
Using Version Information in Architectural Clustering – A Case Study

Andreas Wierda Eric Dortmans Lou Somers
Océ-Technologies BV,

P.O. Box 101,

NL-5900 MA Venlo,

The Netherlands

Océ-Technologies BV,

P.O. Box 101,

NL-5900 MA Venlo,

The Netherlands

Eindhoven Univ. of Technology,

Dept. Math. & Comp.Sc.,

P.O. Box 513, NL-5600 MB

Eindhoven, The Netherlands

awi@oce.nl hdo@oce.nl wsinlou@win.tue.nl

Abstract

This paper describes a case study that uses

clustering to group classes of an existing object-

oriented system of significant size into subsystems. The

clustering process is based on the structural relations

between the classes: associations, generalizations and

dependencies. We experiment with different

combinations of relationships and different ways to use

this information in the clustering process. The results

clearly show that dependency relations are vital to

achieve good clusterings.

The clustering is performed with a third party tool

called Bunch. Compared to other clustering methods

the results come relatively close to the result of a

manual reconstruction. Performance wise the

clustering takes a significant amount of time, but not

too much to make it unpractical.

In our case study, we base the clustering on

information from multiple versions and compare the

result to that obtained when basing the clustering on a

single version. We experiment with several

combinations of versions. If the clustering is based on

relations that were present in both the reconstructed

and the first version this leads to a significantly better

clustering result compared to that obtained when using

only information from the reconstructed version.

1. Introduction

The architecture of a software system represents a

blueprint of the system. Having an up to date

architecture description is an important prerequisite for

software maintenance, which represents a large portion

of a software project’s total costs. In practice, however,

such a description is often not available and source

code is the most important information source for

reverse engineering [1], [2].

Developers performing maintenance usually start by

understanding the problem and the involved parts of

the software. The gradual deterioration of the

software’s internal structure makes this increasingly

difficult. Maintenance programmers performing

adaptive or perfective maintenance spend half their

time studying the program source code and the

associated documentation, as already showed in [3].

When performing corrective maintenance this increases

even further. This means that a reduction of the effort

needed to understand the internal structure of software

directly affects the total costs of the project.

Originally, the term legacy software was used for

programs written in languages like assembler, Cobol,

or Fortran. However, legacy problems are not

constrained to specific types of languages. Changing

environments and requirements also affect object-

oriented software. Several projects where object-

oriented legacy systems are reengineered are

mentioned in [4]. It turns out that legacy software even

exists in relatively young programming languages such

as Java. The increasing rate of change causes object-

oriented software to become legacy much sooner than

non-object-oriented software [5].

In the context of architecture recovery, pattern

detection and clustering are two complementary

approaches. The first finds common abstractions

embedded in the system, but in practice never covers

all entities in the system [6]. The second classifies all

entities in the system, but imposes a new ordering

instead of some hidden ordering [7], [8], [9], [10], [11].

Other approaches for architecture recovery

encompass manual architecture reconstruction, the

usage of Conway's law, and program slicing. Manual

reconstruction uses navigation and browsing tools to

reconstruct an architecture. Conway's law [12], which

states that “organizations which design systems are

constrained to produce designs which are copies of the

communication structures of these organizations”,

helps to choose suitable abstractions [5], [13]. Program

slicing is often used to extract reusable components

from an implementation or specification [14], [15].

1.1 Clustering

Clustering is a data analysis technique for dividing

data elements into groups of similar elements that are

called clusters [16]. This division is based on the

similarity of data elements, which are usually

represented as points in a multidimensional space or

vectors of measurements [17]. Intuitively, in a valid

clustering the data elements within a cluster are more

similar to each other than to those in other clusters.

Various terms are used to refer to the data elements.

Publications that describe the clustering process sec

call them objects [16], [18] or patterns [17]. A unified

framework for software subsystem classification

techniques where the data elements are called nodes is

presented in [19]. Approaches that use clustering for

reverse engineering often use the terminology of [20],

in which the clustered data elements are called entities.

Clustering is an unsupervised classification

technique: it does not start with a collection of pre-

classified entities. Clustering has many applications,

including the classification of plants and animals,

speech and character recognition, image segmentation,

information retrieval and data mining [17].

The clustering algorithms usually start with an

abstract graph representing the structure of the

program, for example with the nodes representing

classes and the edges inter-class relationships. Some

similarity measure is then used to find groups of similar

or closely related classes, which are grouped into

subsystems. This is repeated until an optimal

decomposition is found. The end result can be browsed

top-down, helping to understand the complete program.

Several clustering-based architecture reconstruction

approaches are reported in [20], [21], [22] and [23].

Among the clustering tools we find Arch [24], Rigi

[25], which uses the method from [26], and Bunch

[23], which implements three different partitional

clustering algorithms, an exhaustive algorithm, an hill-

climbing algorithm, and a genetic algorithm. Bunch has

been used in various reverse engineering case studies

[27], [23], [28], [29], [30]. Klocwork InSight [31] is a

commercial architecture reconstruction and analysis

tool.

1.2 Clustering result evaluation

In general, clusterings are evaluated with an external

or internal assessment, or a relative test [32], [23]. The

latter compares the produced clustering to an expert

decomposition using some measure. It is considered the

ideal assessment method to evaluate the quality of

architectural clusterings [22]. However, it has the

disadvantage that an expert’s decomposition must be

available. Some relative test methods are discussed

below.

Precision and recall can be used to compare a

clustering result to an a priori structure created by

experts on the analyzed systems [30]. Though

frequently used to evaluate clustering results,

precision/recall has several limitations [29]. First of all,

the calculation does not consider edges. Second, the

measurement is sensitive to the number and size of the

clusters. A few misplaced modules in a cluster with

relatively few members have much more impact on

precision/recall than when the cluster has many

members. Finally, number and size of the clusters

impact precision/recall.

Two decompositions can also be compared by

means of the MoJo metric [28]. This is the minimal

number of move and join operations required to

transform one decomposition into the other. A move

operation relocates a single entity from one cluster to

another cluster. A join operation merges two clusters.

Let K and D be two decompositions of a system of N

entities and let mno(K,D) be the minimum number of

move and join operations to transform K into D. If x↓y

denotes the minimum of x and y, then

() () (), , ,MoJo K D mno K D mno D K= ↓ .

