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Abstract 
 

This paper describes a case study that uses 

clustering to group classes of an existing object-

oriented system of significant size into subsystems. The 

clustering process is based on the structural relations 

between the classes: associations, generalizations and 

dependencies. We experiment with different 

combinations of relationships and different ways to use 

this information in the clustering process. The results 

clearly show that dependency relations are vital to 

achieve good clusterings.  

The clustering is performed with a third party tool 

called Bunch. Compared to other clustering methods 

the results come relatively close to the result of a 

manual reconstruction. Performance wise the 

clustering takes a significant amount of time, but not 

too much to make it unpractical. 

In our case study, we base the clustering on 

information from multiple versions and compare the 

result to that obtained when basing the clustering on a 

single version. We experiment with several 

combinations of versions. If the clustering is based on 

relations that were present in both the reconstructed 

and the first version this leads to a significantly better 

clustering result compared to that obtained when using 

only information from the reconstructed version.  

1. Introduction 

The architecture of a software system represents a 

blueprint of the system. Having an up to date 

architecture description is an important prerequisite for 

software maintenance, which represents a large portion 

of a software project’s total costs. In practice, however, 

such a description is often not available and source 

code is the most important information source for 

reverse engineering [1], [2]. 

Developers performing maintenance usually start by 

understanding the problem and the involved parts of 

the software. The gradual deterioration of the 

software’s internal structure makes this increasingly 

difficult. Maintenance programmers performing 

adaptive or perfective maintenance spend half their 

time studying the program source code and the 

associated documentation, as already showed in [3]. 

When performing corrective maintenance this increases 

even further. This means that a reduction of the effort 

needed to understand the internal structure of software 

directly affects the total costs of the project. 

Originally, the term legacy software was used for 

programs written in languages like assembler, Cobol, 

or Fortran. However, legacy problems are not 

constrained to specific types of languages. Changing 

environments and requirements also affect object-

oriented software. Several projects where object-

oriented legacy systems are reengineered are 

mentioned in [4]. It turns out that legacy software even 

exists in relatively young programming languages such 

as Java. The increasing rate of change causes object-

oriented software to become legacy much sooner than 

non-object-oriented software [5]. 

In the context of architecture recovery, pattern 

detection and clustering are two complementary 

approaches. The first finds common abstractions 

embedded in the system, but in practice never covers 

all entities in the system [6]. The second classifies all 

entities in the system, but imposes a new ordering 

instead of some hidden ordering [7], [8], [9], [10], [11].  

Other approaches for architecture recovery 

encompass manual architecture reconstruction, the 

usage of Conway's law, and program slicing. Manual 

reconstruction uses navigation and browsing tools to 

reconstruct an architecture. Conway's law [12], which 

states that “organizations which design systems are 

constrained to produce designs which are copies of the 



communication structures of these organizations”, 

helps to choose suitable abstractions [5], [13]. Program 

slicing is often used to extract reusable components 

from an implementation or specification [14], [15]. 

1.1 Clustering 

Clustering is a data analysis technique for dividing 

data elements into groups of similar elements that are 

called clusters [16]. This division is based on the 

similarity of data elements, which are usually 

represented as points in a multidimensional space or 

vectors of measurements [17]. Intuitively, in a valid 

clustering the data elements within a cluster are more 

similar to each other than to those in other clusters. 

Various terms are used to refer to the data elements. 

Publications that describe the clustering process sec 

call them objects [16], [18] or patterns [17]. A unified 

framework for software subsystem classification 

techniques where the data elements are called nodes is 

presented in [19]. Approaches that use clustering for 

reverse engineering often use the terminology of [20], 

in which the clustered data elements are called entities.  

Clustering is an unsupervised classification 

technique: it does not start with a collection of pre-

classified entities. Clustering has many applications, 

including the classification of plants and animals, 

speech and character recognition, image segmentation, 

information retrieval and data mining [17]. 

The clustering algorithms usually start with an 

abstract graph representing the structure of the 

program, for example with the nodes representing 

classes and the edges inter-class relationships. Some 

similarity measure is then used to find groups of similar 

or closely related classes, which are grouped into 

subsystems. This is repeated until an optimal 

decomposition is found. The end result can be browsed 

top-down, helping to understand the complete program. 

Several clustering-based architecture reconstruction 

approaches are reported in [20], [21], [22] and [23]. 

Among the clustering tools we find Arch [24], Rigi 

[25], which uses the method from [26], and Bunch 

[23], which implements three different partitional 

clustering algorithms, an exhaustive algorithm, an hill-

climbing algorithm, and a genetic algorithm. Bunch has 

been used in various reverse engineering case studies 

[27], [23], [28], [29], [30]. Klocwork InSight [31] is a 

commercial architecture reconstruction and analysis 

tool. 

1.2 Clustering result evaluation 

In general, clusterings are evaluated with an external 

or internal assessment, or a relative test [32], [23]. The 

latter compares the produced clustering to an expert 

decomposition using some measure. It is considered the 

ideal assessment method to evaluate the quality of 

architectural clusterings [22]. However, it has the 

disadvantage that an expert’s decomposition must be 

available. Some relative test methods are discussed 

below. 

