
Pattern Detection in Object-Oriented Source Code

Andreas Wierda1, Eric Dortmans1, and Lou Somers2

1Océ-Technologies BV, P.O. Box 101, NL-5900 MA Venlo, The Netherlands

2Eindhoven University of Technology, Dept. Math. & Comp.Sc., P.O. Box 513,
NL-5600 MB Eindhoven, The Netherlands

{ andreas.wierda, eric.dortmans}@oce.com, wsinlou@win.tue.nl

Abstract. Pattern detection methods discover recurring solutions, like design
patterns in object-oriented source code. Usually this is done with a pattern
library. Hence, the precise implementation of the patterns must be known in
advance. The method used in our case study does not have this disadvantage. It
uses a mathematical technique, Formal Concept Analysis, and is applied to find
structural patterns in two subsystems of a printer controller. The case study
shows that it is possible to detect frequently used structural design constructs
without upfront knowledge. However, even the detection of relatively simple
patterns in relatively small pieces of software takes a lot of computing time.
Since this is due to the complexity of the applied algorithms, applying the
method to large software systems like the complete controller is not practical. It
can be applied to its subsystems though, which are about 5-10% of its size.

Keywords: Pattern detection, formal concept analysis, object-oriented, reverse
engineering.

1 Introduction

Architecture reconstruction and design recovery are a form of reverse engineering.
Reverse engineering does not involve changing a system or producing new systems
based on existing systems, but is concerned with understanding a system. The goal of
design recovery is to “obtain meaningful higher-level abstractions beyond those
obtained directly from the source code itself” [1].

Patterns provide proven solutions to recurring design problems in a specific
context. Design patterns are believed to be beneficial in several ways [2,3,4], where
knowledge transfer is the unifying element. Empirical evidence shows that developers
indeed use design patterns to ease communication [5]. Given the fact that program
understanding is one of the most time consuming activities of software maintenance,
knowledge about applied patterns can be useful for software maintenance. Controlled
experiments with both inexperienced [6] and experienced [7] software developers
support the hypothesis that awareness of applied design patterns reduces the time
needed for maintenance and the number of errors introduced during maintenance.

For an overview of methods and tools for architecture reconstruction and design
recovery, see e.g. [8,9,10,11,12]. Architectural clustering and pattern detection are the
most prominent automatic methods [13]. Pattern-based reconstruction approaches

detect instances of common constructs, or patterns, in the implementation. Contrary to
the approach where one uses a library of known patterns to detect these in source
code, we concentrate in this paper on the detection without upfront knowledge about
the implemented patterns [14,15]. For this we use Formal Concept Analysis.

1.1 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical technique to identify “sensible
groupings of formal objects that have common formal attributes” [16,17]. FCA is also
known as Galois lattices [18]. Note that formal objects and formal attributes are not
the same as objects and attributes in object-oriented programming!

The analysis starts with a formal context, which is a triple C= (O,A,R) in which O
is the finite set of formal objects and A the finite set of formal attributes. R is a binary
relation between elements in O and A, hence R⊆O×A. If (o,a)∈R it is said that
object o has attribute a. For X⊆O and Y⊆A, the common attributes σ(X) of X and
common objects τ(Y) of Y are defined as [19]:

 () (){ }: ,X a A o X o a Rσ = ∈ ∀ ∈ ∈ (1)

 () (){ }: ,Y o O a Y o a Rτ = ∈ ∀ ∈ ∈ (2)

A formal concept of the context (O,A,R) is a pair of sets (X,Y), with X⊆O and
Y⊆A, such that:
 () ()Y X X Yσ τ= ∧ = (3)

Informally a formal concept is a maximal collection of objects sharing common
attributes. X is called the extent and Y the intent of the concept. The extents and
intents can be used to relate formal concepts hierarchically. For two formal concepts
(X0,Y0) and (X1,Y1) the subconcept relation

�
 is defined [19] as:

 () ()0 0 1 1 0 1 1 0, ,X Y X Y X X Y Y≤ ⇔ ⊆ ⇔ ⊆ (4)

If p and q are formal concepts and p
�

q then p is said to be a subconcept of q and q
is a superconcept of p. The subconcept relation enforces an ordering over the set of
concepts that is captured by the supremum � and infimum ∏ relationships. They
define the concept lattice L of a formal concept C with a set of concepts I [19]:

 ()
() () (), , ,

, ,
i i i i i i

i i i i
X Y I X Y I X Y I

X Y X Yτ σ
∈ ∈ ∈

� �� �� �� �� �
=

� �� �� �� �� �� �� �
� 	

 (5)

 ()
() () (), , ,

, ,
i i i i i i

i i i i
X Y I X Y I X Y I

X Y X Yσ τ
∈ ∈ ∈

� �� �� �
 �
 �
=

 �
 �
 �
 �� �� �� �∏ � � (6)

where I is the set of concepts to relate. To calculate the supremum (smallest common
superconcept) of a set of concepts their intents must be intersected and their extents
joined. The latter set must then be enlarged to fit to the attribute set of the supremum.
The infimum (greatest common subconcept) is calculated similarly.

A simple bottom-up algorithm is described in [20] that constructs a concept lattice
L from a formal context C= (O,A,R) using the supremum relation. It starts with
the concept with the smallest extent, and constructs the lattice from that concept
onwards. The algorithm utilizes that for any concept (X,Y) [21]:

 () { } { }()
o X o X

Y X o oσ σ σ
∈ ∈

� �

= = =
� �
� �

� �
 (7)

This equation enables calculating the supremum of two concepts by intersecting
their intents. (8) gives a formalized description of the lattice construction algorithm,
based on the informal description in [20]. The algorithm starts with the calculation of
the smallest concept cb of the lattice. The set of atomic concepts, together with cb, is
used to initialize L. Next the algorithm initializes a working-set W with all pairs of
concepts in L that are not subconcepts of each other. The algorithm subsequently
iterates over W to build the lattice using the supremum relation for each relevant
concept-pair. The supremum of two concepts is calculated using (7). Recall that in
this calculation the intents of the concepts c1 and c2 are intersected, after which τ is
applied obtain the extent. If the calculated concept is new, it is added to L and the
working-set is extended with relevant new concept pairs.

