
Using MMX Technology
for image processing

Student: Andreas Wierda
Date: June 18, 1998
Company: Océ Technologies B.V.

P.O. box 101
5900 MA Venlo

Study: Noordelijke Hogeschool Leeuwarden
Engineering department
Technical Computer Science

Supervisors:ir. R.J.P. Rutten (Océ Technologies B.V.)
ir. G.J. van Woudenberg
drs. P.J.A. van Eijk.

NOORDELIJKE HOGESCHOOL
LEEUWARDEN

http://www.oce.com
http://wwwserv.engineering.tem.nhl.nl/
http://developer.intel.com/
http://www.oce.com
http://wwwserv.engineering.tem.nhl.nl/
mailto:rru@oce.nl?Subject=MMX-Technology
mailto:awierda@plant.nl?Subject=MMX-Technology

© 1998 Océ-Technologies B.V. 1 Using MMX for image processing

Preface

This report describes the results of my graduation project at the
Research & Development (R&D) department of Océ
Technologies B.V. in Venlo.

It is assumed that the reader is slightly familiar with computer
architectures, assembly and C++ programming, but not with
MMX Technology. Furthermore, it is assumed that the reader is
not familiar with image processing.

During my period at Océ I have worked in pleasant way with a
number of people. I specially would like to thank my supervisor,
Rob Rutten. Furthermore I would like thank Marco Krom, Jan
Jacobs and my fellow graduate students for the pleasant
corporation. Especially Arjan v.d. Ven and Jurgen Rosendahl,
who where researching familiar subjects. Finally, I would like to
thank Klaas Jan Wierda for introducing me at Océ.

Venlo, June 18 1998,

Andreas Wierda

mailto:rru@oce.nl?Subject=MMX-Technology
mailto:mkro@oce.nl?Subject=MMX-Technology
mailto:jwj@oce.nl?Subject=MMX-Technology
mailto:jwj@oce.nl?Subject=MMX-Technology
mailto:rru@oce.nl?Subject=MMX-Technology
mailto:kwie@oce.nl?Subject=MMX-Technology
mailto:awierda@plant.nl?Subject=MMX-Technology

© 1998 Océ-Technologies B.V. 2 Using MMX for image processing

© 1998 Océ-Technologies B.V. 3 Using MMX for image processing

Summary

This report describes the usage of Intel’s MMX Technology in
image processing applications. The primary goal is to provide
the reader with knowledge on the possible problems when using
MMX for image processing algorithms. Additionally an indication
of the possible performance improvement is given for a number
of algorithm types (compared to a C++ implementation).

Before discussing implementations of specific algorithms the
basic concepts of digital copying are explained. After that the
Pentium processor architecture is discussed. Instead of
describing the hardware this discussion focuses on the
consequences of hardware features for the programmer. The
most important issues to take in account when writing code are
the superscalar architecture and optimal usage of the memory
bandwidth (caches). Finally, MMX Technology is discussed by
explaining each of the MMX instruction types.

The following algorithms have been implemented:
• Smooth
• Sharpen
• Color conversion (lookup table with interpolation)
• Halftoning (error diffusion)

The discussion of the algorithm implementations starts with an
introduction to each of the implemented algorithms. This is
followed by a discussion of the main considerations made during
the implementation of the algorithm in C++ and with MMX. The
main considerations fall in the field of optimal image traversing
and the way pixels can be processed in parallel. Next, the
performance of the C++ and MMX versions are compared.
Finally, an analysis of the processing time of the MMX version is
made to determine the amount of processing time required for
each part of the algorithm.

In the next chapter the impact of recent CPU developments on
the way image processing algorithms can be implemented is
discussed. Additionally the possibilities of a number of
alternative CPU’s are discussed (Intel Pentium II, AMD K6-2,
Cyrix 6x86MX, IDT Winchip C6 and Motorola AltiVec).

In the last chapter it is concluded that the main problems
encountered during the implementation of an algorithm are
caused by shortcomings of the Pentium processors architecture.
Additionally for some algorithms it is difficult to process pixels in
parallel and very few MMX development tools are available.
Using MMX results in a performance gain of a factor two to five,
depending on the algorithm type.

Océ Technologies B.V. enabled the author of this report to do the research that formed the basis for
this report. Océ-Technologies B.V. is not liable for the correctness of the contents and the conclusions
in this report. The author is solely responsible for the contents of this report.

© 1998 Océ-Technologies B.V. 4 Using MMX for image processing

© 1998 Océ-Technologies B.V. 5 Using MMX for image processing

Contents

1 Introduction ..7
1.1 Background ...7
1.2 Project definition..7
1.3 Plan of action ..7

2 Project settings...9
2.1 Image processing for digital copiers...9

2.1.1 Digital copying..9
2.1.2 Color ..9

2.2 The processing path ..9
2.3 The test system ...10
2.4 The Pentium Processor with MMX Technology ..11

2.4.1 General features...11
2.4.2 The superscalar architecture ..11
2.4.3 Instruction cycle times ..14
2.4.4 Caches...14
2.4.5 MMX Technology ...16

2.5 Performance measurement ...19

3 Algorithm implementation ...21
3.1 Introduction..21
3.2 RGB Color plane separation ..21

3.2.1 The algorithm ...21
3.2.2 The implementation..21

3.3 Adding borders ..22
3.3.1 The algorithm ...22
3.3.2 The implementation..22

3.4 The smooth algorithm..23
3.4.1 The algorithm ...23
3.4.2 C++ implementation ...23
3.4.3 MMX implementation..25
3.4.4 The basic loop structure ...30

3.5 The sharpen algorithm...40
3.5.1 The algorithm ...40
3.5.2 C++ implementation ...40
3.5.3 MMX implementation..42

3.6 RGB to CMYK conversion ...52
3.6.1 The algorithm ...52
3.6.2 C++ implementation ...53
3.6.3 MMX implementation..56

3.7 The halftoning algorithm ..70
3.7.1 The algorithm ...70
3.7.2 C++ implementation ...74
3.7.3 MMX implementation..78

3.8 Bits to Bytes conversion ..89
3.8.1 The algorithm ...89
3.8.2 The implementation..89

3.9 Removing borders ...90
3.9.1 The algorithm ...90
3.9.2 The implementation..90

3.10 The total print processing path ...90
3.10.1 ‘Warming up’ effects...90
3.10.2 Algorithm performance ...91
3.10.3 Improvements of the processing path ...92

© 1998 Océ-Technologies B.V. 6 Using MMX for image processing

4 Architecture developments..95
4.1 The IA32 architecture ..95

4.1.1 Intel Pentium Pro ...95
4.1.2 Intel Pentium II...96
4.1.3 AMD...98
4.1.4 Cyrix ..98
4.1.5 IDT...99

4.2 The PowerPC architecture...99

5 Evaluation & conclusion..103
5.1 Implementation issues...103
5.2 Performance ...105
5.3 Recommendations ..106

6 Literature...107

Appendix A: MMX instruction set summary ..109

© 1998 Océ-Technologies B.V. 7 Using MMX for image processing

1 Introduction

1.1 Background

Océ Technologies B.V. is one of the worlds leading producers of
copiers, printers and plotters. In order to further expand Océ’s
market position, the Research & Development (R&D)
department continuously improves existing products and
develops new ones.

GRT Within the R&D department, the Group Research and
Technology (GRT) focuses on long term subjects. It investigates
possibilities of new technologies for Océ and searches for
emerging markets which might be interesting for Océ.

