to extract structural 
information from the source code. Columbus uses the compiler that was originally 
used to compile the analyzed software, in this case Microsoft Visual C++. The 
extracted information is exported from Columbus with its UML exporter [29], which 
writes the information to an XMI file.  

Because the XMI file has a relatively complex schema, the fact extraction module 
converts it to an XML file with a simpler schema. This file serves as input for the 
context generation module. It contains the classes and most important relationships 
between them. Three types of relations are extracted: 
• Inheritance: The object-oriented mechanism via which more specific classes 

incorporate the structure and behavior of more general classes. 



• Association: A structural relationship between two classes. 
• Composition: An association where the connected classes have the same lifetime. 

Context generation. This module uses the inductive context construction algorithm  
(9) to generate the formal context that will be used to find frequently used design 
constructs. After algorithm (9) has been completed, the “context generation”  module 
converts the formal context to the import format Galicia uses for “binary contexts”.  

Since XSLT does not support sets, the prototype uses bags. This, however, allows 
the existence of duplicates. The prototype removes these with an extra template that is 
applied after the templates that implement each of the initial and inductive steps. This 
produces the XSLT equivalent of a set. 

Size of the output. The initial step of the context generation algorithm produces an 
order two context. The order of the context represents the number of classes in the 
patterns searched for. Each inductive step extends the order with one. This step is 
repeated until the desired order is reached. So in general the (k-1)-th step of the 
algorithm (k≥2) produces a context Ck= (Ok,Ak,Rk) of order k, where Ok is the set of 
formal objects, Ak the set of formal attributes, and Rk the set of relations between the 
formal objects in Ok and the formal attributes in Ak.  

The number of formal attributes, |Ak|, is bounded by the number of different triples 
that can be made. Each formal attribute in Ak is a triple (p,q,t) where p and q are 
integers between 1 and k, and t is a relationship-type. The number of permutations of 
two values between 1 and k is bounded by k2, so at most k2 different combinations 
are possible for the first two components of the formal attributes. Therefore, if T is the 
set of relationship-types, and the size of this set is |T|, |Ak|≤|T|·k2.  

The number of formal objects, |Ok|, in the order k context is limited by the number 
of permutations of different classes of length k. If D is the set of classes, with size 
|D|, this means that |Ok|≤|D|k. So the number of formal objects is polynomial with 
the number of classes and exponential with the size of the patterns searched for. 
However, the fact that the connectivity of the classes in D is usually relatively low 
(and even can contain disconnected subgraphs), limits |Ok| significantly.  

Computational complexity. Let P⊆D×D×T be the set of relations between classes, 
with D and T defined above.  In the implementation the initial step is implemented 
with a template for the elements of P. Hence, i f |P| is the number of elements in P, 
the complexity of the initial step is O(|P|).  

The inductive step increases the order of the context with one. This is implemented 
with a template for the formal objects in the order k-1 context (the elements of Ok-1). 
This template extends each formal object o∈Ok-1 with a class that is not yet part of o 
and is related to one of the classes in o via a class-relation in P. Because every formal 
object in Ok-1 consists of k-1 classes, the inductive step producing Ok has a 
computational complexity O(|Ok-1|·(k-1)·|P|), which approximates O(k·|P|·|Ok-1|).  

Let (x1,…,xk-1) be the sequence of classes represented by a formal object o∈Ok-1. 
Because in our implementation the previous inductive step appended classes to the 
end of this sequence, in the next inductive step only the last element xk-1 can lead to 
the addition of new classes to the sequence. Therefore, all but the first inductive steps 
do not have to iterate over all k-1 classes in the formal objects in Ok-1, but can only 



consider the most recently added class. This optimization reduces the computational 
complexity of the inductive step to about O(|P|·|Ok-1|). Because of limited 
implementation time this optimization has not been applied to the prototype, but is 
left as future work.  

Because |Ok-1| is polynomial with the number of classes in D, and in the worst 
case |P| is quadratic with |D|, this optimization gives the inductive step a 
computational complexity that is polynomial with the number of classes in D. 
However, it is exponential with the size of the patterns searched for. 

Lattice construction. The prototype constructs the lattice with a third party tool, 
Galicia, an open platform for construction, visualization and exploration of concept 
lattices [30,31]. Galicia implements several algorithms to construct a lattice from a 
formal context. Because it is expected that the number of classes extracted from the 
source code, and hence the number of formal objects, will be relatively high, the 
Bordat algorithm [25] is best suited to generate the lattice, as explained in section 1.1. 