()() ()()
{ } ()() ()(){ }

() (){ }
()

{ }
() (){ }

2
1 2 1 2 2 1

1 2

1 2

: ,

: , |

: ,
for each , do

c'=c
if ' do

: '
: , ' ' '

od
od

b

b

c

L c o o o O

W c c L c c c c
c c W

c
c L

L L c
W W c c c L c c c c

τ σ σ
τ σ σ

= ∅ ∅
= ∪ ∈
= ∈ ¬ ≤ ∨ ≤

∈

∉
= ∪
= ∪ ∈ ∧ ¬ ≤ ∨ ≤

�
 (8)

The time complexity of algorithm (8) depends on the number of lattice elements. If
the context contains n formal objects and n formal attributes, the lattice contains 2n
concepts [21]. This means the worst case running time of the algorithm is exponential
in n. In practice however, the size of the concept lattice typically is O(n2), or even
O(n) [21,22,23]. This results in a typical running time for the algorithm of O(n3).

Algorithm (8) is a very simple lattice construction algorithm that does not perform
very well. A comparison of algorithms [24] shows that for large contexts the Bordat
algorithm [25] gives the best performance. For a concept lattice L with |L| formal
concepts and |O| and |A| formal objects and attributes of the formal context, the
Bordat algorithm has a worst-case computational complexity of O(|O|·|A|2·|L|).

1.2 Design pattern detection

The use of FCA to find recurring design constructs in object-oriented code is
described in [22]. The key idea is that a design pattern amounts to a set of classes and
a set of relations between them. Two different instances of a pattern have the same set
of relations, but different sets of classes.

Let D be the set of classes in the design and T be the set of relationship-types
between classes. For example T= { e,a} defines the relationship types “extends” and
“association” . Then the set of inter-class relations P is typed P⊆D×D×T. To find
pattern instances of k classes, the formal context Ck= (Ok,Ak,Rk) is used with:
• Ok: set of k-sized sequences of classes in the design. More precisely

 () []{ }1, , | 1..k k iO x x x D i k= ∈ ∧ ∈�

where k is called the order of the sequence.
• Ak: set of inter-class relations within the sequences in Ok. Each is a triple (xi ,xj)t,

where xi and xj are classes and t is a relationship-type. Ak is defined by
 () () []{ }, | , , 1..k i jt t

A i j x x P i j k= ∈ ∧ ∈ .

• Rk: “possesses” relation between the elements in Ok and in Ak.
A formal concept (X,Y) consists of a set of class-sequences X and a set of inter-

class relations Y. Thus the intent Y specifies the pattern and the extent X specifies the
set of pattern-instances found in the code.

Before the lattice can be constructed from the context, this context must be
generated from the class diagram. A simple inductive algorithm [22] is shown in (9).
Recall that D is the set of classes and P the set of class-relations.

The initial step generates an order two context. This is done by collecting all pairs
of classes that are related by a tuple in P; the set O2 of formal objects of the order two
context consists of all pairs of classes related by a tuple in P. This means that for all
formal objects in O2 a relation of type t exists from the first to the second class.
Therefore, the set A2 of formal attributes of the order two context consists of the
tuples (1,2)t for which a tuple in P exists that relates two arbitrary classes by a
relation of type t.

In the inductive step, the order of the context is increased with one. The
construction of Ok appends one component, xk, to the tuples in Ok-1. This xk is defined
as any class for which a tuple in P exists that relates xk to some other class xj that is
present in the tuple of Ok-1. Next, Ak is constructed by extending Ak-1 with two sets of
tuples. The first set consists of the tuples (k,j)t, for which j equals the index of the
class xj that allowed the addition of xk during the construction of Ok, and a relation of
type t exists in P from xk to xj. The second set is similar, with k and j exchanged.

() (){ }
() (){ }
()
() (){

() ()()}
() (){

() ()() () }

2

2

1 1 1 1

1 1

Initial step:
, | ,

1,2 | , : ,
Inductive step 2 :

, , | , ,

,1 1 , ,

, | , ,

1 1 1 1 ,

t

t t

k k k k

j k k jt t

k k k kt

i j t

O x y x y P

A x y D x y P
k

O x x x x O

j j k x x P x x P

A A i j x x O

i k j k j k i k x x P

− −

−

= ∈
= ∃ ∈ ∈

>
= ∈ ∧

∃ ≤ ≤ − ∧ ∈ ∨ ∈

= ∪ ∃ ∈ ∧
= ∧ ≤ ≤ − ∨ = ∧ ≤ ≤ − ∧ ∈

� �

�

 (9)

Note that in (9) the order n context contains the order n-1 context in the sense that
all lower-order sequences are initial subsequences of the objects in the order n
context, and that all attributes are retained. The algorithm assumes that design
patterns consist of connected graphs. This assumption holds for all patterns in [3], so

provided that sufficient relationships between classes are extracted, it does not impose
a significant restriction.

Algorithm (8) is used in [22] to construct the lattice. The concepts directly
represent patterns, but redundancies can be present. For example, two concepts may
represent the same pattern. The notions of equivalent patterns and equivalent
instances to remove redundancies from the lattice, informally defined by [22], are
given formally by equations (10) and (11).