If K refers to a decomposition produced by a

clustering algorithm and D to an expert decomposition,

the quality of K relative to D is defined as

()
(),

, 1 100%
MoJo K D

MoJoQuality K D
N

 
= − × 
 

 .

An efficient algorithm to compute the MoJo

distance between two decompositions is described in

[33]. Two case studies where the MoJoQuality metric

is used to evaluate the quality of decompositions

produced by the ACDC algorithm are described in

[34]. They achieve a MoJoQuality of 56% and 64%.

This is claimed to be among “the higher ones an

automatic clustering algorithm can hope to achieve”.

This matches with the results reported by [35],

obtaining a MoJoQuality of about 50% to 65%.

An extended version, EdgeMoJo, also takes the

number and weight of edges into account [32]. An

improved version of the MoJo metric, MoJoFM [36],

solves some anomalies of the MoJo metric, such as the

tendency of MoJo to consider clusterings with

singleton clusters very good. However, MoJoFM does

not take the edges into account. A method to compare

hierarchical decompositions is informally described in

[37].

2. Case study

The subject system for our reconstruction case study

is a printer controller. Such a controller consists of

general-purpose hardware on which proprietary and

third party software is running. Its main task is to

control physical devices such as a print- and scan-

engine, and to act as an intermediate between them and

the customer network. The software running on the

controller has been written in multiple programming

languages, but mostly in C++. An as-designed

architecture is available, but it is not complete and

parts of the architecture documentation are not

consistent with the implementation.

Table 1 shows the characteristics of the first (1) and

the last (8a) version of the controller and of two of its

subsystems, called Grizzly and RIP Worker.

Table 1. Software characteristics

Controller

(v. 1) (v. 8a)

Grizzly RIP

Worker

Classes 1545 2661 234 108

Header and source

files

4378 7549 268 334

Functions 21711 40449 2037 1857

Lines of source

code (*1000)

453 932 35 37

Executable

statements (*1000)

167 366 18 16

Although it is known that it is not possible to

reconstruct architectures from source code fully

automatically [38], it is expected that the architectural

views reconstructed this way can serve as good starting

points for manual refinement. Based on this we

formulate the following hypothesis:

H1: Automatic clustering-based architecture

reconstruction methods can reconstruct an

architectural view of the controller from its

source code that is a good starting-point for

manual refinement.

During its lifetime the controller has been modified

extensively. The internal structure of software systems

that are continuously modified inevitably deteriorates,

which obfuscates the architecture. This means that in

the original version the architecture is present in a

purer form than in later versions. Since architecture

reconstruction is usually performed for software of

which several versions have been released, it is likely

to be applied to software of which the architecture has

deteriorated significantly. We speculate that this

reduces the effectiveness of clustering-based

architecture reconstruction techniques. If this is the

case, incorporating information from multiple versions

in the clustering process could improve the quality of

the result. This leads to the following hypothesis:

H2: Utilizing information obtained from

source code of older versions can improve the

quality of the output of architectural

clustering algorithms for more recent versions

of a system.

We have built a workbench that uses clustering

techniques to reconstruct a static view of the software

architecture from source code. This workbench can

incorporate information obtained from the source code

of multiple versions of a system into the clustering

process. The workbench has been applied to the

controller to confirm our two hypotheses.

3. Workbench set-up

Before we sketch the set-up of our architectural-

clustering workbench, we first discuss the decisions

that led to it, following the items laid out by [17].

3.1 Entity representation and feature selection

Most of the controller is written in an object-

oriented programming language (C++), where classes

are the most important building blocks. They provide

an initial grouping of closely related data and functions

[23]. Architectural clustering approaches for object-

oriented source code often choose classes as the

entities to be clustered. We therefore decided that the

set of classes extracted from the source code would

form the entity set. Clusters grouping a number of

classes will be called subsystems, or simply clusters.

Based on [23], [34], and [35] we decided that the

clustering will be based on structural relations between

the classes. We distinguish the three most important

types of relationships between classes in object-

oriented systems:

• Association: a structural relationship between two

classes that specifies one class is connected to

another.

• Generalization: the object-oriented mechanism via

which more specific classes incorporate the

structure and behavior of more general classes.

• Dependency: a “using” relationship that specifies a

change in one class may affect another class.

If two classes are related by any of these relations, it

is possible that multiple instances of this relation exist.

The clustering can take the actual number of relation

instances into account, or just its presence. We define a

Boolean parameter pc that specifies if only the presence

(pc false), or the number of instances of a relation

between two classes must be taken into account (pc

true).

By our definition of the relationship types, an

association from class x1 to class x2 also implies a

dependency from x1 to x2. A similar argument holds for

generalizations: If x1 inherits from x2, x1 is likely to use

methods or attributes of x2. Therefore generalization

usually leads to a dependency from x1 to x2. We define

a Boolean parameter pi to indicate whether or not

redundant dependencies should be removed: p i false

implies that all dependencies are included.

In various publications it is suggested to use

different weights for the different relationship-types,

making certain types more important than others [23],

[35]. We introduce a parameter for each relationship-

type that specifies the weight of instances of this

relation in the similarity calculation. This leads to three

parameters, pwa
, pwg

 and pwd
, respectively specifying

the weight of association, generalization and

dependency.

3.2 Similarity metric and algorithm choice

We need a clustering algorithm that can cluster an

entity set with inter-entity features. Bunch [39] is a tool

that implements several clustering algorithms that

operate on this kind of data. It has been used in various

architectural-clustering experiments and is known to

produce clusterings within a bounded approximation of

the optimal clustering [27]. Because Bunch has been

implemented as a generic clustering tool, it can easily

be integrated in an architecture-reconstruction

workbench. Based on experiences with Bunch reported

by [23], we decided to use the hill-climbing algorithm

and the TurboMQ similarity metric.

We use Bunch differently than the applications

reported in literature. The difference is threefold:

• We use Bunch to cluster object-oriented software,

not procedural code. This affects the entity

representation and feature selection, not the

clustering algorithm itself.

• We distinguish multiple different relationship

types with different weights. This is supported by

Bunch.

• In some cases we also use information from

multiple versions. This only affects the number of

features, and not the clustering algorithm itself.