The last few years the well known analog copiers are gradually
being replaced by digital copiers, which achieve a much better
image quality. This image quality is, among others, achieved by

Image processing applying digital image processing algorithms. The hard- and
software required for this image processing accounts for a
considerable amount of the cost price. Therefore continuous
research is done on how to do more and better image processing
with less cost.

Since an image processing device, such as a digital copier,
usually contains a personal computer (PC), a considerable cost
reduction could be achieved when this PC is used for the
required image processing. However, currently the image
processing performance of PC’s is not enough to satisfy the
large demands made. According to Intel MMX Technology can
improve the image processing performance of PC’s significantly.

1.2 Project definition

Problems The primary goal of this project is to investigate the problems
encountered when implementing image processing algorithms

Performance with MMX Technology. Additionally, the possible performance
gain when using MMX must be determined for a number of
algorithm classes.

The following algorithms will be implemented in a demo
program:
• Smoothing
• Sharpening
• Color conversion
• Halftoning

1.3 Plan of action

Before implementing any algorithms the Pentium architecture
will be studied. Additionally general knowledge of digital copying
and its specific properties has to be acquired.

In the main phase of the project the four algorithms will be
implemented. The implementation of an algorithm starts with an
investigation of the way the algorithm operates. Next, a
reference C++ implementation of the algorithm will be built. This
is done to understand the operation of the algorithm better
before implementing the algorithm with MMX. After this an MMX
version will be implemented. In this report the entire

© 1998 Océ-Technologies B.V. 8 Using MMX for image processing

development phase will be described to give the reader
maximum insights in the problems encountered.
Finally the performance of the C++ and the MMX version of the
algorithm will be compared. To gain insights in the weaknesses
and bottlenecks of MMX an analysis of the processing time will
be made.

During the final phase of the project a number of alternative
architectures will be investigated, focusing on the differences
with MMX.

© 1998 Océ-Technologies B.V. 9 Using MMX for image processing

2 Project settings

2.1 Image processing for digital copiers

2.1.1 Digital copying

A digital copier consists essentially of an expensive scanner, a
computing-core for image processing and a fast print engine.
Although desktop scanners and printers might seem to have
ideal characteristics from the users point of view, real world
scanners

Image processing and printers are far from ideal and a lot of image processing has
to be performed to obtain an acceptable image quality.

2.1.2 Color

Color can be represented using several methods. Each of these
methods has its own advantages and is often specific for a
certain application. The demo application uses two different
color representations: RGB and CMYK.

2.1.2.1 RGB

RGB (Red, Green, Blue) is a well known color representation
which is among others used for television and scanning
applications. The RGB representation is based on the way the

Human eye human eye perceives color. The inner back of the human eye is
covered with a lot of small sensors, called ‘cones’. There are
four types of cones; one type is sensitive to all light, the other
three to Red, Green and Blue light respectively. To represent a
color in for example a scanner, the Red, Green and Blue color-
bases are sufficient.
If all three color planes of a pixel are 255 (the upper limit), the
pixel will be white. If all three planes are zero the pixel will be
black.

2.1.2.2 CMYK

The RGB representation causes problems when printing,
because on the white paper a white pixel should be represented

Print engine with no ink. Therefore in print engines the complementary CMY
(Cyan, Magenta, Yellow) color representation is used. A white
pixel can then be represented with no ink, a black pixel with ink
of all three colors. Because of the non-ideal characteristics of the
ink however, the black pixel created this way has a somewhat
brownish color. Since this is unacceptable for text, blacK is
added, forming the CMYK color representation.

2.2 The processing path

There are many variations in processing-paths. The structure
which depends on both the desired image quality and restrictions
on the computational resources and architecture. Likewise, many
variations exist for the individual algorithms.

In order to implement a wide range of algorithm classes, it was
chosen to implement both a scan (processing) path and a print
path. For algorithms such as the halftoning a number of different
version of varying complexity exist. It was chosen to implement

© 1998 Océ-Technologies B.V. 10 Using MMX for image processing

one of the versions, based on which the problems expected
when implementing the others are predicted.

Both the sequence of the algorithms as well as the specific
choices of algorithms of both paths are typical for Océ.
Figure 1 shows the sequence of filter algorithms for both paths,
where the right path represents the print path and the left the
scan path. The italic algorithms are necessary to be able to show
the processed images on a PC screen. In the processing path of
a digital copier these algorithms are not necessary.

RGB color plane separation

Smooth

Sharpen

RGB to CMYK conversion

Halftoning (error diffusion)

Convert bits to bytes

CMYK to RGB conversion

Merge RGB color planes

S
ca

n
pa

th

P
rin

t p
at

h

Figure 1: Processing path

Before implementing each of these algorithms a short
description of them will be given, including example images.

2.3 The test system

The development platform was a Compaq Deskpro 4000 which
was also used for the performance measurements. The relevant

Pentium 166 with MMX characteristics of this PC are:
• Pentium 166 MHz Processor with MMX Technology (See

section 2.4).
• An internal memory of 64 MB.
• A 256 KB level two cache.
• 2.4 GB hard disk.
• Windows NT 4.0 Workstation (Service Pack 3).

Windows NT 4.0 The default parameters of Windows NT were not changed,
unless mentioned otherwise. The measures taken to achieve a
more constant performance are described in section 2.5.

© 1998 Océ-Technologies B.V. 11 Using MMX for image processing

2.4 The Pentium Processor with MMX Technology

2.4.1 General features

In 1997 Intel introduced the Pentium processor with MMX1.
There were several changes that made the Pentium
considerably faster than its predecessor, the 486:
• A dual pipeline architecture vs. a single pipeline on the 486.

This so called superscalar architecture is described in
section 2.4.2.

• MMX Technology2 allows parallel data processing. MMX is
described in section 2.4.5.

• The reduction of cycle times, especially of floating point
instructions. See section 2.4.3 for more information on cycle
times.

• A new branch prediction feature allows the processor to
predict the destination of a branch, eliminating branch
delays.

• A 64-bit databus, improving databus bandwidth (32 bit on the
486).

• 16 KB code- and 16KB datacache vs. 8K combined on the
486 (2x8 KB on the Pentium without MMX). The cache
architecture and its influence on the performance is
discussed in section 2.4.4.

• The branch prediction logic allows the processor to predict
the destination of a branch, eliminating branch delays.

• Higher clock speeds further increased the CPU speed. On
the 486 clock speeds varied from 25 MHz to 100 MHz. At its
introduction the Pentium was available in a 60 and a 66 MHz
version. Later versions reached clock speeds up to 233
MHz.

Some other features of the Pentium with MMX are:
• Dual processing configuration
• Fractional bus support, allowing the CPU to run at an higher

clock speed than the external databus. The external databus
of a Pentium CPU always runs at 66 MHz, while versions
with internal clock speeds of 166, 200 and 233 MHz are
available.

2.4.2 The superscalar architecture

On the predecessor of the 486, the 386 Intel introduced a
pipelined architecture. Such an architecture refers to an
architecture where the CPU executes each portion of an
instruction in different stages. When a stage is completed,
another one begins executing in the first stage, while the
previous instruction moves to the second stage.