Definition 1 (Equivalent patterns). Let (X1,Y1) and (X2,Y2) be two concepts
representing design patterns that are generated from the same order k context. (X1,Y1)
and (X2,Y2) are equivalent patterns if an index permutation f on the index set { 1..k}
exists such that:

 () ()() (){ } () ()() (){ }1 12 1 1 1 1 21 1
,..., ,..., ,..., ,...,k kf f k f f k

X x x x x X X x x x x X− −= ∈ ∧ = ∈ (10)

(X1,Y1) ≅ (X2,Y2) denotes that (X1,Y1) and (X2,Y2) are equivalent patterns.
According to Definition 1 two patterns (X1,Y1) and (X2,Y2) are equivalent when X2
can be obtained by reordering the classes in (some of) the elements of X1 and vice
versa. Consequently, each formal attribute in Y1 can be transformed into one in Y2 and
vice versa.

Definition 2 (Equivalent instances). Let (x1,1,…,x1,k) and (x2,1,…,x2,k) be two
formal objects in the extent X of an order k concept (X,Y) that represents a design
pattern. These formal objects represent equivalent instances within that concept if an
index permutation g on the index set { 1..k} exists such that:

() () ()() () () ()()

() ()() (){ }
1 12,1 2, 1,1 1,1, 1 1, 2, 1 2,

1 2 1 2

,..., ,..., ,..., ,...,

, ,

k kg g k g g k

tt

x x x x x x x x

Y g y g y y y Y t T

− −= ∧ =

∧ = ∈ ∧ ∈
 (11)

Here, (x1,1,…,x1,k) ≅ (x2,1,…,x2,k) denotes that (x1,1,…,x1,k) and (x2,1,…,x2,k) are
equivalent instances. According to Definition 2, two formal objects in the extent X of
a concept (X,Y) are equivalent within that concept if an index permutation exists that
transforms them into each other, and when applied to the formal attributes in Y
produces attributes that are also part of Y.

In [26] the method is applied to three public domain applications written in C++
(20-100 KLOC). Besides the static inter-class relations (inheritance and association),
also dynamic inter-class relations (calls and delegates) and class attributes like
member function definitions are taken into account. They report the detection of
several recurring design constructs, like the Adapter pattern [3] in several variants.
The order of the context was chosen between two and four, typically three. Higher-
order patterns did not prove to be a good starting point because “they impose an
increasing number of constraints on the involved classes and are therefore matched by
few instances (typically just one)” . For the order three context the number of formal
objects was 1721 to 34147. The number of formal attributes was 10 in all cases.

2 Case Study

The subject for our case study is a printer controller. Such a controller consists of
general-purpose hardware on which proprietary and third party software runs. Its
main task is to control (physical) devices such as a print- and scan-engine, and act as
an intermediate between them and the customer network.

The software running on the controller has been written in multiple programming
languages, but mostly in C++. An as-designed architecture is available, but it is not
complete and large parts of the architecture documentation are not consistent with the
implementation.

Table 1 shows the characteristics of the controller and two of its subsystems,
Grizzly and RIP Worker. Because of performance limitations it was not feasible to
apply the design pattern detection to the complete controller. Instead, it has been
applied to these two subsystems. The Grizzly subsystem provides a framework for
prototyping on the controller. The RIP Worker subsystem transforms Postscript files
into printable bitmaps, taking the print-settings the user specified into account
(“ripping”). In [27] the architecture of this controller is reconstructed by detecting
instances of architectural styles and design patterns in the source code by means of a
pattern library.

Table 1. Software characteristics of the printer controller of the case study.

 Controller Grizzly RIP Worker
Classes 2661 234 108
Header and source files 7549 268 334
Functions 40449 2037 1857
Lines of source code (*1000) 932 35 37
Executable statements (*1000) 366 18 16

2.1 Goals

Our case study investigates the detection of unknown structural design patterns in
source code, without requiring upfront knowledge, using Formal Concept Analysis
(FCA). We formulate the following hypothesis (H1): “With Formal Concept Analysis
frequently used structural design constructs in the source code of the controller can
be detected without upfront knowledge of the expected structures.”

The confirmation of H1 does not imply that the found design constructs represent
a useful architectural view of the controller. We therefore formulate an additional
hypothesis (H2): “Knowledge of frequently used structural design constructs found
with Formal Concept Analysis in the controller provides an architectural view that is
useful to gain insight in the structure of the system.”

The usefulness of knowledge on structural design constructs depends on the
amount of information this knowledge gives. The number of classes in the pattern and
the number of instances of the pattern are two important criteria for this. On average,
the design patterns in [3] contain about four to five classes. Because we are
reconstructing an architectural view and not a subsystem-design we want to find

slightly larger patterns. Hence we decided the patterns must contain at least six
classes to be useful for architecture reconstruction.

The other criterion, the minimal number of instances of a useful pattern, is difficult
to quantify. To our knowledge no work is published on this subject, so we determine
it heuristically. Because no pattern-library is used, maintainers need to invest time to
understand the patterns before reaping the benefit of this knowledge. The benefit,
easier program understanding, must outweigh this investment. Obviously this is not
the case if the patterns have one instance. Because we search repeated structures and
not named patterns (like library-based approaches do) the investment is relatively
high. Hence, we decided that a pattern must have at least four instances to be useful to
reconstruct an architectural view of the controller.

To confirm the two hypotheses H1 and H2, a prototype has been built that
implements the approach Tonella and Antoniol proposed, described in section 1.2.
Before applying the prototype to the complete controller it has been applied to two of
its subsystems, namely Grizzly and the RIP Worker.