Complexity of the lattice construction. Theoretically the size of the lattice, |L|, is 
exponential with the size of the context; if |A|= |O|=n then |L|

�
2n. In practice the 

lattice size may be O(n) [21], but this obviously depends on the properties of the 
formal context. Assuming that this is the case, and considering that in our case |A| is 
much smaller than |O|, the computational complexity of the Bordat algorithm 
approximates O(|O|2). Thus, because the number of formal objects was polynomial 
with the number of classes and exponential with the size of the patterns searched for, 
this also holds for the computational complexity of the lattice construction. 

Pattern selection. The final module of the prototype filters the patterns in the lattice. 
Like the other data transformations in the prototype, this step is implemented with 
XSLT templates. Two filters are applied. First, sets of equivalent formal concepts, in 
the sense defined by (11), are replaced by one of their elements. Second, the concepts 
are filtered according to the size of their extent and intent (the number of formal 
objects and attributes respectively). In the remainder of this section these two filters 
are described more precisely. 

The prototype does not filter for equivalent patterns in the sense defined by (10). It 
was planned to add this later if the output of the prototype proved to be useful. 
However, as is described in section 2.3, this was not the case. 

Equivalent formal object filtering. Let X be the set of formal objects of some formal 
concept the lattice construction module produced, and let instance equivalence ≅ be 
defined by (11). Then, for every formal concept, the result of the first filter is the 
subset X’⊆ X that is the maximal subset of X that does not contain equivalent 
instances. If |X’ | and |Z| refer to the number of elements in X’  and another set Z 
respectively, this is defined as:  

 
( ) ( )

( ) 1 2 1 2 1 2

' ' : '

with ' , ' :

X X f X Z X f Z Z X

f X x x X x x x x

⊆ ∧ ∧ ¬∃ ⊆ ∧ >

≡ ¬∃ ∈ ≠ ∧ ≅
 (12) 

This filter is implemented with two templates for the formal objects (the elements 
of X). The first template marks, for every formal concept, those formal objects for 



which an unmarked equivalent instance exists. Of every set of equivalent instances 
this leaves one element unmarked. The second template removes all marked formal 
objects. It is easy to see that this produces the maximal subset of X that does not 
contain equivalent instances.  

Size-based filtering. The second filter removes all formal concepts with a small 
number of formal objects or attributes. Let px and py be two user-specified parameters 
that specify the minimum number of required formal objects and attributes 
respectively. Then the output of this filter only contains concepts with at least px 
formal objects and py formal attributes. This filter is implemented with a trivial 
template for the elements in the lattice.  

Complexity of the pattern selection. Let avg(|X|) and avg(|Y|) represent the average 
number of formal objects and formal attributes respectively of the formal concepts. If 
|L| represents the number of formal concepts in the lattice, the first filter has a time 
complexity of O(|L|·avg(|X|)·avg(|Y|)). If avg(|X’ |) represents the average size of 
the formal objects after equivalent instances have been removed by the first filter, the 
second filter has a computational complexity of O(|L|·(avg(|X’ |)+avg(|Y|))). 
Because avg(|X’ |) is smaller than avg(|X|), the pattern selection module has a total 
computational complexity of approximately O(|L|·avg(|X|)·avg(|Y|)).  

We assume that the number of formal concepts |L| is proportional to the number of 
formal objects (and the number of formal attributes, but that is much less). If every 
formal attribute is associated with every formal object, avg(|Y|) equals the number of 
formal objects. Because we assume the number of formal attributes to be very small 
compared to the number of formal objects, avg(|X|) is not relevant for the 
computational complexity. Therefore, the computational complexity of the filtering 
module is approximately quadratic with the number of formal objects. Because the 
number of formal objects was polynomial with the number of classes and exponential 
with the size of the patterns searched for, this again also holds for the complexity of 
the pattern-selection. 

2.3 Results 

The pattern detection prototype has been applied to the Grizzly and RIP Worker 
subsystems of the controller. The following sections give examples of patterns found. 

Results for Grizzly. The application to the Grizzly source code (234 classes) 
produced a formal context and lattice with the characteristics shown in Table 2.  

Table 2. Characteristics of the order four context for Grizzly and the corresponding lattice. 

Number of formal objects 40801 
Number of formal attributes 37 
Number of attribute-object relations 128065 
Number of formal concepts 989 



Recall from section 2.2 that the number of formal attributes |Ak| of an order k 
context is bounded by |Ak|≤|T|·k2, where |T| is the number of relationship-types. In 
this case, |T|=3 and k=4 so the number of formal attributes is bounded by 3×42=48. 
Table 2 shows that the number of formal attributes (37) is indeed less than 48.  