Precision and recall can be used to compare a 

clustering result to an a priori structure created by 

experts on the analyzed systems [30]. Though 

frequently used to evaluate clustering results, 

precision/recall has several limitations [29]. First of all, 

the calculation does not consider edges. Second, the 

measurement is sensitive to the number and size of the 

clusters. A few misplaced modules in a cluster with 

relatively few members have much more impact on 

precision/recall than when the cluster has many 

members. Finally, number and size of the clusters 

impact precision/recall. 

Two decompositions can also be compared by 

means of the MoJo metric [28]. This is the minimal 

number of move and join operations required to 

transform one decomposition into the other. A move 

operation relocates a single entity from one cluster to 

another cluster. A join operation merges two clusters. 

Let K and D be two decompositions of a system of N 

entities and let mno(K,D) be the minimum number of 

move and join operations to transform K into D. If x↓y 

denotes the minimum of x and y, then  

( ) ( ) ( ), , ,MoJo K D mno K D mno D K= ↓  . 

If K refers to a decomposition produced by a 

clustering algorithm and D to an expert decomposition, 

the quality of K relative to D is defined as  

( )
( ),

, 1 100%
MoJo K D

MoJoQuality K D
N

 
= − × 
 

 . 

An efficient algorithm to compute the MoJo 

distance between two decompositions is described in 

[33].  Two case studies where the MoJoQuality metric 

is used to evaluate the quality of decompositions 

produced by the ACDC algorithm are described in 

[34]. They achieve a MoJoQuality of 56% and 64%. 

This is claimed to be among “the higher ones an 

automatic clustering algorithm can hope to achieve”. 

This matches with the results reported by [35], 

obtaining a MoJoQuality of about 50% to 65%. 

An extended version, EdgeMoJo, also takes the 

number and weight of edges into account [32]. An 

improved version of the MoJo metric, MoJoFM [36], 



solves some anomalies of the MoJo metric, such as the 

tendency of MoJo to consider clusterings with 

singleton clusters very good. However, MoJoFM does 

not take the edges into account. A method to compare 

hierarchical decompositions is informally described in 

[37]. 

2. Case study 

The subject system for our reconstruction case study 

is a printer controller. Such a controller consists of 

general-purpose hardware on which proprietary and 

third party software is running. Its main task is to 

control physical devices such as a print- and scan-

engine, and to act as an intermediate between them and 

the customer network. The software running on the 

controller has been written in multiple programming 

languages, but mostly in C++.  An as-designed 

architecture is available, but it is not complete and 

parts of the architecture documentation are not 

consistent with the implementation.  

Table 1 shows the characteristics of the first (1) and 

the last (8a) version of the controller and of two of its 

subsystems, called Grizzly and RIP Worker. 

Table 1. Software characteristics 

Controller  

(v. 1) (v. 8a) 

Grizzly RIP  

Worker 

Classes 1545 2661 234 108 

Header and source 

files 

4378 7549 268 334 

Functions 21711 40449 2037 1857 

Lines of source 

code (*1000) 

453 932 35 37 

Executable 

statements (*1000) 

167 366 18 16 

 

Although it is known that it is not possible to 

reconstruct architectures from source code fully 

automatically [38], it is expected that the architectural 

views reconstructed this way can serve as good starting 

points for manual refinement. Based on this we 

formulate the following hypothesis: 

H1: Automatic clustering-based architecture 

reconstruction methods can reconstruct an 

architectural view of the controller from its 

source code that is a good starting-point for 

manual refinement. 

During its lifetime the controller has been modified 

extensively. The internal structure of software systems 

that are continuously modified inevitably deteriorates, 

which obfuscates the architecture. This means that in 

the original version the architecture is present in a 

purer form than in later versions. Since architecture 

reconstruction is usually performed for software of 

which several versions have been released, it is likely 

to be applied to software of which the architecture has 

deteriorated significantly. We speculate that this 

reduces the effectiveness of clustering-based 

architecture reconstruction techniques. If this is the 

case, incorporating information from multiple versions 

in the clustering process could improve the quality of 

the result. This leads to the following hypothesis: 

H2: Utilizing information obtained from 

source code of older versions can improve the 

quality of the output of architectural 

clustering algorithms for more recent versions 

of a system. 

We have built a workbench that uses clustering 

techniques to reconstruct a static view of the software 

architecture from source code. This workbench can 

incorporate information obtained from the source code 

of multiple versions of a system into the clustering 

process. The workbench has been applied to the 

controller to confirm our two hypotheses. 

3. Workbench set-up 

Before we sketch the set-up of our architectural-

clustering workbench, we first discuss the decisions 

that led to it, following the items laid out by [17]. 

3.1 Entity representation and feature selection 

Most of the controller is written in an object-

oriented programming language (C++), where classes 

are the most important building blocks. They provide 

an initial grouping of closely related data and functions 

[23]. Architectural clustering approaches for object-

oriented source code often choose classes as the 

entities to be clustered. We therefore decided that the 

set of classes extracted from the source code would 

form the entity set. Clusters grouping a number of 

classes will be called subsystems, or simply clusters. 

Based on [23], [34], and [35] we decided that the 

clustering will be based on structural relations between 

the classes. We distinguish the three most important 

types of relationships between classes in object-

oriented systems:   

• Association: a structural relationship between two 

classes that specifies one class is connected to 

another. 

• Generalization: the object-oriented mechanism via 

which more specific classes incorporate the 

structure and behavior of more general classes. 



• Dependency: a “using” relationship that specifies a 

change in one class may affect another class. 

If two classes are related by any of these relations, it 

is possible that multiple instances of this relation exist. 