3.3 Data abstraction

Bunch automatically generates names for the

created clusters. These names are based on an

increasing sequence number and the level of the cluster

in the decomposition. However, these names have little

meaning to software maintainers. Ideally, the

workbench would give meaningful names to the

clusters. Because we consider the decomposition

produced by the architectural clustering as a starting

point that needs to be refined manually, using the

names Bunch generated is no significant restriction.

Therefore we leave the issue of automatically giving

meaningful names to the clusters as future work and

use the names Bunch generated.

3.4 Assessment of output

Architectural clustering methods usually assess their

output by comparing it to some expert decomposition,

or by manually checking it. Consensus is that the first

method is to be preferred [23], [22], so we choose to

implement this method in the workbench.

We choose to use the MoJoQuality metric [28] to

compare the generated decompositions with an expert

decomposition, because it is a normalized metric for

comparing clustering results to expert decompositions

for which reference values have been published. Based

on clustering results reported in [28], [35], and [36],

we consider a decomposition produced by architectural

clustering good if it has a MoJoQuality of at least 60%

relative to an expert decomposition.

The EdgeMoJo metric [32] is a non-normalized

metric that also takes the relations between the classes

into account. Incorrect class-placements that affect

many relations are considered more important than

those that affect a few relations. According to [40] and

[32] it is important to take edge-information into

account too. Therefore, we use the EdgeMoJo metric to

validate hypothesis H2. Because it is not normalized,

this metric cannot be used to compare the quality of

architectural clusterings of different systems (so for

hypothesis H1), but it can be used to determine if

changes to the clustering process lead to an

improvement of the result (assuming that the same

classes are clustered).

Due to the size of the controller both the expert

decomposition and the decomposition Bunch produces

must be hierarchical. We use the approach of [37] to

assess our hierarchical decompositions.

3.5 Combining version information

Hypothesis H2 states that the use of information

from older versions of the controller during the

clustering process can improve the quality of a

decomposition of the last version.

The first question is which classes are selected from

the models of the system versions. Assume that one of

the models represents the version V of which the

architecture is reconstructed. A decomposition that

contains the united sets of classes of V and some older

version is likely to contain classes that are no longer

present in V. Because this shows unexpected classes to

maintainers, we argue that this must be avoided. On the

other hand, a decomposition of V that only contains the

classes that were also present in the other version will

not have much value either, because it is likely to leave

some of the classes of V unclassified. We therefore

decide that the produced decomposition must contain

the classes in V and no more.

 The second question is how the structural

information of the two models (i.e. the relations) is

combined. From the preceding discussion it is obvious

that only the classes present in the last version must be

clustered. This means that information from other

versions must be incorporated through the

relationships. Let C be the set of all classes of all

versions, and T the set of relationship-types between

the classes. As described earlier, multiple instances of a

relationship may be present between two classes.

Therefore each relation has a source, target, type and

count. The count value represents the number of

instances of the relation. The set of class-relations R

contains each distinct triple of a source, target and type

at most once. Hence, if N is the set of natural numbers,

R ⊆ C×C×T × N. The third component of R is called

the type-component, and the fourth component the

count-component. An element of R is called a class-

relation.

 Below we describe two operations to combine sets

of class-relations using the definitions of C, T and R

given above. They intersect, respectively unite, two

sets of class-relations.

Class-relations-intersection, denoted by ∩r, is an

operation with type R×R→R that gives the class-

relations present in both sets of class-relations, ignoring

differences in the count component. Informally, the

class-relations-intersection of two sets of class-relations

Ri and R j starts by intersecting Ri and R j with the

count-component removed. Next, each tuple of the

result is extended with a count-component that is the

minimum of the count-components of the

corresponding tuples in Ri and R j.

 If n i↓nj refers to the minimum of two values n i and

n j, the class-relations-intersection of two sets of class-

relations Ri,R j is defined as:

() () (){ }, , , , , , , , ,i r j i j i i j jR R x y t n n x y t n R x y t n R= ↓ ∈ ∧ ∈I .

Class-relations-union, denoted by ∪r, is an

operation with type R×R→R that gives the class-

relations present in any of the two sets. First, the class-

relations union of two sets of class-relations R i and Rj

calculates the normal intersection of the two sets

without the count-component, and adds a count-

component to each tuple that is the maximum of the

count-components of the corresponding tuples in Ri

and R j. Second, the obtained set is extended with the

tuples in R i for which no corresponding tuple in Rj

exists and vice versa.

In order to define the class-relations-union operator

more precisely, we need an operator to test the

membership of an element in a subset of R without

considering the count-component. This class-relations-

membership operator ∈r takes an element (x,y,t,n) of

R and a subset Rx⊆R, and gives either true or false. If

N is the set of natural numbers, it is defined as:

() ()xxr RmtyxNmRntyx ∈∈∃⇔∈),,,(:,,, .

The class-relations-membership operator gives true

if the provided set contains an element that equals the

provided element on the first three components.

Otherwise, it gives false.

If n i↑n j refers to the maximum of two values n i and

n j, the class-relations-union of two sets of class-

relations Ri,R j is now defined as:

() () (){ }
{ } { }

, , , , , , , , ,i r j i j i i j j

i r j j r i

R R x y t n n x y t n R x y t n R

r R r R r R r R

= ↑ ∈ ∧ ∈

∈ ∈ ∈ ∈

U

U U

3.6 Workbench architecture

Based on the decisions described above, the

architecture of the architectural-clustering workbench

has been defined. Figure 1 shows a conceptual view.

The boxes indicate processing steps and the black

arrows directed data flows.

Assessment

Source-tree

based clustering

Dependency
graph

Decomposition

Similarity
metric

Fact

extraction
ClusteringSource

code

Decomposition

editing

Class
information

Expert decomposition

Visualisation

Expert knowledge

Architectural
view

Figure 1. Conceptual view of the workbench

Figure 1 illustrates two typical usage scenarios of

the workbench: automatic generation of a

decomposition with clustering (fine dotted blue arrow)

and assessment of the clustering result (coarse dotted

red arrow).

 Both scenarios start with the extraction of facts

from the source code. The first scenario represents the

normal process when using clustering to reconstruct an

architecture from source code. In this scenario the

extracted dependency graph is clustered and the result

is visualized.