2.2 Pattern detection architecture

The architecture of the pattern detection prototype is based on the pipe and filter
architectural style [28]. The processing modules have been implemented with two
third party tools and XSLT transformations. XSLT has been chosen because it is a
mature and platform independent language, the two third-party tools (Columbus and
Galicia) both support XML export and import, and finally it allows functional
programming. This is an advantage because one of the most important algorithms of
the implemented approach is defined inductively by (9) and maps very well to a
functional implementation.

Fig. 1 shows a view of the prototype’s architecture. The blocks represent
processing modules and the arrows directed communication channels between the
modules. The latter are implemented with files. Below, these modules are discussed.

Fact

extraction
Lattice

construction
Context

generation
Pattern

selection
Source
code

Most used
design

constructs

Fig. 1. Architectural view of the pattern detection prototype.

Fact extraction. The fact extraction module uses Columbus/CAN to extract structural
information from the source code. Columbus uses the compiler that was originally
used to compile the analyzed software, in this case Microsoft Visual C++. The
extracted information is exported from Columbus with its UML exporter [29], which
writes the information to an XMI file.

Because the XMI file has a relatively complex schema, the fact extraction module
converts it to an XML file with a simpler schema. This file serves as input for the
context generation module. It contains the classes and most important relationships
between them. Three types of relations are extracted:
• Inheritance: The object-oriented mechanism via which more specific classes

incorporate the structure and behavior of more general classes.

• Association: A structural relationship between two classes.
• Composition: An association where the connected classes have the same lifetime.

Context generation. This module uses the inductive context construction algorithm
(9) to generate the formal context that will be used to find frequently used design
constructs. After algorithm (9) has been completed, the “context generation” module
converts the formal context to the import format Galicia uses for “binary contexts”.

Since XSLT does not support sets, the prototype uses bags. This, however, allows
the existence of duplicates. The prototype removes these with an extra template that is
applied after the templates that implement each of the initial and inductive steps. This
produces the XSLT equivalent of a set.

Size of the output. The initial step of the context generation algorithm produces an
order two context. The order of the context represents the number of classes in the
patterns searched for. Each inductive step extends the order with one. This step is
repeated until the desired order is reached. So in general the (k-1)-th step of the
algorithm (k≥2) produces a context Ck= (Ok,Ak,Rk) of order k, where Ok is the set of
formal objects, Ak the set of formal attributes, and Rk the set of relations between the
formal objects in Ok and the formal attributes in Ak.

The number of formal attributes, |Ak|, is bounded by the number of different triples
that can be made. Each formal attribute in Ak is a triple (p,q,t) where p and q are
integers between 1 and k, and t is a relationship-type. The number of permutations of
two values between 1 and k is bounded by k2, so at most k2 different combinations
are possible for the first two components of the formal attributes. Therefore, if T is the
set of relationship-types, and the size of this set is |T|, |Ak|≤|T|·k2.

The number of formal objects, |Ok|, in the order k context is limited by the number
of permutations of different classes of length k. If D is the set of classes, with size
|D|, this means that |Ok|≤|D|k. So the number of formal objects is polynomial with
the number of classes and exponential with the size of the patterns searched for.
However, the fact that the connectivity of the classes in D is usually relatively low
(and even can contain disconnected subgraphs), limits |Ok| significantly.

Computational complexity. Let P⊆D×D×T be the set of relations between classes,
with D and T defined above. In the implementation the initial step is implemented
with a template for the elements of P. Hence, i f |P| is the number of elements in P,
the complexity of the initial step is O(|P|).

The inductive step increases the order of the context with one. This is implemented
with a template for the formal objects in the order k-1 context (the elements of Ok-1).
This template extends each formal object o∈Ok-1 with a class that is not yet part of o
and is related to one of the classes in o via a class-relation in P. Because every formal
object in Ok-1 consists of k-1 classes, the inductive step producing Ok has a
computational complexity O(|Ok-1|·(k-1)·|P|), which approximates O(k·|P|·|Ok-1|).

Let (x1,…,xk-1) be the sequence of classes represented by a formal object o∈Ok-1.
Because in our implementation the previous inductive step appended classes to the
end of this sequence, in the next inductive step only the last element xk-1 can lead to
the addition of new classes to the sequence. Therefore, all but the first inductive steps
do not have to iterate over all k-1 classes in the formal objects in Ok-1, but can only

consider the most recently added class. This optimization reduces the computational
complexity of the inductive step to about O(|P|·|Ok-1|). Because of limited
implementation time this optimization has not been applied to the prototype, but is
left as future work.

Because |Ok-1| is polynomial with the number of classes in D, and in the worst
case |P| is quadratic with |D|, this optimization gives the inductive step a
computational complexity that is polynomial with the number of classes in D.
However, it is exponential with the size of the patterns searched for.

Lattice construction. The prototype constructs the lattice with a third party tool,
Galicia, an open platform for construction, visualization and exploration of concept
lattices [30,31]. Galicia implements several algorithms to construct a lattice from a
formal context. Because it is expected that the number of classes extracted from the
source code, and hence the number of formal objects, will be relatively high, the
Bordat algorithm [25] is best suited to generate the lattice, as explained in section 1.1.

Complexity of the lattice construction. Theoretically the size of the lattice, |L|, is
exponential with the size of the context; if |A|= |O|=n then |L|

�
2n. In practice the

lattice size may be O(n) [21], but this obviously depends on the properties of the
formal context. Assuming that this is the case, and considering that in our case |A| is
much smaller than |O|, the computational complexity of the Bordat algorithm
approximates O(|O|2). Thus, because the number of formal objects was polynomial
with the number of classes and exponential with the size of the patterns searched for,
this also holds for the computational complexity of the lattice construction.