The clustering can take the actual number of relation 

instances into account, or just its presence. We define a 

Boolean parameter pc that specifies if only the presence 

(pc false), or the number of instances of a relation 

between two classes must be taken into account (pc 

true). 

By our definition of the relationship types, an 

association from class x1 to class x2 also implies a 

dependency from x1 to x2. A similar argument holds for 

generalizations: If x1 inherits from x2, x1 is likely to use 

methods or attributes of x2. Therefore generalization 

usually leads to a dependency from x1 to x2. We define 

a Boolean parameter pi to indicate whether or not 

redundant dependencies should be removed: p i false 

implies that all dependencies are included. 

In various publications it is suggested to use 

different weights for the different relationship-types, 

making certain types more important than others [23], 

[35]. We introduce a parameter for each relationship-

type that specifies the weight of instances of this 

relation in the similarity calculation. This leads to three 

parameters, pwa
, pwg

 and pwd
, respectively specifying 

the weight of association, generalization and 

dependency. 

3.2 Similarity metric and algorithm choice 

We need a clustering algorithm that can cluster an 

entity set with inter-entity features. Bunch [39] is a tool 

that implements several clustering algorithms that 

operate on this kind of data. It has been used in various 

architectural-clustering experiments and is known to 

produce clusterings within a bounded approximation of 

the optimal clustering [27]. Because Bunch has been 

implemented as a generic clustering tool, it can easily 

be integrated in an architecture-reconstruction 

workbench. Based on experiences with Bunch reported 

by [23], we decided to use the hill-climbing algorithm 

and the TurboMQ similarity metric. 

We use Bunch differently than the applications 

reported in literature. The difference is threefold: 

• We use Bunch to cluster object-oriented software, 

not procedural code. This affects the entity 

representation and feature selection, not the 

clustering algorithm itself.  

• We distinguish multiple different relationship 

types with different weights. This is supported by 

Bunch.  

• In some cases we also use information from 

multiple versions. This only affects the number of 

features, and not the clustering algorithm itself. 

3.3 Data abstraction 

Bunch automatically generates names for the 

created clusters. These names are based on an 

increasing sequence number and the level of the cluster 

in the decomposition. However, these names have little 

meaning to software maintainers. Ideally, the 

workbench would give meaningful names to the 

clusters. Because we consider the decomposition 

produced by the architectural clustering as a starting 

point that needs to be refined manually, using the 

names Bunch generated is no significant restriction. 

Therefore we leave the issue of automatically giving 

meaningful names to the clusters as future work and 

use the names Bunch generated. 

3.4 Assessment of output 

Architectural clustering methods usually assess their 

output by comparing it to some expert decomposition, 

or by manually checking it. Consensus is that the first 

method is to be preferred [23], [22], so we choose to 

implement this method in the workbench. 

We choose to use the MoJoQuality metric [28] to 

compare the generated decompositions with an expert 

decomposition, because it is a normalized metric for 

comparing clustering results to expert decompositions 

for which reference values have been published. Based 

on clustering results reported in [28], [35], and [36], 

we consider a decomposition produced by architectural 

clustering good if it has a MoJoQuality of at least 60% 

relative to an expert decomposition.  

The EdgeMoJo metric [32] is a non-normalized 

metric that also takes the relations between the classes 

into account. Incorrect class-placements that affect 

many relations are considered more important than 

those that affect a few relations. According to [40] and 

[32] it is important to take edge-information into 

account too. Therefore, we use the EdgeMoJo metric to 

validate hypothesis H2. Because it is not normalized, 

this metric cannot be used to compare the quality of 

architectural clusterings of different systems (so for 

hypothesis H1), but it can be used to determine if 

changes to the clustering process lead to an 

improvement of the result (assuming that the same 

classes are clustered).  

Due to the size of the controller both the expert 

decomposition and the decomposition Bunch produces 



must be hierarchical. We use the approach of [37] to 

assess our hierarchical decompositions.  

3.5 Combining version information 

Hypothesis H2 states that the use of information 

from older versions of the controller during the 

clustering process can improve the quality of a 

decomposition of the last version. 

The first question is which classes are selected from 

the models of the system versions. Assume that one of 

the models represents the version V of which the 

architecture is reconstructed. A decomposition that 

contains the united sets of classes of V and some older 

version is likely to contain classes that are no longer 

present in V. Because this shows unexpected classes to 

maintainers, we argue that this must be avoided. On the 

other hand, a decomposition of V that only contains the 

classes that were also present in the other version will 

not have much value either, because it is likely to leave 

some of the classes of V unclassified. We therefore 

decide that the produced decomposition must contain 

the classes in V and no more. 

 The second question is how the structural 

information of the two models (i.e. the relations) is 

combined. From the preceding discussion it is obvious 

that only the classes present in the last version must be 

clustered. This means that information from other 

versions must be incorporated through the 

relationships. Let C be the set of all classes of all 

versions, and T the set of relationship-types between 

the classes. As described earlier, multiple instances of a 

relationship may be present between two classes. 

Therefore each relation has a source, target, type and 

count. The count value represents the number of 

instances of the relation. The set of class-relations R 

contains each distinct triple of a source, target and type 

at most once. Hence, if N is the set of natural numbers, 

R ⊆ C×C×T × N. The third component of R is called 

the type-component, and the fourth component the 

count-component. An element of R is called a class-

relation. 