The second scenario is used to validate the

approach: the clustering result is compared to an expert

decomposition. This decomposition is obtained in two

steps. First, the classes found during the fact extraction

step are organized according to their location in the

source tree. Although our reconstruction approach does

not need this information, in the case of the controller it

is available and not using it would make the manual

construction of the expert decomposition much more

labor intensive. Second, an editor is used to refine the

“draft” decomposition. The resulting expert

decomposition is then compared to the clustering

result.

Figure 2 shows a process view of the workbench

architecture. The rectangles represent processes and the

black arrows directed communication channels. The

dotted lines represent the data flows of the two

scenarios discussed above.

MySQL Rigi

Shrimp

MoJo

Bunch

Sniff+
Sniff

Import

RSF

Export

Bunch
Import

Bunch
Export

RSF
Import

Source
code

Export
parameters

Similarity

metricSource-tree
based clustering

Architectural

view

Expert
knowledge

Figure 2. Process view of the workbench

Because Columbus/CAN is not able to extract facts

from the complete controller, we use the Sniff+ module

to extract the facts from the source code. Due to the

large size of the controller this is a computation-

intensive step. Therefore we store the results in a

MySQL database. The Bunch module implements the

clustering process. During the conversion of the facts

into a format Bunch accepts, the Bunch Export module

takes our user-specified parameters into account. The

import and export modules contain “glue-logic” that

connects the third party applications to the database.

The Shrimp module allows users to browse a

decomposition, but without editing possibilities. The

MoJo module compares two decompositions to assess

the quality of the clustering result.

 The “source-tree based clustering” module creates a

decomposition for a single version based on the

structure of the source tree. This decomposition is used

as the starting point for the expert decomposition. The

algorithm is based on the assumption that classes that

are defined in source-files in the same directory belong

together. The resulting clusters are hierarchically

related by their location in the source tree. Based on

[41], [34], and [5] we expect this to be a good starting

point for refinement by an expert. The expert uses Rigi

to refine the decompositions from the “source-tree

based clustering” module. After the refinement, the

RSF Import module writes the results back to the

database.

3.7 Meta-model

The meta-model of the workbench is an abstraction

of the source code from which the input for the

clustering process is derived. It needs to accommodate

the classes and the structural relations.

The meta-model for the workbench has been based

on the meta-models of FAMIX [42], MeMoJ [43],

Columbus [44], and HisMo [45]. Since the clustering

uses information from multiple versions of the

controller, the model must accommodate multiple

versions. Figure 3 shows an ER model [46]. The

rectangles represent entity-sets, diamonds relationships

between entity-sets and ellipses attributes. Lines

represent one-to-one and one-to-many relationships,

the numbers denote the cardinality.

Subsystem

Version

Class

Association

Generalization

Decomposition

History

Dependency

AssV

SsClass

ClassV DepV

GenV

CountCount

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

0..*

0..*

0..*

0..*

0..*
0..*

0..*

0..*

0..*

0..*

0..*

0..*0..*

0..*

0..*

0..*

0..*

0..*

0..* 0..*

1

Figure 3. Clustering workbench meta-model

The entities that are clustered (the classes) are the

central component. A class is associated with certain

versions of the system, indicating its presence in these

versions. A set of versions forms a history of a system.

Because multiple association and dependency relations

can exist between two classes, a “count” value is

associated with these relations. A decomposition

classifies classes of a certain version of the system. It

contains a set of subsystem-trees, modeled by the

recursive relation of the subsystem entity. Each

subsystem groups a set of classes.

4. Parameter tuning

Before the workbench could be used to reconstruct

the architecture of the controller, the proper values of

the user-specified parameters had to be determined. We

first determined a set of parameter values that produced

the best clusterings for two subsystems of the

controller. These values were then used to cluster the

complete controller.

As explained before, during the transformation of

the meta-model into the module dependency graph, a

parameter-tuple (pwa
,pwg

,pwp
,pc,pi) of our five

parameters is used:

• pwa
, pwg

 and pwd
: numeric parameters giving the

weight of association, generalization, and

dependency relations respectively.

• pc and p i: Boolean parameters that reduce the

amount of information that is written by the Bunch

export module. pc specifies if the instance-count or

just the presence of class-relations must be taken

into account; p i specifies whether or not redundant

dependencies must be omitted.

Because the controller is relatively large, clustering its

module dependency graph is time consuming: on the

platform described in Table 9 clustering the most

recent version once takes about eighteen minutes

(including Bunch Export and Import). The following

MoJo calculation takes about five minutes. Therefore,

the number of tested parameter-tuples must be limited

significantly. Besides this, the numeric parameters (that

have no upper bound) make it impossible to test all

different parameter-tuples anyway. For each of the

numeric parameters the search space is initially set to

{0,1,2,3,4,5,6}. Because the four combinations with all

numeric parameters equal to zero are not relevant, this

gives a total of 1368 combinations to investigate, each

requiring ten executions of the clustering algorithm.

Because the clustering algorithm of Bunch is non-

deterministic, the average EdgeMoJo value of ten

different clusterings is calculated for each parameter-

tuple. We refer to the cycle of exporting the module

dependency graph (MDG) once and the tenfold

execution of the clustering and MoJoQuality and

EdgeMoJo calculations as a ten-clustering cycle.

For the Grizzly subsystem, the ten-clustering cycle

took about four minutes, resulting in a total execution

time of 5488 minutes (91 hours) to test the 1372

combinations. For the RIP Worker it was about 3.3

minutes, resulting in a total execution time of 4573

minutes (76 hours).

Table 2 shows the five best and five worst

parameter-tuples for Grizzly and the RIP Worker, and

the resulting EdgeMoJo and MoJoQuality. Observe

that the two sets of best parameter-tuples are disjoint.

For Grizzly the EdgeMoJo metric varies between 101.7

for the best and 169.7 for the worst decomposition. The

MoJoQuality varies between 69.0% for the best and

57.3% for the worst decomposition. For the RIP

Worker these figures are 42.6 and 67.9, and 66.3% and

55.0% respectively. These figures indicate that the

choice of the clustering parameters affects the quality

of the clustering result significantly.