1 There are a number of differences between the conventional Pentium and the Pentium with
MMX. The most important one obviously is MMX. Additionally, the Pentium with MMX has an
improved branch prediction and larger caches. The conventional Pentium is not discussed
further.
2 MMX is sometimes believed to stand for MultiMedia eXtensions or Matrix Math eXtensions.
According to Intel however MMX is not an acronym.

© 1998 Océ-Technologies B.V. 12 Using MMX for image processing

Pipelining A five stage pipeline might be divided into the following stages:
1. Fetch instruction opcode from memory
2. Decode instruction opcode1

3. Calculate operand2 address and read operand from memory
4. Execute instruction
5. Write instruction result

If each stage takes 1 cycle this architecture might reach
execution times of 1 cycle per instruction, compared to 5 cycles
per instruction for the non-pipelined equivalent.

Pipeline delays There are two situations where there is a significant delay in the
pipeline.
First, if a jump is encountered, the entire pipeline has to be
flushed and reloaded.
Second, if one of the instructions takes more than one cycle to
read the operands, while the other stage still require one cycle,
the preceding stages of the pipeline will stall, since they have to
wait for the next stage to complete the previous instruction.

‘u’ and ‘v’-pipe The superscalar architecture introduced with the Pentium
basically consists of two parallel pipelines, each divided into five
stages. When running at maximum speed, two instruction results
per clock cycle can be produced. The pipelines of the Pentium
are called the ‘u’-pipe and the ‘v’-pipe.

Unfortunately only the ‘u’-pipe can execute all instructions. The
‘v’-pipe can only execute ‘simple’ integer instructions, floating
point and MMX instructions. Simple integer instructions are for
example move instructions, the various additions/subtractions
and logical instructions.
Memory accesses can only be made from the ‘u’-pipe. Another
exception is made for read-write dependencies; if the first
instruction changes an operand of the second instruction they
cannot be executed parallel, and the second pipeline will stall
until the first instruction finishes.

Pairing When two instructions can be executed simultaneously, i.e. the
first in the ‘u’-pipe, and the second in the ‘v’-pipe they are said to
pair. A pairing rate of for example 50% indicates that half of the
instructions can be paired with another instruction, thus reducing
execution times by 25% (assuming that all instruction take the
same number of cycles).
The complete list of paring rules is described in “Pentium
Processor Family Developers Manual” [5], chapter two.
Examples and further information on paring issues can be found
in “Pentium Processor Optimization Tools” [9], chapter nine.

Pairing a filter After a filter has been programmed the code has to be paired.
When pairing code the statements are re-ordered in such a way
that that the CPU can execute two instructions parallel.
Intel provides the tuning program VTune. This program
simulates the behaviour of a CPU, and logs the required
processing time. VTune also indicates why two instructions will
not pair.

1 The hexadecimal code of the executed statement.
2 The data element the operation is performed on or with.

http://developer.intel.com/
http://developer.intel.com/

© 1998 Océ-Technologies B.V. 13 Using MMX for image processing

General pairing rules Although it is not necessary to learn the complete list of pairing
rules, a few basic rules are still necessary:
1. If the first instruction modifies a register that is used by the

second they will not pair.
2. Only one MMX shift unit is available. This means only one

MMX shift instruction can be performed, either in the ‘u’- or in
the ‘v’-pipe. The pack and unpack instructions also use the
shift unit.

3. MMX memory moves can only be issued in the ‘u’-pipe.
4. Add instructions do not pair with MMX memory moves.
5. When writing data to memory the data has to be ready one

cycle in advance before the memory move.

These are a few of the paring rules for MMX instructions. To
indicate the complexity of the total set of pairing rules; the
complete list by Intel is 11 pages long.

It is important to keep the pairing in mind when programming the
filter; use all registers instead of using one register multiple
times for a number of tasks. This allows two (independent)
blocks of code to be merged, running the first block in the ‘u’-
pipe, the second in the ‘v’-pipe. Care also has to be taken not to
use non-pairable instructions, especially for non-mmx
instructions.

Perfect pairing A pairing rate of 100% is possible by moving read and calculate
operations from the beginning of the loop to the end of the loop1.
This is necessary because when pairing the code, instructions
that can be delayed are shifted down, and instructions that use
recourses not used by other instructions are moved up. At the
end of the loop however, it is not possible to move instructions
down, commonly resulting in a number of not pairable
instructions. If some instructions from the top of the loop are
moved to the end, it is possible to pair them with the instructions
that otherwise would not be pairable.

It was mentioned before to take care not to switch related
statements. However, especially memory dependencies are
easily overseen. It is therefore inevitable that mistakes will be
made. If these mistakes are not noticed the consequences are
disastrous; it is virtually impossible to find bugs in paired code
because the logic between statements is completely lost2.

1 And of course just before the beginning of the loop. If this is skipped, the first loop cycle will not
perform all the required operations.
2 While pairing the smooth algorithm a mistake was made. The mistake was made in a group of
about ten statements, but undoing the moves was not possible because Visual C++ had been
shut down. After spending three hours searching for the misplaced statement. it was decide to
start pairing all over again with a non-paired version of the filter.

© 1998 Océ-Technologies B.V. 14 Using MMX for image processing

Guidelines for safe pairing In this paragraph some guidelines are given that help limit the
consequences of errors made while pairing the code:
1. Back up previous versions.
2. Number each statement before starting to pair the code.
3. After pairing about ten to twenty statements, test the filter

code.
4. Test the filter by subtracting the filters result byte-wise from

the result of the unpaired code previously stored, for example
with Paint Shop Pro. Errors can cause subtle changes in the
image.

5. Do not close Visual C++ before the new version of the code
passed a thorough test. If Visual C++ is closed, it is not
possible to undo actions.

6. Do not use test images that contain large areas of the same
color. Such images are sometimes processed correct,
although the code is corrupted.

2.4.3 Instruction cycle times

One of the major improvements of the Pentium compared to the
486 is the reduction of instruction cycle times. For example a
floating point add takes 23 to 72 cycles on a 386, 8 to 32 on a
486 and 1 to 3 on a Pentium. Besides the floating point
instructions, quite a number of other instructions were also
improved. The return instruction for example takes 11 cycles on
a 386, 5 on a 486 and just 2 on a Pentium.

Memory accesses The cycle times for instructions that read and write to memory
are based upon the assumption that the data can be read (or
written) from the level one cache. In most situations however,
that will not be the case, and severe delays will occur. For more
information on cache and memory issues see section 2.4.4.

2.4.4 Caches

The first series of the Pentium had a separate code and data
cache of each 8 KB, vs. 8 KB combined on the 486. There are
some advantages in having the code and data cache separated.

Code and data cache This separation generates fewer internal bus conflicts that could
cause delays. But more important, this allows the code cache to
contain additional information about each byte in the cache, for
example instruction pairing information.

The later versions of the Pentium, those who where equipped
with MMX Technology, have a separate code- and data cache of

Cache lines 16 KB each. The cache consists of 512 lines of 32 bytes each.
Every time a data item is read which is not cached, the
processor will read an entire cache line from memory. The cache
lines are always aligned to a physical address divisible by 32.
When a data element is spread over multiple cache lines, a read
takes at least 3 clock cycles extra because the CPU can not read
data spread over multiple cache lines. (The read is split up in
two reads, after which the data is merged). This is called a Data
Cache Unit (DCU) Split.