Pattern selection. The final module of the prototype filters the patterns in the lattice.
Like the other data transformations in the prototype, this step is implemented with
XSLT templates. Two filters are applied. First, sets of equivalent formal concepts, in
the sense defined by (11), are replaced by one of their elements. Second, the concepts
are filtered according to the size of their extent and intent (the number of formal
objects and attributes respectively). In the remainder of this section these two filters
are described more precisely.

The prototype does not filter for equivalent patterns in the sense defined by (10). It
was planned to add this later if the output of the prototype proved to be useful.
However, as is described in section 2.3, this was not the case.

Equivalent formal object filtering. Let X be the set of formal objects of some formal
concept the lattice construction module produced, and let instance equivalence ≅ be
defined by (11). Then, for every formal concept, the result of the first filter is the
subset X’⊆ X that is the maximal subset of X that does not contain equivalent
instances. If |X’ | and |Z| refer to the number of elements in X’ and another set Z
respectively, this is defined as:

() ()

() 1 2 1 2 1 2

' ' : '

with ' , ' :

X X f X Z X f Z Z X

f X x x X x x x x

⊆ ∧ ∧ ¬∃ ⊆ ∧ >

≡ ¬∃ ∈ ≠ ∧ ≅
 (12)

This filter is implemented with two templates for the formal objects (the elements
of X). The first template marks, for every formal concept, those formal objects for

which an unmarked equivalent instance exists. Of every set of equivalent instances
this leaves one element unmarked. The second template removes all marked formal
objects. It is easy to see that this produces the maximal subset of X that does not
contain equivalent instances.

Size-based filtering. The second filter removes all formal concepts with a small
number of formal objects or attributes. Let px and py be two user-specified parameters
that specify the minimum number of required formal objects and attributes
respectively. Then the output of this filter only contains concepts with at least px
formal objects and py formal attributes. This filter is implemented with a trivial
template for the elements in the lattice.

Complexity of the pattern selection. Let avg(|X|) and avg(|Y|) represent the average
number of formal objects and formal attributes respectively of the formal concepts. If
|L| represents the number of formal concepts in the lattice, the first filter has a time
complexity of O(|L|·avg(|X|)·avg(|Y|)). If avg(|X’ |) represents the average size of
the formal objects after equivalent instances have been removed by the first filter, the
second filter has a computational complexity of O(|L|·(avg(|X’ |)+avg(|Y|))).
Because avg(|X’ |) is smaller than avg(|X|), the pattern selection module has a total
computational complexity of approximately O(|L|·avg(|X|)·avg(|Y|)).

We assume that the number of formal concepts |L| is proportional to the number of
formal objects (and the number of formal attributes, but that is much less). If every
formal attribute is associated with every formal object, avg(|Y|) equals the number of
formal objects. Because we assume the number of formal attributes to be very small
compared to the number of formal objects, avg(|X|) is not relevant for the
computational complexity. Therefore, the computational complexity of the filtering
module is approximately quadratic with the number of formal objects. Because the
number of formal objects was polynomial with the number of classes and exponential
with the size of the patterns searched for, this again also holds for the complexity of
the pattern-selection.

2.3 Results

The pattern detection prototype has been applied to the Grizzly and RIP Worker
subsystems of the controller. The following sections give examples of patterns found.

Results for Grizzly. The application to the Grizzly source code (234 classes)
produced a formal context and lattice with the characteristics shown in Table 2.

Table 2. Characteristics of the order four context for Grizzly and the corresponding lattice.

Number of formal objects 40801
Number of formal attributes 37
Number of attribute-object relations 128065
Number of formal concepts 989

Recall from section 2.2 that the number of formal attributes |Ak| of an order k
context is bounded by |Ak|≤|T|·k2, where |T| is the number of relationship-types. In
this case, |T|=3 and k=4 so the number of formal attributes is bounded by 3×42=48.
Table 2 shows that the number of formal attributes (37) is indeed less than 48.

Recall from the same section that the upper bound of the number of formal objects
of an order k context, |Ok|, is polynomial with the number of classes |D|. More
specific |Ok|≤|D|k. Since the characteristics in Table 2 are of an order four context,
|Ok|=2344≈ 3·109, which is clearly more than 40801. In fact, the number of formal
objects is in the same order as 2342=54756. This large difference is due to the low
connectivity of the classes.

The figures in Table 2 confirm the assumptions made in section 2.2. The number of
formal attributes is indeed much lower than the number of formal objects.
Furthermore, the number of formal concepts is not exponential with the size of the
context. In fact, it is about one order smaller than the number of formal objects. This
confirms our assumption that the size of the lattice is approximately linear with the
number of formal objects.

With the user-specified filtering-parameters both set to four (px=py=4), the
prototype extracted 121 order four concepts from this context (with px=py=5 only
twelve remained). However, despite the filtering, many of the found patterns were
very similar. The result even included several variants of the same pattern, for
example with the associations organized slightly different.

The 121 concepts obtained with both filtering parameters set to four have been
analyzed manually according to their number of formal objects and attributes. Fig. 2
shows two of the found patterns that were among the most interesting ones. Galicia
generated the concept-IDs, which uniquely identify the concept within the lattice.

W

Y

Concept ID=941
Nr. of formal objects=21
Nr. of formal attributes=5

Concept ID=678
Nr. of formal objects=20
Nr. of formal attributes=4

K

NMLZX

Fig. 2. Two patterns found in the Grizzly subsystem.

Concept 678 represents a pattern with classes W, X, Y and Z, where Z has an
association with X and Y. Both W and Y have a composition relationship with X.
Analysis of the 20 instances of this pattern shows that for W fourteen different classes
are present, for X and Y both two, and for Z three. This indicates that the instances of
this pattern occur in a small number of source-code contexts.