Table 2. Best five parameter-tuples for Grizzly and

the RIP Worker

Grizzly

pwa
 pwg

 pwd
 pc p i Edge

MoJo

MoJo

Quality

2 5 5 false false 101.7 69.0%

1 3 2 false false 102.0 69.0%

0 0 6 true false 102.2 69.8%

2 3 5 false true 102.3 68.2%

1 4 3 false false 102.7 68.9%

1358 other measurements

4 0 0 false false 169.1 61.2%

1 0 0 true true 169.4 61.2%

3 0 0 false true 169.4 61.2%

6 0 0 false true 169.6 61.2%

0 3 0 false false 169.7 57.3%

RIP Worker

pwa
 pwg

 pwd
 pc p i Edge

MoJo

MoJo

Quality

0 5 2 false false 42.6 66.3%

2 4 3 false true 42.6 66.4%

1 6 4 true true 42.7 66.7%

1 5 2 false true 42.7 67.1%

2 4 1 true false 42.7 66.0%

1358 other measurements

1 0 0 true false 67.4 55.0%

5 0 0 false true 67.6 54.8%

3 0 0 true false 67.8 55.1%

3 0 0 true true 67.8 54.8%

4 0 0 true false 67.9 55.0%

For the tuples that lead to a good clustering it is

difficult to distinguish trends. The presence of

parameter-tuples with zero for the numeric parameters

indicates which types of relationships are important for

the clustering result and which are not. When

considering the best fifty parameter-tuples for Grizzly,

tuples that have pwa
=0 also have pwg

=0. For the RIP

Worker several tuples with pwa
=0, but none with

pwg
=0, are present in the top fifty. So, in both cases no

tuples with pwg
=0 and pwa

≠0 are present in the top

fifty. This indicates that ignoring the generalizations

while taking the associations into account does not lead

to a good clustering result. In other words, if the

associations are used, the generalizations must be used

too.

With respect to the two Boolean parameters pc and

pi no trends can be distinguished. In the best fifty

parameter-tuples all four possible combinations are

represented equally.

For the parameter-tuples that lead to a poor

clustering a clear trend is visible: for both Grizzly and

the RIP Worker, the parameter-tuples with pwd
=0 give

the worst clustering result. Any parameter-tuple with

pw
≠0 gives a better clustering result than the same

parameter-tuple with pwd
=0. This means that ignoring

the dependencies leads to a poor quality clustering.

However, architects we consulted considered

dependencies to be the least important indicator.

Instead, most of them base their decomposition on

functional criteria. The unexpected importance of

dependencies for the result can be explained in two

ways:

1. Ignoring the dependencies leaves many classes

without any connection to other classes

(unconnected classes). These classes are then

placed in the “unconnected classes” subsystem,

which is probably not the right choice.

2. The presence and number of dependencies reflects

the functional relations between the classes better

than the associations and generalizations do.

If the first explanation holds, ignoring the dependencies

must increase the number of unconnected classes much

more than ignoring the other relationship-types. Table

3 shows the number of unconnected classes and the

number of classes that are only connected with

relations of the three types. Observe that the number of

unconnected classes in both subsystems is about the

same. In the RIP Worker the number of classes that are

only connected with dependency relations is relatively

high compared to the other relationship types. But for

Grizzly this is not the case; much more classes are only

connected with a generalization than with a

dependency. This means that the first explanation for

the importance of the dependencies for the clustering

result does not hold.

We therefore assume that dependencies are so

important for the clustering result because they reflect

the functional relations between the classes better than

the other relationship-types.

Table 3. Connectivity of classes in Grizzly and the

RIP Worker

Type of classes

Grizzly

RIP

Worker

Unconnected 6 7

Only connected with dependency 4 19

Only connected with association 4 1

Only connected with generalization 9 3

Because no single best parameter-tuple could be

identified, we decided to use a set of tuples instead of a

single one. The overlap between the set of best tuples

for Grizzly and for the RIP Worker is very small. In

fact, the set of twenty tuples that lead to the best

clustering result for each of them are disjoint. We

therefore decided to use the union of these two sets,

leading to forty tuples to test.

5. Results

Now that a sub-optimal set of parameter-tuples has

been identified, the complete controller can be

clustered. The same procedure has been followed,

where for every parameter-tuple ten clusterings are

generated and the average quality is determined. To

avoid basing conclusions on a single case, the

architectures of the last two versions of the controller,

7e and 8a, are reconstructed.

The structure of software usually does not decrease

monotonically. When a system is refactored, its internal

structure improves again. Therefore, it is not

necessarily the first version of the system in which the

architecture is present in its purest form. In order to

prevent basing our conclusions on a single case, we

decided to combine the two reconstructed versions with

two other versions, namely the first version, and the

version released before the one of which the

architecture is reconstructed. This leads to four

different version combinations.

5.1 Clustering one version

Table 4 shows the five parameter-tuples that,

according to the EdgeMoJo metric, produce the best

clusterings for version 7e (left) and 8a (right) of the

controller. Recall that we use the EdgeMoJo metric to

compare the clustering result to the result of a manual

architecture reconstruction. So the parameter-tuples in

Table 4 are those that produce decompositions that

come closest to a manually reconstructed architecture.

Table 4. Best five clusterings for version 7e and 8a

of the controller

Version 7e

pwa
 pwg

 pwd
 pc pi Edge

MoJo

MoJo

Quality

4 6 1 true true 1639.4 60.5%

1 4 1 true true 1644.9 60.5%

1 5 5 true true 1646.1 60.2%

1 1 5 true false 1646.8 60.3%

2 5 5 false false 1648.4 60.4%

Version 8a

pwa
 pwg

 pwd
 pc pi Edge

MoJo

MoJo

Quality

4 6 1 true true 1477.1 62.5%

2 1 2 true false 1481.1 62.3%

6 3 4 true false 1481.3 62.5%

1 4 3 false false 1483.8 62.4%

2 3 5 false true 1484.2 62.3%

As shown in Table 4 a MoJoQuality of 60.5% is

achieved for version 7e of the controller. The best

clustering for version 8a has a MoJoQuality of 62.5%.

Because in both cases the MoJoQuality for the best

parameter-tuples exceeds 60%, we consider these

decompositions good starting points for manual

refinement. Thus, these results confirm hypothesis H1.

For both versions the parameter tuple (4,6,1,true,true)

achieves the best clustering. Although it is tempting to

conclude that this is the optimal parameter-tuple, this is

probably a coincidence. Recall from Table 2 that for

Grizzly and the RIP Worker different parameter-tuples

led to the best clustering result.