Misaligned data Another delay of 3 clock cycles occurs when reading misaligned
data. Intel recommends data to be aligned on the boundaries
shown in the list below for optimal performance1:

1 Source: ”Intel Architecture Optimization Manual “ [8], section 3.4.2.

http://developer.intel.com/

© 1998 Océ-Technologies B.V. 15 Using MMX for image processing

• Bytes (8 bit): On any boundary.
• Words (16 bit): Align data to be contained within an

aligned 4-byte doubleword.
• Doublewords (32 bit): On any boundary which is a multiple

of four.
• Quadwords (64 bit): On any boundary which is a multiple

of eight.

For example, a quadword read from address 0x02F01 is not
aligned (light gray in Figure 2), and takes three clock cycles
more to read than a quadword on address 0x02F08 (dark gray).

8 bytes=64 bits

0x02F08
0x02F04
0x02F00

Figure 2: Misaligned vs. aligned memory accesses

Set associative The cache is set-associative. This means that a cache line can
not be assigned to arbitrary memory addresses. To determine
the cache line and the position within a cache line, a physical
address is split up like shown in Figure 3.

The seven bits for the cache set value are used to address 128
set values. The four least significant bits indicate the byte
number of the physical address within the cache line.

For each of the 128 set values, four cache lines are available.
Thus, a cache line address is composed as shown in Figure 4.

bit 8 2 1 0

cache set value
Figure 4: Cache line address

The seven cache set value bits are the same bits as in the
physical address, allowing 128 set values. The two least
significant bits allow four cache lines per set value.

The consequence of this is that the cache can hold no more than
four different data blocks with the same set value (bits 5 to 11)
of the address.

The cache previously described is called the level one cache,
and is located on the same chip as the processor itself. The

Level one cache level one cache is very fast; data can be read or written in just
one clock cycle. If data can not be read from the level one
cache, it has to be read from the level two cache. The cache is
located on the motherboard, and is much slower than the level
one cache. A read from the level two cache takes 50 to 100 ns.

Level two cache For a 166 MHz CPU (the one we use) this means a delay of 8 to
16 clock cycles.

bit 31 12 11 5 4 0

cache set value byte nr in line
Figure 3: Mapping a physical address to a cache line

© 1998 Océ-Technologies B.V. 16 Using MMX for image processing

If the data is not available in the level two cache, it has to be
read from memory. This takes between 200 and 300 ns. For our

Memory 166 MHz CPU this would be 33 to 50 clock cycles.

When a write is performed to an address which is not in the level
one cache, then the value will go right through to the level cache
or to the RAM, depending upon the implementation of the
motherboard. This takes approximately 100 ns, causing a delay
of 17 cycles (on our 166 MHz system).
The Pentium with MMX has four write buffers. This means that
up to four unfinished writes to uncached memory can be done
without delaying the subsequent instructions.

The last cache related issue we will discuss here is the so called
Address generation Address Generation Interlock (AGI). This delay is caused by the

fact that it takes one clock cycle to calculate the address needed
by an instruction which accesses memory. Normally, this
calculation is done in a separate stage of the pipeline, while the
preceding instruction is executing. But if the address depends on
the result of an instruction executing in the preceding clock
cycle, an extra cycle is needed in order to calculate the address.
This is called an AGI stall.

2.4.5 MMX Technology

In 1996 Intel introduced MMX Technology. Basically MMX
provides a set of SIMD (Single Instruction Multiple Data)
instructions, allowing processing of multiple data elements in
one instruction.

Data types MMX Technology introduces 57 new instructions, 4 new data
types and 8 MMX registers. The basic data type is the packed
fixed point integer, which can be used in the following
configurations:
• Packed byte. Eight bytes combined in a 64 bit quantity.
• Packed word. Four words packed in a 64 bit quantity.
• Packed doubleword.
• Quadword. One 64 bit quantity.

The first three data types are called packed data. The MMX
instructions operate on groups of eight bytes, four words two
doublewords or one quadword, as shown in Figure 5.

© 1998 Océ-Technologies B.V. 17 Using MMX for image processing

Packed byte (8 x 8 bits)

B7 B6 B5 B4 B3 B2 B1 B0
63 55 47 39 31 23 15 7 0

Packed word (4 x 16 bits)

W3 W2 W1 W0
63 47 31 15 0

Packed doubleword (2 x 32 bits)

D1 D0
63 31 0

Quadword (1 x 64 bits)

Q0
63 0

Figure 5: MMX data types

MMX Registers The MMX registers MM0 to MM7 are aliased on the general
purpose floating point registers R0 to R7 and are used in the
same way.

MMX Technology introduces a new arithmetic mode known as
Saturation arithmetic saturation arithmetic. Saturation can best be explained by

contrasting it with wraparound mode. In wraparound mode
results that over- or underflow are truncated and only the least
significant bits are returned. In saturation mode the results are
clipped to the data range limits shown in Table 1.

Lower limit Upper limit
(hex) (decimal) (hex) (decimal)

Signed byte 0x80 -128 0x7F 127
Signed word 0x800 -32,768 0x7FFF 32,767
Unsigned byte 0x00 0 0xFF 255
Unsigned word 0x0000 0 0xFFFF 65,536

Table 1: Data type ranges

To perform actions on packed data types, Intel provides the
following types of instructions:
• Arithmetic instructions
• Comparison instructions
• Conversion instructions
• Logical instructions
• Shift instructions
• Data transfer instructions
• The “Empty-MMX-State” instruction (EMMS)

Since limitations of the MMX instruction set have serious
consequences on the way algorithms must be implemented, we
will discuss some details of the MMX instruction set here. For a
complete list of all MMX instructions, see appendix A.

Arithmetic instructions MMX provides most common arithmetic instructions, such as
addition, subtraction and multiplication. The latter can only be
performed on packed words, the other on packed words and
packed bytes. The packed add, subtract and the packed multiply
and add can also be performed on packed doublewords.
However, none of the arithmetic instructions operates on a

© 1998 Océ-Technologies B.V. 18 Using MMX for image processing

quadword. A packed divide instruction is not available. Division
can be made either with the shift-right instruction (divide by a
power of 2) or by multiplying with the reciprocal.

Comparison instructions Since a packed data type consists of multiple data elements, a
compare instruction could not be implemented with a single zero
flag as is common for normal compare instructions. Instead, the
compare instruction generates a bit mask as shown1 in Figure 6.

mm 0000000000000000 0000000000000000
== ==

mm/m64 0000000000000000 1010101010101010
True False

mm 111111111111 0000000000000000
Figure 6: Packed compare (PCMPEQD MM, MM/M64)

Conversion instructions The conversion instructions are used to convert packed data
from one type to another. To perform an extend operation, for
example to convert packed bytes to words, the packed unpack
instruction must be used. If in the example in Figure 7 the
mm/m32 operand is filled with zeroes, the mm operand is
extended from the packed byte data type to packed words.

mm/m32 mm
A3 A2 A1 A0 B3 B2 B1 B0

A3 B3 A2 B2 A1 B1 A0 B0

mm
Figure 7: Unpack operation (punpcklbw mm, mm/m32)

The complement of the unpack is the pack instruction (see
Figure 8). This instruction can be used to shrink packed data
types, for example from packed words to bytes.

mm/m64 mm
 V3 V2 V1 V0 W3 W2 W1 W0

V'3 V'2 V'1 V'0 W'3 W'2 W'1 W'0
mm

Figure 8: Pack operation (PACKUSWB MM,MM/M64)

PACKUSWB stands for “Pack Unsigned with Saturation Words to
Bytes”. Thus, when the value of a unsigned packed word
exceeds the range of the unsigned packed byte, the result is
saturated.