Table 3 shows four example instances of this pattern. Examination of the Grizzly
design documentation learned that the first instance in Table 3, with
W=BitmapSyncContext, covers a part of an Interceptor pattern [28]. This pattern
plays an important role in the architecture of Grizzly. The
BitmapDocEventDispatcher class plays the role of event Dispatcher, and the
BitmapSyncContext the role of ConcreteFramework. The abstract and concrete

Interceptor classes are not present in the detected pattern. (The designers of Grizzly
omitted the abstract Interceptor class from the design.) The EventDispatcherTest class
is part of the Grizzly test code, and plays the role of the Application class in the
Interceptor pattern. The Document class is not part of the Interceptor pattern. In the
Grizzly design this class is the source of the events handled with the interceptor
pattern.

Observe that the pattern in Fig. 2 does not contain the “create” relation between the
BitmapDocEventDispatcher (Y) and the BitmapSyncContext (W) classes [28]. This
does not mean that this relationship is not present; it is omitted from this pattern
because the other pattern instances do not have this relationship.

Table 3. Four example instances of pattern 678.

W X Y Z
BitmapSyncContext Document BitmapDocEventDispatcher BitmapDocEventDispatcherTest
SheetDocEventDispatcher
FlipSynchronizer BasicJob BitmapDocSynchronizer InversionWorkerJobInterceptor
StripeSynchronizer BitmapDocSynchronizerTest

The other concept shown in Fig. 2 (with ID 941) represents a relatively simple

pattern with four classes K, L, M and N. Class L, M and N inherit from K, L has a
self-association, and M an association to N. Analysis of the 21 detected instances
shows that in all cases K refers to the same class, L to three, and M and N both to six
different classes. This indicates that all instances of this pattern are used in the same
source-code context.

Table 4 shows four of the detected instances of pattern 941. SplitObjectStorage is
an abstract class from which all workflow-related classes that store data inherit. The
SplitList classes are container classes, for example for SplitTransition classes. The
SplitTransition classes each represent a single state transition and are each associated
with two SplitState objects. These represent the states before and after the transition.

Table 4. Four example instances of pattern 941.

K L M N
SplitObjectStorage SplitListOfAllTransitions SplitTransition SplitState
 SplitNode SplitDoc
 SplitListOfAllStates SplitState SplitAttribute
 SplitListOfAllDocuments SplitDocPart SplitImageSequence

Surprisingly, the Grizzly design documentation does not mention any of the classes
listed in Table 4. Analysis of the code shows that these classes are concerned with
workflow management in the controller, and represent points where Grizzly interfaces
with the rest of the system. Strictly speaking these classes are not part of Grizzly but
of the workflow-management subsystem of the controller. However, they are
redefined in the Grizzly source-tree, and hence extracted by Columbus.

Results for RIP Worker. Applying the prototype to the RIP Worker (108 classes)
produced a formal context and lattice with the characteristics shown in Table 5.

Table 5. Characteristics of the order four context for the RIP Worker and the corresponding
lattice.

Number of formal objects 52037
Number of formal attributes 41
Number of attribute-object relations 170104
Number of formal concepts 3097

The number of formal attributes, 41, is again less than the upper bound |T|·k2,
which equals 48. The number of formal objects of the order k context, |Ok|, does not
exceed the predicted upper bound: Table 5 represents an order four context, and
|Ok|=52037≤|D|4=1084≈ 1.4·108, so the number of formal objects is relatively low.

Like with Grizzly, the size of the lattice is approximately linear with the size of the
context (one order smaller), and the number of formal objects is much higher than the
number of formal attributes. With the user-specified size filtering parameters both set
to five (px=py=5), the prototype produced 158 order four concepts (with px=py=4:
799). Like in Grizzly, the set of patterns found in the RIP Worker also contains a lot
of similar patterns. Fig. 3 shows two of the patterns found.

L

NM

K

Concept ID=2694
Nr. of formal objects=25
Nr. of formal attributes=5

WZ

YX

Concept ID=2785
Nr. of formal objects=31
Nr. of formal attributes=5

Fig. 3. Two patterns found in the RIP Worker.

The output of the filtering module for concept 2694 shows that for class N 25
different classes are present, but for K, L and M all pattern instances have the same
class. This indicates that all instances of this pattern are used in the same piece of the
source code. Table 6 shows four examples of pattern 2694. All are concerned with job
settings and the configuration of the system. The PJT_T_SystemParameters class
stores information about the environment of the system, for example supported media
formats and types. The PJT_T_JobSetting class represents the settings for a complete
job, and is composed of the classes listed for N. The class for L, PJT_T_Product, is
used to detect if the machine can handle a certain job specification.

Table 6. Four example instances of pattern 2694.

K L M N
PJT_T_SystemParameters PJT_T_Product PJT_T_JobSetting PJT_T_MediaColor
 PJT_T_MediaWeight
 PJT_T_RunLength
 PJT_T_StapleDetails

Analysis of the 31 instances of the pattern for concept 2785 shows that in all cases
W and Y refer to the same class. X refers to eight different classes and Z to four. This
indicates that all instances of this pattern are used in the same source code context.
Table 7 shows four example instances of pattern 2785. None of the listed classes are
mentioned in the RIP Worker design documentation. Examination of the source code
shows that all instances are part of a GUI library the RIP Worker’s test tools use.

Table 7. Four example instances of pattern 2785.

W X Y Z
CWnd CDialog CFrameWnd CCmdUI
 CButton CDialog
 CListBox CWinThread
 CEdit CDataExchange

Quality of the results. When examining the output for Grizzly and the RIP Worker,
it is clear that better filtering is required. Recall that filtering for equivalent patterns,
as defined by (10), has not been implemented in the prototype. The output contains
many equivalent patterns, so in practice this filtering is desired too.