 Below we describe two operations to combine sets 

of class-relations using the definitions of C, T and R 

given above. They intersect, respectively unite, two 

sets of class-relations. 

Class-relations-intersection, denoted by ∩r, is an 

operation with type R×R→R that gives the class-

relations present in both sets of class-relations, ignoring 

differences in the count component. Informally, the 

class-relations-intersection of two sets of class-relations 

Ri and R j starts by intersecting Ri and R j with the 

count-component removed. Next, each tuple of the 

result is extended with a count-component that is the 

minimum of the count-components of the 

corresponding tuples in Ri and R j. 

 If n i↓nj refers to the minimum of two values n i and 

n j, the class-relations-intersection of two sets of class-

relations Ri,R j is defined as: 

( ) ( ) ( ){ }, , , , , , , , ,i r j i j i i j jR R x y t n n x y t n R x y t n R= ↓ ∈ ∧ ∈I  . 

Class-relations-union, denoted by ∪r, is an 

operation with type R×R→R that gives the class-

relations present in any of the two sets. First, the class-

relations union of two sets of class-relations R i and Rj 

calculates the normal intersection of the two sets 

without the count-component, and adds a count-

component to each tuple that is the maximum of the 

count-components of the corresponding tuples in Ri 

and R j. Second, the obtained set is extended with the 

tuples in R i for which no corresponding tuple in Rj 

exists and vice versa. 

In order to define the class-relations-union operator 

more precisely, we need an operator to test the 

membership of an element in a subset of R without 

considering the count-component. This class-relations-

membership operator ∈r takes an element (x,y,t,n) of 

R and a subset Rx⊆R, and gives either true or false. If 

N is the set of natural numbers, it is defined as: 

( ) ( )xxr RmtyxNmRntyx ∈∈∃⇔∈ ),,,(:,,,  . 

The class-relations-membership operator gives true 

if the provided set contains an element that equals the 

provided element on the first three components. 

Otherwise, it gives false.  

If n i↑n j refers to the maximum of two values n i and 

n j, the class-relations-union of two sets of class-

relations Ri,R j is now defined as: 

( ) ( ) ( ){ }
{ } { }

, , , , , , , , ,i r j i j i i j j

i r j j r i

R R x y t n n x y t n R x y t n R

r R r R r R r R

= ↑ ∈ ∧ ∈

∈ ∈ ∈ ∈

U

U U

 

3.6 Workbench architecture 

Based on the decisions described above, the 

architecture of the architectural-clustering workbench 

has been defined. Figure 1 shows a conceptual view. 

The boxes indicate processing steps and the black 

arrows directed data flows. 
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Figure 1. Conceptual view of the workbench 

Figure 1 illustrates two typical usage scenarios of 

the workbench: automatic generation of a 

decomposition with clustering (fine dotted blue arrow) 

and assessment of the clustering result (coarse dotted 

red arrow). 

 Both scenarios start with the extraction of facts 

from the source code. The first scenario represents the 

normal process when using clustering to reconstruct an 

architecture from source code. In this scenario the 

extracted dependency graph is clustered and the result 

is visualized. 

The second scenario is used to validate the 

approach: the clustering result is compared to an expert 

decomposition. This decomposition is obtained in two 

steps. First, the classes found during the fact extraction 

step are organized according to their location in the 

source tree. Although our reconstruction approach does 

not need this information, in the case of the controller it 

is available and not using it would make the manual 

construction of the expert decomposition much more 

labor intensive. Second, an editor is used to refine the 

“draft” decomposition. The resulting expert 

decomposition is then compared to the clustering 

result. 

Figure 2 shows a process view of the workbench 

architecture. The rectangles represent processes and the 

black arrows directed communication channels. The 

dotted lines represent the data flows of the two 

scenarios discussed above. 
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Figure 2. Process view of the workbench 

Because Columbus/CAN is not able to extract facts 

from the complete controller, we use the Sniff+ module 

to extract the facts from the source code. Due to the 

large size of the controller this is a computation-

intensive step. Therefore we store the results in a 

MySQL database.  The Bunch module implements the 

clustering process. During the conversion of the facts 

into a format Bunch accepts, the Bunch Export module 

takes our user-specified parameters into account. The 

import and export modules contain “glue-logic” that 

connects the third party applications to the database. 

The Shrimp module allows users to browse a 

decomposition, but without editing possibilities. The 

MoJo module compares two decompositions to assess 

the quality of the clustering result. 

 The “source-tree based clustering” module creates a 

decomposition for a single version based on the 

structure of the source tree. This decomposition is used 

as the starting point for the expert decomposition. The 

algorithm is based on the assumption that classes that 

are defined in source-files in the same directory belong 

together. The resulting clusters are hierarchically 

related by their location in the source tree. Based on 

[41], [34], and [5] we expect this to be a good starting 

point for refinement by an expert. The expert uses Rigi 

to refine the decompositions from the “source-tree 

based clustering” module. After the refinement, the 

RSF Import module writes the results back to the 

database. 

3.7 Meta-model 

The meta-model of the workbench is an abstraction 

of the source code from which the input for the 

clustering process is derived. It needs to accommodate 

the classes and the structural relations. 