Logical instructions The packed logical instructions are similar to those that operate
on non-packed data types, except that the result is placed in a
bit mask in the first (=destination) operand, similar to the packed
compare instructions.

1 mm = MMX register.

m32 = Memory location (32 bits).
 m64 = Memory location (64 bits).

© 1998 Océ-Technologies B.V. 19 Using MMX for image processing

Shift instructions The MMX instruction set has three shift instructions; logical shift
left and right and arithmetic shift right. The arithmetic shift right
instruction is needed to divide -by a power of 2-. The difference
between the arithmetic shift and the logical shift is that the latter
also shifts the sign bit, unlike the arithmetic shift which skips this
bit. The arithmetic shift left can be done with a logical shift left
combined with some code to preserve the sign bit.

Data transfer instructions Data transfers can performed with the move instructions. When
using these instructions to move packed data between registers
an exact copy of the destination register is made.
Care has to be taken when moving packed data from memory to
an MMX register; the byte on the memory location with the
highest address is placed in the most significant byte of the
packed data type, as show in Figure 9.

m64

m+0 m+7

B0 B1 B2 B3 B4 B5 B6 B7

mm B7 B6 B5 B4 B3 B2 B1 B0
63 48 32 31 16 15 0

Figure 9: MMX memory move operation (MOVQ MM,M64)

Immediate operands Most instructions do not accept immediate operands, for
example to add ‘1’ to all of the eight packed bytes. They only
accept MMX registers or memory operands. An exception is
made for the shift instructions, which accept an immediate
operand for the number of bits to shift.

‘EMMS’ instruction A special MMX instruction is the EMMS instruction. This
instruction clears the internal state registers of the MMX unit.
The EMMS instruction is necessary because the MMX registers
are mapped to the floating point registers. The next floating point
instruction after the EMMS instruction takes 57 cycles extra to
execute, thus mixing floating point and MMX instructions must
be avoided at all costs.

Cycles times As far as the cycle times of regular MMX instructions are
concerned; they all take one cycle, except for instructions that
use the MMX multiply unit1. The results of these instructions are
available three cycles after the instruction has been started. An
average throughput of one instruction per cycle can be reached
by starting a number of result-independent multiplies
consecutively.

2.5 Performance measurement

The time necessary to apply each filter is measured by reading
the time stamp counter register of the Pentium CPU before and
after the call to the filter function. The time stamp counter
register is a 64 bits wide register that is incremented one each
clock cycle.

1 The multiply unit is used by the packed multiply and the packed multiply-and-add instructions.

© 1998 Océ-Technologies B.V. 20 Using MMX for image processing

Cycles/pixel The time needed to process one pixel is calculated by dividing
the number of clock cycles that passed by the number of pixels
processed.

Multitasking Windows NT is a multitasking operating system. This implies
that an applications performance also depends the other
processes running. Even if all other applications are shut down,
in the background Windows NT still runs internal processes,
called services, such as the spooler service and the TCP/IP
service. To reach constant performance of the filter, all services
possible where shut down. Two services can not be shut down:
1. The eventlog service .
2. The RPC service.

It is expected that the influence of these services on the filter
applications performance will be minimal, because they are just
two of the nine services running normally. Besides shutting down
most services, the test application has been given maximum
scheduling priority1.

Windows NT uses, like all modern operating systems, virtual
addressing. Virtual addressing allows the usage of more memory
than physical available in the computer. This is done by mapping
the virtual address either to a physical memory address (the data
is loaded into the physical memory), or to a location on the hard

Disk swap disk. In the latter situation the data is said to be ‘swapped’ to the
disk. Windows NT manages address mapping in such a way that
a data block requested by an application is loaded in the
physical memory. This so called ‘disk swap’ dramatically
influences the filter applications performance. By closing all
other application, most of the disk swapping can be prevented.
However, if the filter application allocates more memory than
physically available in the PC, Windows NT will have to swap
data to the hard disk.

Allocating memory Therefore the filter application has to allocate the required
memory in such a way that no swapping will occur in critical
sections:
1. Minimise the amount of allocated memory.
2. Allocate memory outside the (timed) filter functions.

Further research is required on how to achieve constant
processing performance on a Windows NT platform.

When measuring filter performance a number of measurements
where performed, out of which the fastest that could be
reproduced was documented. It was chosen to record the fastest

Fastest reproducible run reproducible measurement instead of the average because the
slower measurements are heavily influenced by the time
Windows NT needs to swap data to the hard disk2.

1 This is done with the Windows NT Task Manager.
2 A disk access requires several milliseconds, while a CPU clock cycle is about 6 nanoseconds
(based on a clock speed of 166 MHz).

© 1998 Océ-Technologies B.V. 21 Using MMX for image processing

3 Algorithm implementation

3.1 Introduction

The application framework needed to test the algorithms is built
using the MFC-Application wizard provided with Microsoft Visual
C++ 5.0. The wizard generates a customised application
template, containing for example menu’s and toolbars. Reading

Image Gear and writing of images has been implemented using the Image
Gear function library. The image is read by Image Gear from the
harddisk into memory as a linear sequence of pixels. Each pixel
is represented by 24 bits. For each of the Red, Green and Blue
color planes 8 bits are used, giving a Red, Green and Blue range
from 0 to 255. Within each pixel the planes are placed in Blue -
Green - Red order.

In the test application two versions of the processing paths are
implemented; one written in standard C++, another using in-line
assembler with MMX Technology. It has been decided to

C++ vs. MMX implement the filters in C++ for two reasons:
1. To find out each filters typical difficulties.
2. To be able to compare the performance of the MMX

implementation to a conventional C++ implementation.

A test session is started by choosing either the “C processing
path” or the “MMX processing path” option from the image
menu. Then the required main processing function (‘FilterC’ or
‘FilterMmx’) is called. These two functions are the base of the
processing path. They allocate all the required storage space
and call the specific filter functions. The required processing
time

Time stamp counter is measured by reading the time stamp counter register before
and after the call to the filter function (see section 2.5).

When the users starts a test session, a dialog box is displayed in
which the user can select the filters to execute. When the image
processing is completed, another dialog box is displayed
containing the number of cycles per pixel and the number of
milliseconds for each of the applied filters.

3.2 RGB Color plane separation

3.2.1 The algorithm

The filters in the processing path (smooth, sharpen) will be
applied to each of the individual color planes. In the image
however, the pixels are stored in a 3x8 bits block, where the first
eight bits represent the Blue value, the middle eight Green and
the last eight Red.
For an easier and faster1 implementation of the filters, a function
is built that separates the three color planes, as well as its
complement, a function that merges the three planes.

3.2.2 The implementation

The implementation of the separate function is easy. A loop runs
through the array containing the image and puts of every group

1 Faster because memory reads are less cluttered up.

© 1998 Océ-Technologies B.V. 22 Using MMX for image processing

of three bytes the first byte in the Blue color plane array, the
second into the Green, and the third into Red color plane array.

C++ version only This function, which is written in C++, is used for the C++ as well
as for the MMX implementation of the processing path.
However, it is expected that the use of MMX technology will lead
to a performance improvement because an MMX
implementation can separate multiple color pixels parallel, where
the C++ implementation processes the pixels sequentially.