The occurrence of sets of patterns in the output with small differences represents a
more significant problem. A possible filtering strategy might be to group highly
similar patterns into subsets and (initially) show only one pattern of each subset of the
user. This requires a measure for the difference between patterns, for example based
on the number of edges (class relations) that must be added and removed to convert
one pattern into another. We leave this as future work.

After filtering the results manually, the remaining patterns are of a relatively low
complexity. More complex patterns typically have one instance and are removed by
the pattern selection module. This means we are not able to achieve our goal of
finding patterns that are useful to reconstruct architectural views (hypothesis H2).

Several publications report finding large numbers of design pattern instances in
public domain code and few in industrial code [32,27]. We speculate that it could be
the case that industrial practitioners structurally design software in a less precise way
than public domain developers. Obviously, further experiments are needed to validate
this statement, but it could explain why in our case study the number of instances of
the found patterns remains fairly low.

Encountered problems. During the fact extraction process several problems were
encountered. First of all, Columbus crashed during the compilation of some source
files. Because the compiler does not give errors for these files in normal use, the cause
is an incompatibility between Columbus and Visual C++, or an error in Columbus
itself. This problem occurred ten times for the full controller. In all cases, skipping the
source file that triggered the error solved the problem. Because it only happened once
for the RIP Worker, and not at all for Grizzly, it has little impact on the results.

The second problem occurred during the linking step of the fact extraction. No
problems were encountered for the RIP Worker and Grizzly, but with the complete
controller Columbus crashed. A few experiments revealed the size of the combined
abstract syntax graphs, which is closely related to the size of the source files, as
probable cause. Therefore it was not possible to extract facts from the full controller.

Execution times. Both subsystems have been analyzed on the same test platform.
Table 8 shows the characteristics of this platform and Table 9 shows the execution
times for the RIP Worker and Grizzly subsystems for an order four context (wall-
clock time). The lattice construction time includes the time to import the formal
context into Galicia and to export the generated lattice to an XML file. For Grizzly
the total execution time was 7:44:59 and for the RIP Worker 11:17:17 (hh:mm:ss).

Table 8. Test system characteristics.

Processor Pentium 4, 2 GHz
Memory 2 GB
Operating system Windows 2000 SP4
Columbus 3.5
Galicia 1.2
Java 1.4.2_06

Table 9. Execution times (hh:mm:ss).

Process step Grizzly RIP Worker
1 Fact extraction 0:01:09 0:42:40
2 Context generation 0:26:00 0:36:00
3 Lattice construction 4:41:50 6:57:37
4 Pattern selection 2:36:00 3:01:00

The patterns detected in the Grizzly and RIP Worker source code are relatively
simple. Possibilities to produce more interesting patterns are extending the size of the
input to (for example) multiple subsystems of the controller, increasing the order of
the context, or introducing partial matches. The last possibility requires fundamental
changes to the method. If FCA would still be used, these changes would increase the
size of the lattice significantly and hence also the execution time of the lattice
construction step. The first two options have the disadvantage that they increase the
size of the data processed. This affects the running time of all modules.

Because the computational complexity of the algorithms of each module is
polynomial with the number of classes and exponential with the order of the context,
we conclude that, given the executing times in Table 9, it is not practical to use the
prototype to reconstruct architectural views of the complete controller.

3 Conclusions

Pattern detection methods based on a pattern library have been applied frequently and
their properties are well known, but they require upfront knowledge of the patterns
used and their precise implementation. Implementation variations make the latter
difficult to specify. The pattern detection method we applied is based on Formal
Concept Analysis and does not require a pattern library. The method proved to be able
to detect frequently used design structures in source code without upfront knowledge
of the expected constructs, thereby confirming our hypothesis H1 in section 2.1.

However, the detection of relatively simple structures in relatively small pieces of
source code required a lot of calculations. For performance reasons no contexts of
orders large than four could be analyzed, so the detected patterns consisted of four
classes or less. Although large numbers of pattern instances were detected, these were
typically confined to a few areas of the source code. Because it was not possible to
detect patterns with six classes or more, we failed to confirm hypothesis H2.

Since this is inherent to the used algorithms, the application of this technique to
reconstruct architectural views of large object-oriented systems, more specific,
systems with the size of the controller, is not considered practical. It is possible to
detect design patterns in subsystems with a size of 5-10% of the complete controller.

Besides performance issues, the reduction of the large number of similar patterns
in the output is also important. Based on the complexity of the patterns we filtered the
output, but the results show that more advanced filtering is necessary. It might also be
possible to group similar patterns into groups and show a single pattern of each group
to the user. The similarity of patterns could be based on the number of edges that must
be added and removed to transform them into each other.

Finding frequently used design constructs in the source code essentially finds
frequently occurring subgraphs in the class graph. An alternative to the pattern
detection currently used might be to use graph compression algorithms that are based
on the detection of recurring subgraphs. We have built a small prototype that uses the
Subdue algorithm [33]. This algorithm creates a list of recurring subgraphs and
replaces all occurrences of these subgraphs with references to this list. However,
when this algorithm is used for pattern detection, the fact that the algorithm looks for
perfectly identical subgraphs causes problems. The intertwining of structures often
encountered in practice caused this prototype to find no patterns at all in two
subsystems (Grizzly and the RIP Worker) of the controller. Lossy graph compression
algorithms might introduce the required fuzziness.