The meta-model for the workbench has been based 

on the meta-models of FAMIX [42], MeMoJ [43], 

Columbus [44], and HisMo [45]. Since the clustering 

uses information from multiple versions of the 

controller, the model must accommodate multiple 

versions. Figure 3 shows an ER model [46]. The 

rectangles represent entity-sets, diamonds relationships 

between entity-sets and ellipses attributes. Lines 

represent one-to-one and one-to-many relationships, 

the numbers denote the cardinality. 
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Figure 3. Clustering workbench meta-model 

The entities that are clustered (the classes) are the 

central component. A class is associated with certain 

versions of the system, indicating its presence in these 

versions. A set of versions forms a history of a system. 

Because multiple association and dependency relations 

can exist between two classes, a “count” value is 

associated with these relations. A decomposition 

classifies classes of a certain version of the system. It 

contains a set of subsystem-trees,  modeled by the 

recursive relation of the subsystem entity. Each 

subsystem groups a set of classes. 

4. Parameter tuning 

Before the workbench could be used to reconstruct 

the architecture of the controller, the proper values of 

the user-specified parameters had to be determined. We 

first determined a set of parameter values that produced 

the best clusterings for two subsystems of the 

controller. These values were then used to cluster the 

complete controller. 

As explained before, during the transformation of 

the meta-model into the module dependency graph, a 

parameter-tuple (pwa
,pwg

,pwp
,pc,pi) of our five 

parameters is used: 

• pwa
, pwg

 and pwd
: numeric parameters giving the 

weight of association, generalization, and 

dependency relations respectively. 

• pc and p i: Boolean parameters that reduce the 

amount of information that is written by the Bunch 

export module. pc specifies if the instance-count or 

just the presence of class-relations must be taken 

into account; p i specifies whether or not redundant 

dependencies must be omitted. 

Because the controller is relatively large, clustering its 

module dependency graph is time consuming: on the 

platform described in Table 9 clustering the most 

recent version once takes about eighteen minutes 

(including Bunch Export and Import). The following 

MoJo calculation takes about five minutes. Therefore, 

the number of tested parameter-tuples must be limited 

significantly. Besides this, the numeric parameters (that 

have no upper bound) make it impossible to test all 

different parameter-tuples anyway. For each of the 

numeric parameters the search space is initially set to 

{0,1,2,3,4,5,6}. Because the four combinations with all 

numeric parameters equal to zero are not relevant, this 

gives a total of 1368 combinations to investigate, each 

requiring ten executions of the clustering algorithm. 

Because the clustering algorithm of Bunch is non-

deterministic, the average EdgeMoJo value of ten 

different clusterings is calculated for each parameter-

tuple. We refer to the cycle of exporting the module 

dependency graph (MDG) once and the tenfold 

execution of the clustering and MoJoQuality and 

EdgeMoJo calculations as a ten-clustering cycle. 

For the Grizzly subsystem, the ten-clustering cycle 

took about four minutes, resulting in a total execution 

time of 5488 minutes (91 hours) to test the 1372 

combinations. For the RIP Worker it was about 3.3 

minutes, resulting in a total execution time of 4573 

minutes (76 hours).  

Table 2 shows the five best and five worst 

parameter-tuples for Grizzly and the RIP Worker, and 

the resulting EdgeMoJo and MoJoQuality. Observe 

that the two sets of best parameter-tuples are disjoint. 

For Grizzly the EdgeMoJo metric varies between 101.7 

for the best and 169.7 for the worst decomposition. The 

MoJoQuality varies between 69.0% for the best and 

57.3% for the worst decomposition. For the RIP 

Worker these figures are 42.6 and 67.9, and 66.3% and 

55.0% respectively. These figures indicate that the 

choice of the clustering parameters affects the quality 

of the clustering result significantly. 

Table 2. Best five parameter-tuples for Grizzly and 

the RIP Worker 

Grizzly 

pwa
 pwg

 pwd
 pc p i Edge 

MoJo 

MoJo 

Quality 

2 5 5 false false 101.7 69.0% 

1 3 2 false false 102.0 69.0% 

0 0 6 true false 102.2 69.8% 

2 3 5 false true 102.3 68.2% 

1 4 3 false false 102.7 68.9% 

1358 other measurements 

4 0 0 false false 169.1 61.2% 

1 0 0 true true 169.4 61.2% 

3 0 0 false true 169.4 61.2% 

6 0 0 false true 169.6 61.2% 

0 3 0 false false 169.7 57.3% 

 



RIP Worker 

pwa
 pwg

 pwd
 pc p i Edge 

MoJo 

MoJo 

Quality 

0 5 2 false false 42.6 66.3% 

2 4 3 false true 42.6 66.4% 

1 6 4 true true 42.7 66.7% 

1 5 2 false true 42.7 67.1% 

2 4 1 true false 42.7 66.0% 

1358 other measurements 

1 0 0 true false 67.4 55.0% 

5 0 0 false true 67.6 54.8% 

3 0 0 true false 67.8 55.1% 

3 0 0 true true 67.8 54.8% 

4 0 0 true false 67.9 55.0% 

 

For the tuples that lead to a good clustering it is 

difficult to distinguish trends. The presence of 

parameter-tuples with zero for the numeric parameters 

indicates which types of relationships are important for 

the clustering result and which are not. When 

considering the best fifty parameter-tuples for Grizzly, 

tuples that have pwa
=0 also have pwg

=0. For the RIP 

Worker several tuples with pwa
=0, but none with 

pwg
=0, are present in the top fifty. So, in both cases no 

tuples with pwg
=0 and pwa

≠0 are present in the top 

fifty. This indicates that ignoring the generalizations 

while taking the associations into account does not lead 

to a good clustering result. In other words, if the 

associations are used, the generalizations must be used 

too. 