To confirm hypothesis H2 the EdgeMoJo metric is

used. This means that the addition of information from

older versions must produce decompositions with an

EdgeMoJo value that is lower than 1639.4 for version

7e and lower than 1477.1 for version 8a.

5.2 Clustering multiple versions: class-

relations-intersection with first version

Table 5 shows the five parameter-tuples that

produce the best clusterings for the class-relations-

intersection of the two versions, 7e and 8a, with version

1.

Table 5. Best five clusterings for the class-

relations-intersection with version 1

Version 7e with 1

pwa
 pwg

 pwd
 pc p i Edge

MoJo

MoJo

Quality

0 0 2 false false 1223.3 73.7%

0 0 1 true false 1229.5 73.7%

0 0 6 true false 1266.1 73.3%

1 5 6 false true 1286.6 72.3%

1 5 5 true true 1293.5 72.0%

Version 8a with 1

pwa
 pwg

 pwd
 pc p i Edge

MoJo

MoJo

Quality

0 0 6 true false 950.5 78.1%

0 0 1 true false 958.0 78.1%

0 0 2 false false 980.9 77.8%

0 1 1 true false 1006.3 76.8%

1 6 4 true true 1006.7 76.7%

The class-relations-intersection of version 7e and 1

produces decompositions with an EdgeMoJo between

1223.3 and 1398.0. The MoJoQuality varies between

73.7% and 70.9%. For version 8a the EdgeMoJo varies

between 950.5 and 1126.0, and the MoJoQuality

between 78.1% and 75.5%.

Compared to the clustering based on the versions

alone, this is a significant quality improvement. The

best tuple with the class-relations-intersection of

version 7e and 1 has an EdgeMoJo value that is 25%

lower than the best tuple when clustering 7e alone

(from 1639.4 to 1223.3). For version 8a the EdgeMoJo

improves with 36%.

From this we conclude that basing the clustering on

the class-relations-intersection with version 1 leads to a

significantly better clustering. This confirms

hypothesis H2.

5.3 Clustering multiple versions: class-

relations-intersection with previous version

Table 6 shows the five parameter-tuples that

produce the best clusterings for the class-relations-

intersection of the two versions, 7e and 8a, with the

version released before them (7d and 7e respectively).

Table 6. Best five clusterings for the class-

relations-intersection with the previous version

Version 7e with 7d

pwa
 pwg

 pwd
 pc pi Edge

MoJo

MoJo

Quality

6 2 1 true true 1642.6 60.2%

1 5 5 true true 1644.8 60.3%

3 3 4 true true 1646.9 60.4%

1 5 2 false true 1651.3 60.3%

4 4 3 false false 1652.0 60.1%

Version 8a with 7e

pwa
 pwg

 pwd
 pc pi Edge

MoJo

MoJo

Quality

6 1 6 false true 1642.6 59.1%

4 6 2 false true 1644.7 59.0%

2 4 3 false true 1649.1 59.1%

6 5 4 false true 1651.2 59.0%

3 3 1 false false 1652.3 58.9%

The class-relations-intersection of version 7e and 7d

produces decompositions with an EdgeMoJo between

1642.6 and 1804.1. The MoJoQuality varies between

60.2% and 57.4%. For version 8a the EdgeMoJo varies

between 1642.6 and 1811.8, and the MoJoQuality

between 59.1% and 56.0%.

These results are similar to the results achieved

when using only information from the version of which

the architecture is reconstructed: For version 7e the

single-version EdgeMoJo is similar to the multi-version

result achieved here, for version 8a the single-version

EdgeMoJo is even slightly better than the result

achieved here. The MoJoQuality metric shows the

same pattern. This means that basing the clustering on

the class-relations-intersection with the previous

version does not lead to a better clustering result.

5.4 Clustering multiple versions: class-

relations-union with first version

Table 7 shows the clustering results for the five best

clusterings of the class-relations-union of version 8a

and 1.

Table 7. Best five clusterings for the

class-relations-union of version 8a and 1

pwa
 pwg

 pwd
 pc p i Edge

MoJo

MoJo

Quality

3 3 4 true true 1458.9 62.9%

4 4 3 false false 1459.5 62.9%

3 6 1 false false 1461.2 62.7%

1 4 3 false false 1461.6 62.8%

6 5 4 false true 1462.3 62.7%

The clustering of the class-relations-union of

version 8a and 1 achieves an EdgeMoJo value between

1458.9 and 1619.8. In the case where version 8a is

clustered alone, the EdgeMoJo is between 1468.3 and

1661.4. This means that the class-relations-union does

not lead to an improvement of the quality of the

clustering. The MoJoQuality for the class-relations-

union lies between 62.9% and 59.9%, which is also

comparable to the result achieved when clustering with

version 8a alone.

5.5 Clustering multiple versions: class-

relations-union with previous version

Table 8 shows the clustering results for the five best

clusterings of the class-relations-union of version 8a

and 7e.

Table 8. Best five clusterings for the
class-relations-union of version 8a and 7e

pwa
 pwg

 pwd
 pc p i Edge

MoJo

MoJo

Quality

4 4 3 false false 1458.5 62.7%

6 3 4 true false 1466.8 62.6%

4 6 1 true true 1468.5 62.7%

6 1 6 false false 1468.6 62.5%

3 6 1 false false 1469.4 62.6%

The clustering of the class-relations-union of

version 8a and 7e achieves an EdgeMoJo value

between 1458.5 and 1622.2. Similar to the class-

relations-union with version 1, this is comparable to the

results when clustering version 8a alone. The

MoJoQuality metric confirms this. It now has a value

between 62.7% and 59.8%, which is similar to the

value achieved when clustering with version 8a alone.

This leads to the conclusion that combining two

versions with the class-relations-union operator does

not lead to an improvement of the clustering result. We

therefore decided not to test other combinations of

versions.

5.6 Execution times

All performance figures have been measured on the

test platform shown in Table 9.

Table 9. Test system characteristics

Processor Pentium 4; 2,0 GHz

Memory 2 GB

Operating system Windows 2000 SP4

Java 1.4.2_06

Sniff+ 4.2 CP2

MySQL 4.1.8-nt

Bunch 3.3.6

Shrimp 2.0 build 2

Rigi 6.0, version 2-Oct-2003

Table 10 shows some representative examples of the

time needed to execute the essential steps of the

architectural clustering process for the controller. The

fact extraction and subsequent Sniff Import take a lot

of time. About half of this time is spent creating Sniff’s

internal meta-data repository and parsing the source

code. The other half is spent importing this information

in the database. Both need to be done only once for

every analyzed version. Note that building the

complete controller from source code takes about one

to two hours on our test platform, which is about one

order less.