References

1. Chikovsky, E.J., Cross,J.H.: Reverse Engineering and Design Recovery: A taxonomy. IEEE
Software 7(1), 13--7 (1990)

2. Beck, K., Coplien, J.O., Crocker, R., Dominick, L., Meszaros, G., Paulisch, F., Vlissides, J.:
Industrial Experience with Design Patterns. In: 18th Int. Conf. on Software Engineering
(ICSE-18), 103--114 (1996)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: elements of reusable
object-oriented software, fifth edition. Addison-Wesley (1995)

4. Keller, R.K., Schauer, R., Robitaille, S., Pagé, P.: Pattern-Based Reverse-Engineering of
Design Components. In: 21st Int. Conf. on Software Eng. (ICSE'99), 226--235 (1999)

5. Hahsler, M.: A Quantitative Study of the Application of Design Patterns in Java. Technical
report 1/2003, University of Wien (2003)

6. Prechtelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.F.: Two Controlled
Experiments Assessing the Usefulness of Design Pattern Documentation in Program
Maintenance. IEEE Trans. on Software Engineering 28(6), 595--606 (2002)

7. Prechtelt, L., Unger, B., Tichy, F., Brössler, P., Votta, L.G.: A Controlled Experiment in
Maintenance Comparing Design Patterns to Simpler Solutions. IEEE Trans. on Software
Engineering 27(12), 1134--1144 (2001)

8. O’Brien, L., Stoermer, C., Verhoef, C.: Software Architecture Reconstruction: Practice
Needs and Current Approaches. SEI Technical Report CMU/SEI-2002-TR-024, Software
Engineering Institute, Carnegie Mellon University (2002)

9. Deursen, A. van: Software Architecture Recovery and Modelling, WCRE 2001 Discussion
Forum Report. ACM SIGAPP Applied Computing Review, 10(1) (2002)

10.Hassan, A.E., Holt, R.: The Small World of Software Reverse Engineering. In: 2004
Working Conf. on Reverse Engineering (WCRE’04), 278--283 (2004)

11.Sim, S.E., Koschke, R.: WoSEF: Workshop on Standard Exchange Format. ACM SIGSOFT
Software Engineering Notes, 26, 44--49 (2001)

12.Bassil, S., Keller, R.K.: Software Visualization Tools: Survey and Analysis. In: 9th Int.
Workshop on Program Comprehension (IWPC’01), 7--17 (2001)

13.Sartipi, K., Kontogiannis, K.: Pattern-based Software Architecture Recovery. In: Second
ASERC Workshop on Software Architecture (2003)

14.Snelting, G.: Software Reengineering Based on Concept Lattices. In: European Conf. on
Software Maintenance and Reengineering (CSMR 2000), 1--8 (2000)

15.Tilley, T., Cole, R., Becker, P., Eklund, P.: A Survey of Formal Concept Analysis Support
for Software Eng. Activities. In: 1st Int. Conf. on Formal Conc. Analysis (ICFCA'03) (2003)

16.Siff, M., Reps, T.: Identifying Modules via Concept Analysis. Technical Report TR-1337,
Computer Sciences Department, University of Wisconsin, Madison (1998)

17.Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In:
Rival, I. (ed) Ordered Sets, 445--470. NATO Advanced Study Institute (1981)

18.Arévalo, G., Ducasse, S., Nierstrasz, O.: Understanding classes using X-Ray views. In: 2nd
Int. Workshop on MASPEGHI 2003 (ASE 2003), 9--18 (2003)

19.Ganther, B., Wille, R.: Applied lattice theory: formal concept analysis. In: Grätzer, G. (ed)
General Lattice Theory, Birkhäuser Verlag (1998)

20.Siff, M., Reps, T.: Identifying Modules via Concept Analysis. In: Int. Conf. on Software
Maintenance (ICSM '97), 170--179 (1997)

21.Snelting, G.: Reengineering of Configurations Based on Mathematical Concept Analysis.
ACM Transactions on Software Engineering and Methodology, 5(2), 146--189 (1996)

22.Tonella, P., Antoniol, G.: Object Oriented Design Pattern Inference. In: Int. Conf. on
Software Maintenance (ICSM’99), pp. 230-238 (1999)

23.Ball, T.: The concept of Dynamic Analysis. In: 7th European Software Engineering
Conference, 216--234 (1999)

24.Kuznetsov, S.O., Obëdkov, S.A.: Comparing performance of algorithms for generating
concept lattices. In: 9th IEEE Int. Conf. on Conceptual Structures (ICCS ’01), 35--47 (2001)

25.Bordat, J.P.: Calcul pratique du treillis de Galois d’une correspondance. Math. Sci. Hum. 96,
31--47 (1986)

26.Tonella, P., Antoniol, G.: Inference of Object Oriented Design Patterns. Journal of Software
Maintenance and Evolution: Research and Practice 13(5), 309--330, published online (2001)

27.Kersemakers, R., Dortmans, E., Somers, L.:. Architectural Pattern Detection - A Case Study.
In: 9th Int. Conf. on Software Engineering and Applications (SEA 2005), 125--133 (2005)

28.Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal. M.: Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley and Sons (1999)

29.Setup and User’s Guide to Columbus/CAN, Academic Version 3.5. FrontEndART (2003)
30.Valtchev, P., Grosser, D., Roume, C., Hacene, M.R.: Galicia: an open platform for lattices.

In: 11th Int. Conf. on Conceptual Structures (ICCS'03), 241--254, Shaker Verlag (2003)
31.Galicia Project. http://www.iro.umontreal.ca/~galicia/
32.Antoniol, G., Fiutem, R., Cristoforetti, L.: Design Pattern Recovery in Object-Oriented

Software. In: 6th Int. Workshop on Program Comprehension, 153--160 (1998)
33.Jonyer, I., Cook, D.J., Holder, L.B.: Graph-Based Hierarchical Conceptual Clustering.

Journal of Machine Learning Research 2, 19--43 (2001)