With respect to the two Boolean parameters pc and 

pi no trends can be distinguished. In the best fifty 

parameter-tuples all four possible combinations are 

represented equally. 

For the parameter-tuples that lead to a poor 

clustering a clear trend is visible: for both Grizzly and 

the RIP Worker, the parameter-tuples with pwd
=0 give 

the worst clustering result. Any parameter-tuple with 

pw 
≠0 gives a better clustering result than the same 

parameter-tuple with pwd
=0. This means that ignoring 

the dependencies leads to a poor quality clustering. 

However, architects we consulted considered 

dependencies to be the least important indicator. 

Instead, most of them base their decomposition on 

functional criteria. The unexpected importance of 

dependencies for the result can be explained in two 

ways: 

1. Ignoring the dependencies leaves many classes 

without any connection to other classes 

(unconnected classes). These classes are then 

placed in the “unconnected classes” subsystem, 

which is probably not the right choice. 

2. The presence and number of dependencies reflects 

the functional relations between the classes better 

than the associations and generalizations do. 

If the first explanation holds, ignoring the dependencies 

must increase the number of unconnected classes much 

more than ignoring the other relationship-types. Table 

3 shows the number of unconnected classes and the 

number of classes that are only connected with 

relations of the three types. Observe that the number of 

unconnected classes in both subsystems is about the 

same. In the RIP Worker the number of classes that are 

only connected with dependency relations is relatively 

high compared to the other relationship types. But for 

Grizzly this is not the case; much more classes are only 

connected with a generalization than with a 

dependency. This means that the first explanation for 

the importance of the dependencies for the clustering 

result does not hold. 

We therefore assume that dependencies are so 

important for the clustering result because they reflect 

the functional relations between the classes better than 

the other relationship-types. 

Table 3. Connectivity of classes in Grizzly and the 

RIP Worker 

Type of classes 

 

Grizzly 

 

RIP 

Worker 

Unconnected 6 7 

Only connected with dependency 4 19 

Only connected with association 4 1 

Only connected with generalization 9 3 

 

Because no single best parameter-tuple could be 

identified, we decided to use a set of tuples instead of a 

single one. The overlap between the set of best tuples 

for Grizzly and for the RIP Worker is very small. In 

fact, the set of twenty tuples that lead to the best 

clustering result for each of them are disjoint. We 

therefore decided to use the union of these two sets, 

leading to forty tuples to test. 

5. Results 

Now that a sub-optimal set of parameter-tuples has 

been identified, the complete controller can be 

clustered. The same procedure has been followed, 

where for every parameter-tuple ten clusterings are 

generated and the average quality is determined. To 

avoid basing conclusions on a single case, the 

architectures of the last two versions of the controller, 

7e and 8a, are reconstructed. 

The structure of software usually does not decrease 

monotonically. When a system is refactored, its internal 

structure improves again. Therefore, it is not 



necessarily the first version of the system in which the 

architecture is present in its purest form. In order to 

prevent basing our conclusions on a single case, we 

decided to combine the two reconstructed versions with 

two other versions, namely the first version, and the 

version released before the one of which the 

architecture is reconstructed. This leads to four 

different version combinations. 

5.1 Clustering one version 

Table 4 shows the five parameter-tuples that, 

according to the EdgeMoJo metric, produce the best 

clusterings for version 7e (left) and 8a (right) of the 

controller. Recall that we use the EdgeMoJo metric to 

compare the clustering result to the result of a manual 

architecture reconstruction. So the parameter-tuples in 

Table 4 are those that produce decompositions that 

come closest to a manually reconstructed architecture. 

Table 4. Best five clusterings for version 7e and 8a 

of the controller 

Version 7e 

pwa
 pwg

 pwd
 pc pi Edge 

MoJo 

MoJo 

Quality 

4 6 1 true true 1639.4 60.5% 

1 4 1 true true 1644.9 60.5% 

1 5 5 true true 1646.1 60.2% 

1 1 5 true false 1646.8 60.3% 

2 5 5 false false 1648.4 60.4% 

 

Version 8a 

pwa
 pwg

 pwd
 pc pi Edge 

MoJo 

MoJo 

Quality 

4 6 1 true true 1477.1 62.5% 

2 1 2 true false 1481.1 62.3% 

6 3 4 true false 1481.3 62.5% 

1 4 3 false false 1483.8 62.4% 

2 3 5 false true 1484.2 62.3% 

 

As shown in Table 4 a MoJoQuality of 60.5% is 

achieved for version 7e of the controller. The best 

clustering for version 8a has a MoJoQuality of 62.5%. 

Because in both cases the MoJoQuality for the best 

parameter-tuples exceeds 60%, we consider these 

decompositions good starting points for manual 

refinement. Thus, these results confirm hypothesis H1. 

For both versions the parameter tuple (4,6,1,true,true) 

achieves the best clustering. Although it is tempting to 

conclude that this is the optimal parameter-tuple, this is 

probably a coincidence. Recall from Table 2 that for 

Grizzly and the RIP Worker different parameter-tuples 

led to the best clustering result. 

To confirm hypothesis H2 the EdgeMoJo metric is 

used. This means that the addition of information from 

older versions must produce decompositions with an 

EdgeMoJo value that is lower than 1639.4 for version 

7e and lower than 1477.1 for version 8a. 