3.3 Adding borders

3.3.1 The algorithm

In section 3.4.3.5 and 3.5.3.5 it can be read that both the
Smooth and sharpen smooth and the sharpen filter require an image width which is a

multiple of eight. Since not all images have such a width, the
image width has to be extended.

On page 81 it can be seen that the MMX implementation of the
halftoning algorithm does not process all the border pixels. Both
on the left and the right a seven pixels wide column is not
completely processed. Therefore it has been decided to add two,
eight pixel wide borders to the left and right edge of the image.

The border adding function can be applied to the merged color
planes or to the separated color planes. Since the function that
separates the color planes does not require an image width
which is a multiple of eight, it has been chosen to apply the

Separated color planes border adding function to the three separated color planes.

3.3.2 The implementation

The implementation of the border adding function is not difficult.
Two loops are used to traverse the image; one to process the
image horizontally (the rows), another to process all the rows.

The inner loop, which processes one row, simply copies all the
pixels from the source array to the destination array. After all the
pixels from one row of the source image have been copied, a
number of pixels is added to reach an image width of 8n.
The two eight pixel wide borders which have to be added for the
halftoning algorithm are copied before respectively after the row
is copied.

MMX version only It has been chosen to implement this function with MMX
Technology for two reasons:
1. By using MMX eight pixels can be copied simultaneously,

compared to one of a C++ implementation.
2. This function is only used by the MMX version of the

processing path.

Since the implementation of this function is straightforward,
implementation details will not be discussed here.

© 1998 Océ-Technologies B.V. 23 Using MMX for image processing

3.4 The smooth algorithm

3.4.1 The algorithm

The smooth algorithm is used to suppress disturbances added to
a scanned image because of the non-ideal characteristics of
scanners. A scanner always adds some electronic noise to the
scanned image, and scanning of regular patterns, such as color
photos, can result in moiré like effects. A smoothing operation is
performed on the separated Red, Green and Blue planes of the
image to reduce these artefacts.

In Figure 10 the smooth filter is applied to the squared area.

Figure 10: Effect of a smooth operation

The smoothing operation is a low-pass filter. Its calculated by
Weighted mean replacing every pixel by a weighted mean of the pixels in the

surrounding. All calculations are performed on the original
pixels; the calculated values are written to a destination array. A
much used version of the smooth filter uses the 3x3 area printed
in Figure 11 to calculate a pixel. The pixel for which the new
value is calculated is the pixel in the middle (the one weighted
by 4/16). This is called the centerpixel.

1/16 2/16 1/16
2/16 4/16 2/16
1/16 2/16 1/16

Figure 11: Smoothing kernel

This kind of operation, where every pixel is replaced by a linear
Kernel operation combination of pixel in its neighbourhood is called a kernel-

operation.

3.4.2 C++ implementation

3.4.2.1 Traversing the image array

When implementing the smooth filter in C++ the most important
question is how to process the source image array (horizontal,
vertical or perhaps diagonal).

If a single byte (=one pixel) is read from memory, the Pentium
Cache line processor reads an entire cache line of 32 bytes into the level

one cache. When the image would be divided in a number of
one byte wide columns, it would be possible to run vertically
through the image. However, since each block of 2048 bytes has
the same cache set value1 and there are four cache lines
available for each of the set values, a point will be reached at

1 There are 128 cache lines of 32 bytes each. See section 2.4.4.

© 1998 Océ-Technologies B.V. 24 Using MMX for image processing

which the bytes previously read will be overwritten1. This means
that the bytes needed for the next one byte column have to be
read again from the slow main-memory.
When traversing the image array diagonally, of the 32 bytes
read into the level one cache, the same (small) number of bytes
would be used as when we would run vertically through the
array. Because at a certain point cache lines still needed are
overwritten, performance will be far from optimal.

Because traversing image array horizontally results in the most
Horizontal traversing efficient use of the level one cache, this way has been chosen.

The direction -from left to right or vice versa- has no influence
on the performance, so it has been decided to run from left to
right, since the bytes are stored in memory from left to right.

3.4.2.2 Re-using calculated values

Calculation of the new pixel value could be done in one single
calculation where all the pixel values are added (with their own
weight) and the sum is divided by 16.

Such an implementation will result in poor performance because
the kernel symmetry enables the calculation of row or column
(weighted) sums. Because we run from left to right through the
image, it is possible to calculate the weighted sum of each of

Three kernel columns the three kernel columns, add them and divide by 16.

By storing the sum of the rightmost column in a buffer the
number of uncached memory accesses can be reduced by
66%2. In the next loop cycle the previously buffered result can
be multiplied by two to calculate the weighted sum of the middle
column. One loop cycle later the value stored two cycles ago
can be used as the weighted sum of the left column of the
kernel.
The example in Figure 12 shows how the same column-result is
calculated three times when calculating three new pixel values.
Suppose at a certain moment the memory looks like shown in
Figure 12. Pixel ‘5’ is currently processed.

Memory: Kernel:
1 1 3 2 3 1 2 1
3 5 7 8 0 2 4 2
4 1 2 9 6 1 2 1

Column=3+2*7+2=19
Figure 12: Calculating the right kernel column

At the next iteration of the loop (when calculating the new value
for the ‘7’) the same column is used.

1 Since there are a source and destination array this will occur approximately after 2*2048=4096
byes have been read.
2 Assuming that the buffer is loaded into the level one cache, or placed in registers.

© 1998 Océ-Technologies B.V. 25 Using MMX for image processing

1 1 3 2 3
3 5 7 8 0
4 1 2 9 6

Column=2*3+4*7+2*2=38=2*19
Figure 13: Calculating the middle kernel column

The third time, when calculating the new value for the ‘8’, it looks
like shown in Figure 14.

1 1 3 2 3
3 5 7 8 0
4 1 2 9 6

Column=3+2*7+2=19
Figure 14: Calculating the left kernel column

3.4.2.3 The final C++ implementation

With this buffering implemented the filter loop final C++
implementation looks like shown in the pseudocode in Code
example 1. The buffer consists of two storage spaces, A and B.
The function Weighted_Sum calculates the (1, 2, 1) weighted
sum of the first three bytes of a column, each with the
appropriate weight.

Code example 1: C++ implementation of the smooth

Performance The performance of the code is discussed in section 3.4.4.7,
where it is compared to that of the MMX implementation.

3.4.3 MMX implementation

3.4.3.1 Parallelability of the algorithm

When implementing a filter with MMX Technology, the first
question to ask is:

“Is it possible to process pixels simultaneously ?”

Dst.Rows[0] = Src.Rows[0] // Copy top and bottom row
Dst.Rows[Height] = Src.Rows[Height]
RowCounter = 1
Do While (RowCounter < Height-1)

{
 Dst.Pixels[RowCounter,0] = Src.Pixels[RowCounter,0]
 A = Weighted_Sum(Src.Columns[0])
 B = Weighted_Sum(Src.Columns[1])
 ColCounter = 2
 Do While(ColCounter < Width-1)

{
 Temp=Weighted_Sum(Src.Columns[ColCounter])
 Dst.Pixels[RowCounter,ColCounter-1]=(A+2*B+Temp)/16

 A = B
 B = Temp
 ColCounter = ColCounter+1
}

Dst.Pixels[RowCounter,Width]=Src.Pixels[RowCounter,Width]
RowCounter = RowCounter+1
}

© 1998 Océ-Technologies B.V. 26 Using MMX for image processing

If not, using MMX will not improve performance because MMX’s
strength is the fact that it can perform an operation on multiple
pixels simultaneously.
The smooth filter applies a kernel to a number of pixels of an
image, resulting in the new pixel value. Since the output of the

Unlimited parallelability filter has no influence on the input, parallel processing of pixels
is possible without any limitations.