Recall from the same section that the upper bound of the number of formal objects 
of an order k context, |Ok|, is polynomial with the number of classes |D|. More 
specific |Ok|≤|D|k. Since the characteristics in Table 2 are of an order four context, 
|Ok|=2344≈ 3·109, which is clearly more than 40801. In fact, the number of formal 
objects is in the same order as 2342=54756. This large difference is due to the low 
connectivity of the classes.  

The figures in Table 2 confirm the assumptions made in section 2.2. The number of 
formal attributes is indeed much lower than the number of formal objects. 
Furthermore, the number of formal concepts is not exponential with the size of the 
context. In fact, it is about one order smaller than the number of formal objects. This 
confirms our assumption that the size of the lattice is approximately linear with the 
number of formal objects. 

With the user-specified filtering-parameters both set to four (px=py=4), the 
prototype extracted 121 order four concepts from this context (with px=py=5 only 
twelve remained). However, despite the filtering, many of the found patterns were 
very similar. The result even included several variants of the same pattern, for 
example with the associations organized slightly different.  

The 121 concepts obtained with both filtering parameters set to four have been 
analyzed manually according to their number of formal objects and attributes. Fig. 2 
shows two of the found patterns that were among the most interesting ones. Galicia 
generated the concept-IDs, which uniquely identify the concept within the lattice. 

W

Y

Concept ID=941
Nr. of formal objects=21
Nr. of formal attributes=5

Concept ID=678
Nr. of formal objects=20
Nr. of formal attributes=4

K

NMLZX

 

Fig. 2. Two patterns found in the Grizzly subsystem. 

Concept 678 represents a pattern with classes W, X, Y and Z, where Z has an 
association with X and Y. Both W and Y have a composition relationship with X. 
Analysis of the 20 instances of this pattern shows that for W fourteen different classes 
are present, for X and Y both two, and for Z three. This indicates that the instances of 
this pattern occur in a small number of source-code contexts. 

Table 3 shows four example instances of this pattern. Examination of the Grizzly 
design documentation learned that the first instance in Table 3, with 
W=BitmapSyncContext, covers a part of an Interceptor pattern [28]. This pattern 
plays an important role in the architecture of Grizzly. The 
BitmapDocEventDispatcher class plays the role of event Dispatcher, and the 
BitmapSyncContext the role of ConcreteFramework. The abstract and concrete 



Interceptor classes are not present in the detected pattern. (The designers of Grizzly 
omitted the abstract Interceptor class from the design.) The EventDispatcherTest class 
is part of the Grizzly test code, and plays the role of the Application class in the 
Interceptor pattern. The Document class is not part of the Interceptor pattern. In the 
Grizzly design this class is the source of the events handled with the interceptor 
pattern.  

Observe that the pattern in Fig. 2 does not contain the “create”  relation between the 
BitmapDocEventDispatcher (Y) and the BitmapSyncContext (W) classes [28]. This 
does not mean that this relationship is not present; it is omitted from this pattern 
because the other pattern instances do not have this relationship. 

Table 3. Four example instances of pattern 678. 

W X Y Z 
BitmapSyncContext Document BitmapDocEventDispatcher BitmapDocEventDispatcherTest 
SheetDocEventDispatcher    
FlipSynchronizer BasicJob BitmapDocSynchronizer InversionWorkerJobInterceptor 
StripeSynchronizer   BitmapDocSynchronizerTest 

 
The other concept shown in Fig. 2 (with ID 941) represents a relatively simple 

pattern with four classes K, L, M and N. Class L, M and N inherit from K, L has a 
self-association, and M an association to N. Analysis of the 21 detected instances 
shows that in all cases K refers to the same class, L to three, and M and N both to six 
different classes. This indicates that all instances of this pattern are used in the same 
source-code context. 

Table 4 shows four of the detected instances of pattern 941. SplitObjectStorage is 
an abstract class from which all workflow-related classes that store data inherit. The 
SplitList classes are container classes, for example for SplitTransition classes. The 
SplitTransition classes each represent a single state transition and are each associated 
with two SplitState objects. These represent the states before and after the transition.  

Table 4. Four example instances of pattern 941. 

K L M N 
SplitObjectStorage SplitListOfAllTransitions SplitTransition SplitState 
  SplitNode SplitDoc 
 SplitListOfAllStates SplitState SplitAttribute 
 SplitListOfAllDocuments SplitDocPart SplitImageSequence 

Surprisingly, the Grizzly design documentation does not mention any of the classes 
listed in Table 4. Analysis of the code shows that these classes are concerned with 
workflow management in the controller, and represent points where Grizzly interfaces 
with the rest of the system. Strictly speaking these classes are not part of Grizzly but 
of the workflow-management subsystem of the controller. However, they are 
redefined in the Grizzly source-tree, and hence extracted by Columbus. 