5.2 Clustering multiple versions: class-

relations-intersection with first version 

Table 5 shows the five parameter-tuples that 

produce the best clusterings for the class-relations-

intersection of the two versions, 7e and 8a, with version 

1. 

Table 5. Best five clusterings for the class-

relations-intersection with version 1 

Version 7e with 1 

pwa
 pwg

 pwd
 pc p i Edge 

MoJo 

MoJo 

Quality 

0 0 2 false false 1223.3 73.7% 

0 0 1 true false 1229.5 73.7% 

0 0 6 true false 1266.1 73.3% 

1 5 6 false true 1286.6 72.3% 

1 5 5 true true 1293.5 72.0% 

 

Version 8a with 1 

pwa
 pwg

 pwd
 pc p i Edge 

MoJo 

MoJo 

Quality 

0 0 6 true false 950.5 78.1% 

0 0 1 true false 958.0 78.1% 

0 0 2 false false 980.9 77.8% 

0 1 1 true false 1006.3 76.8% 

1 6 4 true true 1006.7 76.7% 

 

The class-relations-intersection of version 7e and 1 

produces decompositions with an EdgeMoJo between 

1223.3 and 1398.0. The MoJoQuality varies between 

73.7% and 70.9%. For version 8a the EdgeMoJo varies 

between 950.5 and 1126.0, and the MoJoQuality 

between 78.1% and 75.5%. 

Compared to the clustering based on the versions 

alone, this is a significant quality improvement. The 

best tuple with the class-relations-intersection of 

version 7e and 1 has an EdgeMoJo value that is 25% 

lower than the best tuple when clustering 7e alone 

(from 1639.4 to 1223.3). For version 8a the EdgeMoJo 

improves with 36%. 

From this we conclude that basing the clustering on 

the class-relations-intersection with version 1 leads to a 

significantly better clustering. This confirms 

hypothesis H2. 



5.3 Clustering multiple versions: class-

relations-intersection with previous version 

Table 6 shows the five parameter-tuples that 

produce the best clusterings for the class-relations-

intersection of the two versions, 7e and 8a, with the 

version released before them (7d and 7e respectively). 

Table 6. Best five clusterings for the class-

relations-intersection with the previous version 

Version 7e with 7d 

pwa
 pwg

 pwd
 pc pi Edge 

MoJo 

MoJo 

Quality 

6 2 1 true true 1642.6 60.2% 

1 5 5 true true 1644.8 60.3% 

3 3 4 true true 1646.9 60.4% 

1 5 2 false true 1651.3 60.3% 

4 4 3 false false 1652.0 60.1% 

 

Version 8a with 7e 

pwa
 pwg

 pwd
 pc pi Edge 

MoJo 

MoJo 

Quality 

6 1 6 false true 1642.6 59.1% 

4 6 2 false true 1644.7 59.0% 

2 4 3 false true 1649.1 59.1% 

6 5 4 false true 1651.2 59.0% 

3 3 1 false false 1652.3 58.9% 

 

The class-relations-intersection of version 7e and 7d 

produces decompositions with an EdgeMoJo between 

1642.6 and 1804.1. The MoJoQuality varies between 

60.2% and 57.4%. For version 8a the EdgeMoJo varies 

between 1642.6 and 1811.8, and the MoJoQuality 

between 59.1% and 56.0%. 

These results are similar to the results achieved 

when using only information from the version of which 

the architecture is reconstructed: For version 7e the 

single-version EdgeMoJo is similar to the multi-version 

result achieved here, for version 8a the single-version 

EdgeMoJo is even slightly better than the result 

achieved here. The MoJoQuality metric shows the 

same pattern. This means that basing the clustering on 

the class-relations-intersection with the previous 

version does not lead to a better clustering result. 

5.4 Clustering multiple versions: class-

relations-union with first version 

Table 7 shows the clustering results for the five best 

clusterings of the class-relations-union of version 8a 

and 1. 

Table 7. Best five clusterings for the 

class-relations-union of version 8a and 1 

pwa
 pwg

 pwd
 pc p i Edge  

MoJo 

MoJo 

Quality 

3 3 4 true true 1458.9 62.9% 

4 4 3 false false 1459.5 62.9% 

3 6 1 false false 1461.2 62.7% 

1 4 3 false false 1461.6 62.8% 

6 5 4 false true 1462.3 62.7% 

 

The clustering of the class-relations-union of 

version 8a and 1 achieves an EdgeMoJo value between 

1458.9 and 1619.8. In the case where version 8a is 

clustered alone, the EdgeMoJo is between 1468.3 and 

1661.4. This means that the class-relations-union does 

not lead to an improvement of the quality of the 

clustering. The MoJoQuality for the class-relations-

union lies between 62.9% and 59.9%, which is also 

comparable to the result achieved when clustering with 

version 8a alone. 

5.5 Clustering multiple versions: class-

relations-union with previous version 

Table 8 shows the clustering results for the five best 

clusterings of the class-relations-union of version 8a 

and 7e. 