3.4.3.2 Pixel block width

Next it must be decided how many pixels can be processed
simultaneously. The answer to this question is basically provided
by the way the data to calculate one pixel is loaded into the
MMX registers. To understand this, it must be clear how the
pixels are

Pixels written sequentially stored in memory; the pixels of each row are written sequentially
from left to right. The first (=leftmost) pixel of the next row is
stored in memory right after the last (=rightmost) pixel of the row
last written. Thus, the pixels of the image shown in Figure 15 are
written in the same order as they are numbered; pixel ‘1’ is
stored on the lowest address in memory, pixel ‘80’ on the
highest. Pixel ‘21’ is stored one location higher than pixel ‘20’. As
a result of this, all the pixels of the top row are placed in
adjacent memory locations, and can be read with one MMX
memory read.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

Figure 15: Reading the source pixels

Thus when calculating the new value for pixel 22 the pixels of
the top kernel-row can be read by reading pixel 1 with an MMX
memory read. However, the MMX memory read loads eight
pixels (=bytes) from memory. This enables the calculation of six
pixels, 22 to 271, shown in the squared area. It is obvious that
this way of implementing the filter uses the memory bandwidth
more efficient than an implementation that calculates only one
pixel per loop cycle. But how many pixels should be processed
each loop
cycle ?

The answer to this question is provided by the number of data-
elements calculated in parallel. When processing packed bytes
eight bytes are processed parallel2. As far as the other data
types are concerned; four packed words or two packed double-
words can be processed parallel.
These considerations lead to the conclusion that it would be very
inefficient to process six pixels per loop cycle; such an
implementation only uses a part of the available processing
power.

Since the pixels are stored in memory as bytes it is obvious that
packed bytes are used for pixel calculations. This implies that

Eight pixels per loop cycle each loop cycle eight new pixels are calculated.

1 The kernel requires two extra -border- pixels.
2 Because a packed byte contains eight bytes.

© 1998 Océ-Technologies B.V. 27 Using MMX for image processing

3.4.3.3 Re-usage of calculated values

The choice made in section 3.4.3.2 does not determine how to
run through the image array. Although the example runs through
the image array vertically, it would also be possible to run
horizontally, as with the C++ implementation. The third
possibility is to run through the image diagonal.

Let us suppose the filter runs horizontally through the image
array. Data would then be processed as show in Figure 16; in the
first loop cycle the pixels 22-29 are calculated requiring the
grayed pixels of the source image. In the next loop cycle the
pixels 30-37 are calculated, requiring the squared area of the
source image.

Thus, when running horizontally through the image, only the
weighted sum of two columns can be re-used to calculate the
next group of pixels. Now suppose the loop runs through the
array vertically. The second cycle of the loop calculates the new
values for pixels 42- 49, requiring the squared area of the source
array in Figure 17.

1 2 3 4 5 6 7 8 9 10 11
21 22 23 24 25 26 27 28 29 30 31
41 42 43 44 45 46 47 48 49 50 51
61 62 63 64 65 66 67 68 69 70 71
81 82 83 84 85 86 87 88 89 90 91

Figure 17: Traversing the image array vertically

In this situation, the weighted sum of the row 21-30 and of the
row 41-50 can be re-used. The re-usage of two previously
calculated results is possible because the kernel is vertically
symmetric and because the middle row is a multiple of the
bottom row, as shown in Figure 18.

1 2 1
2 4 2
1 2 1

Figure 18: Smoothing kernel

The third option was to run through the image diagonal. Such an
implementation would result in poor performance because
calculated values could not be re-used efficiently.

From the previous it is clear that optimal usage of previously
calculated weighted sums can only be achieved when running

Vertical traversing vertically through the image array.

The values to be re-used have to be stored somewhere. If
registers would be used, this would require four1 of the eight

1 Four instead of two because the data has to be extended from bytes to words. The reasons it
has been decided to extend data from bytes to words are discussed later.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Figure 16: Traversing the image array horizontally

© 1998 Océ-Technologies B.V. 28 Using MMX for image processing

available MMX registers, leaving not enough registers free to do
the calculations. Thus, these values are stored in an array.
Because the array is accessed frequently, the data will always be
in the level one cache, allowing data to be read in one cycle.

3.4.3.4 Optimal image traversing

From the previous paragraph it is clear that as far as the re-
usage of calculated values is concerned the most efficient way
of processing the image would be by running vertically through
the image. But in the discussion of the C++ implementation1 it
was concluded that from the caches point of view, an optimal
implementation would run horizontally through the image.

An implementation that combines these two demands would run
vertically through the image to enable optimal re-usage of
calculated values, but would not overwrite cache lines still
needed. This can be achieved by running down until all the
cache

Cache lines filled lines are filled, instead of running down until the bottom of the
image. This way of running through the image is shown in Figure
19.

Since this way of processing the image promises optimal results
it has been chosen to implement the filter in this way.
A key issue in this implementation is the moment where all the
cache lines are filled. The level one cache consists of 512 lines
of 32 bytes each. When the loop runs down the image, each
loop cycle one cache line is filled2. This means that after running
256 lines3 down, the entire cache is filled. At this point, the filter
starts reading at the top of a new column. The number of rows to
run down before starting at the top of the next column is called
the

Row-set size row-set size.
If the rowsets are too small performance is decreased because
of the overhead. If the rowsets are too big cache lines needed
later are overwritten, reducing performance.

The optimal rowset size is further influenced by other data that is
read from memory. Because it is hard to predict the right rowset

1 See section 3.4.2.1.
2 When re-using the inner products only one 10 byte-wide row is needed to calculate 8 new
pixels.
3 512/2 because the source and destination both require cache space. The cache space used for
overhead (for example Windows NT) is neglected.

All the cache
lines are filled

Figure 19: Traversing the image array using rowsets

© 1998 Océ-Technologies B.V. 29 Using MMX for image processing

size, performance is tested with various rowset sizes. The results
of these tests are described in section 3.4.4.5.

3.4.3.5 Border pixels

When processing pixels like shown in section 3.4.3.4, the
leftmost, top and bottom pixels of the image require special
treatment, because the complete kernel can not be applied to
them. Either a special kernel for border pixels is created, or the
border pixels are not processed.

A kernel to apply to the left-border pixels is shown in Figure 20.

2/12 1/12
4/12 2/12
2/12 1/12

Figure 20: Smooth kernel for left-border pixels

The pixel weighted 4/12 in the kernel shown in Figure 20 is the
centerpixel. An additional difficulty when implementing special
border kernels is that instead if dividing by 16, a division by 12
has to be made. Because of the absence of a packed divide
instruction, the division by 12 is very complex (the division by 16
can be made by shifting three bits to the right). Instead of
dividing by 12 it is also possible to assign different weights to the
pixels to allow a division by 16.

Other algorithms, such as halftoning, add noise to the border of
the image, requiring a border to be cut off. Therefore it is
generally not necessary to pay special attention to the border
pixel. Because of the influence they have on their neighbour
pixels when the next filter is applied they are not skipped entirely

Copy border pixels (resulting in random values) but copied from the source image.
The top, bottom and leftmost pixels of the image are copied like
this, but a problem arises for the rightmost pixels. The
processing loop of the filter calculates eight new pixels
simultaneously. Since images will seldom have a width of
(8n+2)1 pixels, the source image will have to be extended
horizontally. At the end of the processing path, the border added
to the right of the image will have to be removed.