Results for RIP Worker. Applying the prototype to the RIP Worker (108 classes) 
produced a formal context and lattice with the characteristics shown in Table 5. 



Table 5. Characteristics of the order four context for the RIP Worker and the corresponding 
lattice. 

Number of formal objects 52037 
Number of formal attributes 41 
Number of attribute-object relations 170104 
Number of formal concepts 3097 

The number of formal attributes, 41, is again less than the upper bound |T|·k2, 
which equals 48. The number of formal objects of the order k context, |Ok|, does not 
exceed the predicted upper bound: Table 5 represents an order four context, and 
|Ok|=52037≤|D|4=1084≈ 1.4·108, so the number of formal objects is relatively low.  

Like with Grizzly, the size of the lattice is approximately linear with the size of the 
context (one order smaller), and the number of formal objects is much higher than the 
number of formal attributes. With the user-specified size filtering parameters both set 
to five (px=py=5), the prototype produced 158 order four concepts (with px=py=4: 
799). Like in Grizzly, the set of patterns found in the RIP Worker also contains a lot 
of similar patterns. Fig. 3 shows two of the patterns found. 
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Concept ID=2694
Nr. of formal objects=25
Nr. of formal attributes=5
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Concept ID=2785
Nr. of formal objects=31
Nr. of formal attributes=5  

Fig. 3. Two patterns found in the RIP Worker. 

The output of the filtering module for concept 2694 shows that for class N 25 
different classes are present, but for K, L and M all pattern instances have the same 
class. This indicates that all instances of this pattern are used in the same piece of the 
source code. Table 6 shows four examples of pattern 2694. All are concerned with job 
settings and the configuration of the system. The PJT_T_SystemParameters class 
stores information about the environment of the system, for example supported media 
formats and types. The PJT_T_JobSetting class represents the settings for a complete 
job, and is composed of the classes listed for N. The class for L, PJT_T_Product, is 
used to detect if the machine can handle a certain job specification. 

Table 6. Four example instances of pattern 2694. 

K L M N 
PJT_T_SystemParameters PJT_T_Product PJT_T_JobSetting PJT_T_MediaColor 
   PJT_T_MediaWeight 
   PJT_T_RunLength 
   PJT_T_StapleDetails 



Analysis of the 31 instances of the pattern for concept 2785 shows that in all cases 
W and Y refer to the same class. X refers to eight different classes and Z to four. This 
indicates that all instances of this pattern are used in the same source code context. 
Table 7 shows four example instances of pattern 2785. None of the listed classes are 
mentioned in the RIP Worker design documentation. Examination of the source code 
shows that all instances are part of a GUI library the RIP Worker’s test tools use. 

Table 7. Four example instances of pattern 2785. 

W X Y Z 
CWnd CDialog CFrameWnd CCmdUI 
 CButton  CDialog 
 CListBox  CWinThread 
 CEdit  CDataExchange 

Quality of the results. When examining the output for Grizzly and the RIP Worker, 
it is clear that better filtering is required. Recall that filtering for equivalent patterns, 
as defined by (10), has not been implemented in the prototype. The output contains 
many equivalent patterns, so in practice this filtering is desired too.  

The occurrence of sets of patterns in the output with small differences represents a 
more significant problem. A possible filtering strategy might be to group highly 
similar patterns into subsets and (initially) show only one pattern of each subset of the 
user. This requires a measure for the difference between patterns, for example based 
on the number of edges (class relations) that must be added and removed to convert 
one pattern into another. We leave this as future work. 

After filtering the results manually, the remaining patterns are of a relatively low 
complexity.  More complex patterns typically have one instance and are removed by 
the pattern selection module. This means we are not able to achieve our goal of 
finding patterns that are useful to reconstruct architectural views (hypothesis H2).  

Several publications report finding large numbers of design pattern instances in 
public domain code and few in industrial code [32,27]. We speculate that it could be 
the case that industrial practitioners structurally design software in a less precise way 
than public domain developers. Obviously, further experiments are needed to validate 
this statement, but it could explain why in our case study the number of instances of 
the found patterns remains fairly low. 