Table 10. Execution times for the controller (wall-

clock time)

Task Time

(hh:mm)

Fact extraction of version 8a

 (Sniff+ parsing and import in database)
21:19

Clustering version 8a

 (Bunch Export, Clustering and Bunch Import)
0:18

Clustering class-relations-intersection of version

8a and 1

(Bunch Export, Clustering and Bunch Import)

0:11

Clustering class-relations-union of version 8a

and 1

 (Bunch Export, Clustering and Bunch Import)

0:58

MoJo calculations for version 8a 0:05

Visualization version 8a

(RSF Export and loading in Shrimp)
0:05

The ten-clustering cycle combines several of these

steps. Table 11 shows the execution times of the

executed ten-clustering cycles. The class-relations-

union of version 7e with the first and the last version

have not been measured.

Table 11. Execution times of the ten-clustering

cycles (wall-clock time)

Time (hh:mm) Task

7e 8a

One version 2:58 3:11

Class-relations-intersection with first

version

1:01 1:02

Class-relations-intersection with

previous version

3:03 2:42

Class-relations-union with first version n.m. 4:41

Class-relations-union with previous

version

n.m. 3:34

5.7 Problems encountered

The size of the controller caused several problems.

First of all, MySQL could only execute the queries

after tuning it for large databases. Second, a complete

cycle of fact extraction, clustering and result

assessment or visualization took a significant amount

of time. For one clustering cycle this is no problem, but

it is when a large number of clustering cycles are

performed. Effectively, this limits the number of

different clusterings that can be created, and hence the

number of different parameter-tuples that can be tested.

Note that in practical clustering-based architecture

reconstruction cases only one, or a limited number of

clusterings are generated. Therefore this limitation

applies mainly to projects experimenting with different

clustering approaches or parameters, and not to

practical architecture reconstruction cases.

Although Sniff+ proved to be a reliable and stable

fact extractor, the Sniff API caused some problems

with associations based on C++ templates. Because of

the low number of these associations in the controller

this had little impact on the clustering result.

6. Conclusions

From the results of the previous chapter we

conclude architectural clustering based on structural

relations between the classes can reconstruct

architectural views of object-oriented software that are

useful for software maintenance, which confirms our

first hypothesis.

The quality of the decompositions our architectural

clustering method produced is relatively good in the

sense that they approach the result of a manual

architecture reconstruction relatively well. In our

experiments where the architecture of two versions of

the controller was reconstructed the produced

decompositions had a MoJoQuality of 60.5% and

62.5% respectively. This exceeds our goal of 60%.

Furthermore, the execution time is such that

clustering systems of the size of the complete controller

is feasible in practice.

The weight of the relationship-types significantly

affects the quality of the clustering result. However, in

our experiments there was no single combination of

weights that produced the best clusterings for all

analyzed pieces of software.

Dependency relations are very important for the

quality of the clustering result. In all experiments

ignoring the dependencies led to a reduction of the

clustering result’s quality, regardless of the weight

assigned to the other relationship-types.

Incorporating information from other versions in the

clustering process can improve the clustering result.

The quality improves if the clustering is based on those

class-relations that are also present in the first version

of the software (class-relations-intersection with

version one). We see an improvement of about 20% to

35%, confirming our second hypothesis. If instead of

the first, the previous version is used, no improvement

is achieved. This might be due to the fact that in the

previous version the architecture is deteriorated much

further than in the first version.

Clustering based on the class-relations present in the

clustered version or the first one (class-relations-union)

does not lead to better clustering results. The same

holds for the combination with the previous version

instead of the first.

References

[1] A. Trevors, M.W. Godfrey. Architectural

Reconstruction in the Dark. Position paper, Workshop

on Software Architecture Reconstruction, collocated

with WCRE '02, Oct. 2002.

[2] J. Buckley. Some standards for software maintenance.

Standards, IEEE Computer, Nov. 1989.

[3] R.K. Fjeldstadt, W.T. Hamlen. Application Program

Maintenance Study: Report to Our Respondents. Proc.

GUIDE 48, IEEE Computer Society Press, Apr. 1984.

[4] S. Ducasse. Reengineering Object-Oriented

Applications. Institut für Informatik und Angewandte

Mathematik, University of Bern, Switzerland, Sept.

2003, IAM-03-008.

[5] S. Demeyer, S. Ducasse, O. Nierstrasz. Object-Oriented

Reengineering Patterns. Morgan Kaufmann Publishers,

San Francisco, CA, USA. 2004.

[6] A. Quilici. Reverse Engineering of Legacy Systems: A

Path Towards Success. Proc. 17th International

Conference on Software Engineering (ICSE’95), Apr.

1995, pp. 333-336.

[7] L. O’Brien, C. Stoermer, C. Verhoef. Software

Architecture Reconstruction: Practice Needs and

Current Approaches. SEI Technical Report CMU/SEI-

2002-TR-024, Software Engineering Institute, Aug.

2002.

[8] A. van Deursen. Software Architecture Recovery and

Modelling [WCRE 2001 Discussion Forum Report].

ACM SIGAPP Applied Computing Review, 10(1), 2002.

[9] A.E. Hassan, R. Holt. The Small World of Software

Reverse Engineering. Proc. 2004 Working Conference

on Reverse Engineering (WCRE’04). Nov. 2004. pp.

278-283.

[10] S.E. Sim, R. Koschke. WoSEF: Workshop on Standard

Exchange Format. ACM SIGSOFT Software

Engineering Notes, 26, Jan. 2001, pp. 44-49.

[11] S. Bassil, R.K. Keller. Software Visualization Tools:

Survey and Analysis. Proc. 9th International Workshop

on Program Comprehension (IWPC’01), 2001, p. 7.

[12] M.E. Conway. How Do Committees Invent?

Datamation Magazine, 14(4), Apr. 1968, pp. 28-31.