Table 8. Best five clusterings for the 
class-relations-union of version 8a and 7e 

pwa
 pwg

 pwd
 pc p i Edge  

MoJo 

MoJo 

Quality 

4 4 3 false false 1458.5 62.7% 

6 3 4 true false 1466.8 62.6% 

4 6 1 true true 1468.5 62.7% 

6 1 6 false false 1468.6 62.5% 

3 6 1 false false 1469.4 62.6% 

 

The clustering of the class-relations-union of 

version 8a and 7e achieves an EdgeMoJo value 

between 1458.5 and 1622.2. Similar to the class-

relations-union with version 1, this is comparable to the 

results when clustering version 8a alone. The 

MoJoQuality metric confirms this. It now has a value 

between 62.7% and 59.8%, which is similar to the 

value achieved when clustering with version 8a alone. 

This leads to the conclusion that combining two 

versions with the class-relations-union operator does 

not lead to an improvement of the clustering result. We 

therefore decided not to test other combinations of 

versions. 



5.6 Execution times 

All performance figures have been measured on the 

test platform shown in Table 9. 

Table 9. Test system characteristics 

Processor Pentium 4; 2,0 GHz 

Memory 2 GB 

Operating system Windows 2000 SP4 

Java 1.4.2_06 

Sniff+ 4.2 CP2  

MySQL 4.1.8-nt 

Bunch 3.3.6 

Shrimp 2.0 build 2 

Rigi 6.0, version 2-Oct-2003 

 

Table 10 shows some representative examples of the 

time needed to execute the essential steps of the 

architectural clustering process for the controller. The 

fact extraction and subsequent Sniff Import take a lot 

of time. About half of this time is spent creating Sniff’s 

internal meta-data repository and parsing the source 

code. The other half is spent importing this information 

in the database. Both need to be done only once for 

every analyzed version. Note that building the 

complete controller from source code takes about one 

to two hours on our test platform, which is about one 

order less. 

Table 10. Execution times for the controller (wall-

clock time) 

Task Time  

(hh:mm) 

Fact extraction of version 8a 

 (Sniff+ parsing and import in database) 
21:19 

Clustering version 8a 

 (Bunch Export, Clustering and Bunch Import) 
0:18 

Clustering class-relations-intersection of version 

8a and 1  

(Bunch Export, Clustering and Bunch Import) 

0:11 

Clustering class-relations-union of version 8a 

and 1 

 (Bunch Export, Clustering and Bunch Import) 

0:58 

MoJo calculations for version 8a 0:05 

Visualization version 8a 

(RSF Export and loading in Shrimp) 
0:05 

 

The ten-clustering cycle combines several of these 

steps. Table 11 shows the execution times of the 

executed ten-clustering cycles. The class-relations-

union of version 7e with the first and the last version 

have not been measured. 

Table 11. Execution times of the ten-clustering 

cycles (wall-clock time) 

Time (hh:mm) Task 

7e 8a 

One version 2:58 3:11 

Class-relations-intersection with first 

version 

1:01 1:02 

Class-relations-intersection with 

previous version 

3:03 2:42 

Class-relations-union with first version n.m. 4:41 

Class-relations-union with previous 

version 

n.m. 3:34 

 

5.7 Problems encountered 

The size of the controller caused several problems. 

First of all, MySQL could only execute the queries 

after tuning it for large databases. Second, a complete 

cycle of fact extraction, clustering and result 

assessment or visualization took a significant amount 

of time. For one clustering cycle this is no problem, but 

it is when a large number of clustering cycles are 

performed. Effectively, this limits the number of 

different clusterings that can be created, and hence the 

number of different parameter-tuples that can be tested. 

Note that in practical clustering-based architecture 

reconstruction cases only one, or a limited number of 

clusterings are generated. Therefore this limitation 

applies mainly to projects experimenting with different 

clustering approaches or parameters, and not to 

practical architecture reconstruction cases. 

Although Sniff+ proved to be a reliable and stable 

fact extractor, the Sniff API caused some problems 

with associations based on C++ templates. Because of 

the low number of these associations in the controller 

this had little impact on the clustering result. 

6. Conclusions 

From the results of the previous chapter we 

conclude architectural clustering based on structural 

relations between the classes can reconstruct 

architectural views of object-oriented software that are 

useful for software maintenance, which confirms our 

first hypothesis. 

The quality of the decompositions our architectural 

clustering method produced is relatively good in the 

sense that they approach the result of a manual 

architecture reconstruction relatively well. In our 

experiments where the architecture of two versions of 

the controller was reconstructed the produced 

decompositions had a MoJoQuality of 60.5% and 

62.5% respectively. This exceeds our goal of 60%. 



Furthermore, the execution time is such that 

clustering systems of the size of the complete controller 

is feasible in practice. 

The weight of the relationship-types significantly 

affects the quality of the clustering result. However, in 

our experiments there was no single combination of 

weights that produced the best clusterings for all 

analyzed pieces of software. 

Dependency relations are very important for the 

quality of the clustering result. In all experiments 

ignoring the dependencies led to a reduction of the 

clustering result’s quality, regardless of the weight 

assigned to the other relationship-types. 

Incorporating information from other versions in the 

clustering process can improve the clustering result. 

The quality improves if the clustering is based on those 

class-relations that are also present in the first version 

of the software (class-relations-intersection with 

version one). We see an improvement of about 20% to 

35%, confirming our second hypothesis. If instead of 

the first, the previous version is used, no improvement 

is achieved. This might be due to the fact that in the 

previous version the architecture is deteriorated much 

further than in the first version. 

Clustering based on the class-relations present in the 

clustered version or the first one (class-relations-union) 

does not lead to better clustering results. The same 

holds for the combination with the previous version 

instead of the first. 
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