Encountered problems. During the fact extraction process several problems were 
encountered. First of all, Columbus crashed during the compilation of some source 
files. Because the compiler does not give errors for these files in normal use, the cause 
is an incompatibility between Columbus and Visual C++, or an error in Columbus 
itself. This problem occurred ten times for the full controller. In all cases, skipping the 
source file that triggered the error solved the problem. Because it only happened once 
for the RIP Worker, and not at all for Grizzly, it has little impact on the results.  

The second problem occurred during the linking step of the fact extraction. No 
problems were encountered for the RIP Worker and Grizzly, but with the complete 
controller Columbus crashed. A few experiments revealed the size of the combined 
abstract syntax graphs, which is closely related to the size of the source files, as 
probable cause. Therefore it was not possible to extract facts from the full controller. 



Execution times. Both subsystems have been analyzed on the same test platform. 
Table 8 shows the characteristics of this platform and Table 9 shows the execution 
times for the RIP Worker and Grizzly subsystems for an order four context (wall-
clock time). The lattice construction time includes the time to import the formal 
context into Galicia and to export the generated lattice to an XML file. For Grizzly 
the total execution time was 7:44:59 and for the RIP Worker 11:17:17 (hh:mm:ss). 

Table 8. Test system characteristics. 

Processor Pentium 4, 2 GHz 
Memory 2 GB 
Operating system Windows 2000 SP4 
Columbus 3.5 
Galicia  1.2 
Java 1.4.2_06 

Table 9. Execution times (hh:mm:ss). 

Process step Grizzly RIP Worker 
1 Fact extraction 0:01:09 0:42:40 
2 Context generation  0:26:00 0:36:00 
3 Lattice construction  4:41:50 6:57:37 
4 Pattern selection  2:36:00 3:01:00 

The patterns detected in the Grizzly and RIP Worker source code are relatively 
simple. Possibilities to produce more interesting patterns are extending the size of the 
input to (for example) multiple subsystems of the controller, increasing the order of 
the context, or introducing partial matches. The last possibility requires fundamental 
changes to the method. If FCA would still be used, these changes would increase the 
size of the lattice significantly and hence also the execution time of the lattice 
construction step. The first two options have the disadvantage that they increase the 
size of the data processed. This affects the running time of all modules.  

Because the computational complexity of the algorithms of each module is 
polynomial with the number of classes and exponential with the order of the context, 
we conclude that, given the executing times in Table 9, it is not practical to use the 
prototype to reconstruct architectural views of the complete controller. 

3 Conclusions 

Pattern detection methods based on a pattern library have been applied frequently and 
their properties are well known, but they require upfront knowledge of the patterns 
used and their precise implementation. Implementation variations make the latter 
difficult to specify. The pattern detection method we applied is based on Formal 
Concept Analysis and does not require a pattern library. The method proved to be able 
to detect frequently used design structures in source code without upfront knowledge 
of the expected constructs, thereby confirming our hypothesis H1 in section 2.1.  



However, the detection of relatively simple structures in relatively small pieces of 
source code required a lot of calculations. For performance reasons no contexts of 
orders large than four could be analyzed, so the detected patterns consisted of four 
classes or less. Although large numbers of pattern instances were detected, these were 
typically confined to a few areas of the source code. Because it was not possible to 
detect patterns with six classes or more, we failed to confirm hypothesis H2. 

Since this is inherent to the used algorithms, the application of this technique to 
reconstruct architectural views of large object-oriented systems, more specific, 
systems with the size of the controller, is not considered practical. It is possible to 
detect design patterns in subsystems with a size of 5-10% of the complete controller.  

Besides performance issues, the reduction of the large number of similar patterns 
in the output is also important. Based on the complexity of the patterns we filtered the 
output, but the results show that more advanced filtering is necessary. It might also be 
possible to group similar patterns into groups and show a single pattern of each group 
to the user. The similarity of patterns could be based on the number of edges that must 
be added and removed to transform them into each other. 

Finding frequently used design constructs in the source code essentially finds 
frequently occurring subgraphs in the class graph. An alternative to the pattern 
detection currently used might be to use graph compression algorithms that are based 
on the detection of recurring subgraphs. We have built a small prototype that uses the 
Subdue algorithm [33]. This algorithm creates a list of recurring subgraphs and 
replaces all occurrences of these subgraphs with references to this list. However, 
when this algorithm is used for pattern detection, the fact that the algorithm looks for 
perfectly identical subgraphs causes problems. The intertwining of structures often 
encountered in practice caused this prototype to find no patterns at all in two 
subsystems (Grizzly and the RIP Worker) of the controller. Lossy graph compression 
algorithms might introduce the required fuzziness.  
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