[13] J.D. Herbsleb, R.E. Grinter. Architectures,

Coordination, and Distance: Conway's Law and

Beyond. IEEE Software, 16(5), Sept./Oct. 1999, pp. 63-

70.

[14] J. Beck, D. Eichmann. Program and Interface Slicing for

Reverse Engineering. Proc. 15th International

Conference on Software Engineering (ICSE’93), 1993,

pp. 509-518.

[15] J. Zhao. A Slicing-Based Approach to Extracting

Reusable Software Architectures. Proc. 4th European

Conference on Software Maintenance and

Reengineering, Feb. 2000, pp. 215-223.

[16] P. Berkhin. Survey of Clustering Data Mining

Techniques. Technical report, Accrue Software, San

Jose, California, 2002.

[17] A.K. Jain, M.N. Murty, P.J. Flynn. Data Clustering: A

Review. ACM Computing Surveys, 31(3), Sept. 1999,

pp. 264-323.

[18] S.K. Pal, P. Mitra. Patterns Recognition Algorithms for

Data Mining. Chapman & Hall/CRC, 2004.

[19] A. Lakhotia. A unified framework for expressing

software subsystem classification techniques. Journal of

Systems and Software, 36, Mar. 1997, pp. 211-231.

[20] T.A. Wiggerts. Using Clustering Algorithms in Legacy

Systems Remodularization. Proc. 4th Working

Conference on Reverse Engineering (WCRE '97), 1997,

p. 33.

[21] V. Tzerpos, R. C. Holt. Software Botryology: Automatic

Clustering of Software Systems. Proc. International

Workshop on Large-Scale Software Composition, Aug.

1998.

[22] R. Koschke. Atomic Architectural Component Recovery

for Program Understanding and Evolution. Institut für

Informatik, Universität Stuttgart, 2000.

[23] B.S. Mitchell. A Heuristic Search Approach to Solving

the Software Clustering Problem. PhD thesis, Drexel

University, Mar. 2002.

[24] R.W. Schwanke. An Intelligent Tool for Re-engineering

Software Modularity. Proc. 13th International

Conference on Software Engineering, 1991, pp. 83-92.

[25] Rigi. http://www.rigi.csc.uvic.ca/.

[26] H.A. Müller, J.S. Uhl. Composing Subsystem Structures

using (k,2)-partite Graphs. Proc. Conference on

Software Maintenance, Nov 1990, pp. 12-19.

[27] A. Shokoufandeh, S. Mancoridis, T. Denton, M.

Maycock. Spectral and meta-heuristic algorithms for

software clustering. Journal of Systems and Software,

accepted Mar. 2004, published online.

[28] V. Tzerpos, R.C. Holt. MoJo: A distance metric for

software clusterings. Proc. 6th Working Conference on

Reverse Engineering (WCRE’99), Oct. 1999, pp. 187-

193.

[29] B.S. Mitchell, S. Mancoridis. Using Heuristic Search

Techniques to Extract Design Abstractions from Source

Code. Proc. Genetic and Evolutionary Computation

Conference (GECCO'02), Jul. 2002.

[30] N. Anquetil, T.C. Lethbridge. Experiments with

Clustering as a Software Remodularization Method.

Proc. Sixth Working Conference on Reverse

Engineering (WCRE’99), 1999, p. 235.

[31] InSight. http://www.klocwork.com/products/insight.asp.

[32] Z. Wen, V. Tzerpos. Evaluating similarity measures for

software decompositions. Proc. International

Conference on Software Maintenance (ICSM’04), Sept.

2004, pp. 368-377.

[33] Z. Wen. V. Tzerpos. An optimal algorithm for MoJo

distance. Proc. of the 11th International Workshop on

Program Comprehension (IWPC’03), May 2003, pp.

227-235.

[34] V. Tzerpos, R.C. Holt. ACDC: An Algorithm for

Comprehension-Driver Clustering. Proc. seventh

Working Conference On Reverse Engineering

(WCRE’00), 2000, pp. 258-267.

[35] M. Trifu. Architecture-Aware, Adaptive Clustering of

Object-Oriented Systems. Diploma thesis,

Forschungszentrum Informatik, Karlsruhe, Germany,

Sept. 2003.

[36] Z. Wen, V. Tzerpos. An effectiveness measure for

software clustering algorithms. Proc. 12th International

Conference on Program Comprehension (IWPC’04),

Jun. 2004, p. 194.

[37] M. Shtern, V. Tzerpos. A Framework for Comparison of

Nested Software Decompositions. Proc. 11th Working

Conference on Reverse Engineering (WCRE’04), Nov.

2004.

[38] H. Müller, M. Orgun, S. Tilley, J. Uhl, A Reverse

Engineering Approach To Subsystem Structure

Identification. Journal of Software Maintenance:

Research and Practice, 5, 1993, pp. 181-204.

[39] Bunch. http://serg.cs.drexel.edu/projects/bunch/.

[40] B.S. Mitchell, S. Mancoridis. Comparing the

Decompositions Produced by Software Clustering

Algorithms Using Similarity Measurements. Proc.

International Conference on Software Maintenance

(ICSM'01), Nov. 2001.

[41] S.C. Choi, W. Scacchi. Extracting and Restructuring the

Design of Large Systems. IEEE Software, 7(1), Jan.

1990, pp. 66-71.

[42] H. Bär, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse,

M. Lanza, R. Marinescu, R. Nebbe, O. Nierstrasz, M.

Przybilski, T. Richner, M. Rieger, C. Riva, A.M.

Sassen, B. Schulz, P. Steyaert, S. Tichelaar, J.

Weisbrod. The FAMOOS Object-Oriented

Reengineering Handbook. Oct., 1999.

[43] M. Bauer, M. Trifu. Architecture-Aware Adaptive

Clustering of OO Systems. Proc. eight European

Conference on Software Maintenance and

Reengineering (CSMR’04), 2004.

[44] Setup and User’s Guide to Columbus/CAN, Academic

Version 3.5. FrontEndART Ltd, Jan. 2003.

[45] S. Ducasse, T. Girba, J.-M. Favre. Modeling Software

evolution by Treating History as a First Class Entity.

Proc. Workshop on Software Evolution through

Transformations (SETra 2004).

[46] A. Silberschatz, H. Korth, S. Sudarshan. Database

System Concepts, 4th edition. McGraw-Hill Higher

Education, 2002.