If the filter would be implemented this way, of each row a
number of pixels would be processed that would be deleted from
the image later anyway (on the right edge).
If the image width would be extended to a multiple of eight (8n),

Image width 8n the seven rightmost pixels would have to be copied. Because
the pixels are placed sequentially in the image array, the
leftmost pixel of the next row are placed in memory right after
the seven rightmost pixels of the previous, allowing the MMX
move instruction to copy all eight pixels with two instructions.
This requires half the time needed to copy a single leftmost and
rightmost pixel.

The top and bottom rows of the image are copied at the
beginning respectively the end of the processing loop.

1 Pixels are processed in 8 pixel wide groups (=8n), two border pixels are copied (=+2) resulting
in an image width of 8n+2.

© 1998 Océ-Technologies B.V. 30 Using MMX for image processing

Because the next filter function in the processing path (sharpen)
is similar to the smooth filter, an extra function that extends the
image width is created and called from the “FilterMmx” function.

3.4.4 The basic loop structure

The implementation of the basic loop structure designed in the
previous sections is shown in Code example 2.

Code example 2: The basic loop structure of the smooth

In the inner loop the actual processing is done. Each loop cycle
an eight pixel wide row is calculated, running down the image
array (thus forming an eight pixel wide column). The middle loop
(Do While (ColSetCounter > 0)) determines the number of those
columns horizontally processed.

The outer loop counts the number of rowsets to process. If the
number of rows left to process is less than the default number of
rows in a rowset (256) the default number is adjusted. At the end
of the next loop cycle, the ColCounter will be decreased to zero
and the filter will exit from the loop.

Avoid ‘if-then’ Note that the required ‘if-then’ would normally be programmed
with a compare instruction followed by a jump. However a
significant delay occurs if the jump is predicted incorrect1.

1 See section 2.4.2.

NrOfRowsInSet=256
NrOfColSets=Width/8
ColCounter = Height
Do While (ColCounter > 0)

{
 ColSetCounter=NrOfColSets
 Do While (ColSetCounter > 0)

{
 RowCounter= NrOfRowsInSet
 Do While (RowCounter > 0)

{
 Process_Pixels()

 RowCounter=RowCounter-1
 }
 ColSetCounter=ColSetCounter-1
}

 ColCounter = ColCounter-NrOfRowsInSet
 If (ColCounter < 256) Then

NrOfRowsInSet=ColCounter
}

© 1998 Océ-Technologies B.V. 31 Using MMX for image processing

3.4.4.1 Avoiding a jump

The jump can be avoided with the following trick; basically, the
Minimum minimum of the rowset-size and the number of rows left to

process has to be taken. Code example 3 takes the minimum of
ebx and eax, and places it in eax.

Code example 3: Minimum of eax and ebx

The first instruction determines the difference between ebx and
eax. If this difference is negative (eax > ebx) the carry-flag is
set, otherwise it is cleared. The next instruction copies the carry
bit to all bits of ecx, after which the ‘AND’ instruction masks the
calculated difference. If the difference was positive (ebx > eax)
the ‘AND’ instruction will clear ecx. If ebx was less than eax, ecx
will be loaded with the (either zero or negative) difference.
Finally, ecx is added to eax, causing eax to be decreased if ebx
was less. Note that the initial value in ebx is lost.

3.4.4.2 Register allocation

The next step in the implementation of the smooth filter is
determining the register allocation for calculating the new pixels.
Basically, all the pixels required to calculate a new pixel are
loaded into MMX registers in such a way that they can be added
each with its own weight, after which the result is divided by 16.
However, suppose a pixel in a gray plane like shown in Figure
21 is calculated.

Pixels: Kernel:
192 192 192 1 2 1
192 192 192 2 4 2
192 192 192 1 2 1

Figure 21: Calculating a pixel in a gray plane

When calculating the new pixel value for the grayed centerpixel,
a number of registers would be used, each containing one of the
source pixels. Next, each of the pixels would be multiplies width
its weight, one two or four. However, the pixels multiplied with a

Bytes saturate weight of two or four, would saturate to 255 because the
calculated values exceed the range of an unsigned byte (0 to
255), resulting in the calculation shown in [1] (the italic values
are saturated pixels).

new pixel =
4 192 4

16
128

× + × + =()255 255

In [2] the calculation without the saturation of the pixels is
shown.

new pixel =
4 192 + 4 192

16
× × × + × × =() ()2 1 4 192

192

sub ebx, eax
sbb ecx, ecx
and ecx, ebx
add eax, ecx

[1]

[2]

© 1998 Océ-Technologies B.V. 32 Using MMX for image processing

The two resulting pixels are shown1 in Figure 22.

128 192
Figure 22: Difference between pixel value 128 and 192

Obviously these changes are unacceptable. Besides this, it is
difficult to divide packed bytes because the packed shift, as well
as the packed multiply instruction do not operate on packed
bytes2. For these two reasons the pixels have to be extended

Extend to packed words from packed bytes to packed words before calculations can be
performed.

Suppose in the memory shown in Figure 23, the new value for
the squared pixels has to be calculated.

Image: Kernel:
01 02 03 04 05 06 07 08 1 2 1
11 12 13 14 15 16 17 18 2 4 2
21 22 23 24 25 26 27 28 1 2 1
31 32 33 34 35 36 37 38

Figure 23: Calculating four pixels

Instead of calculating the new pixel value immediately, first the
Kernel row weighted sum of each of the kernel rows will be calculated, after

which these will be added and divided by 16. To calculate the
weighted sum of the top row registers would be loaded as shown
in Figure 24. Register esi points to the memory location where
pixel 01 is stored.

The example in Figure 24 assumes that the source image esi
points to consists of words. Therefore the second instruction
reads from location esi+2. In the real implementation of the filter,
data will be read from memory as bytes, after which the data is
extended to words.

Reverse order Note that the pixels in the register are reverse ordered compared
to the pixels in memory. On Intel Architecture microprocessors
this is caused by the way data is copied from memory to a
register. The byte on the lower memory address is placed in the
least significant byte of the register. For more information on the
way data is copied see section 2.4.5.

Multiplying by two The third instruction shown (PSLLW = packed shift left logical
word) shifts the words in mm1 one bit to the left, thus multiplying

1 This is for one color plane .
2 With a workaround it is possible to shift bytes. This can be done by shifting words after which
the bits shifted out of the most- to the least significant byte of a word have to be masked out with
an and-instruction.

movq mm0, [esi] mm0= 04 03 02 01

movq mm1,[esi+2] mm1= 05 04 03 02

psllw mm1,1 mm1= 2x05 2x04 2x03 2x02

movq mm2,[esi+4] mm2= 06 05 04 03

paddusw mm0,mm1 mm0= 04+2x05 03+2x04 02+2x03 01+2x02

paddusw mm0,mm2 mm0= 04+2x05+06 03+2x04+05 02+2x03+04 01+2x02+03
Figure 24: Calculating the top row of the kernel

© 1998 Océ-Technologies B.V. 33 Using MMX for image processing

them by two. Care has to be taken not to use PSLLQ (= packed
shift left logical quadword), which will shift the entire 64-bit
register instead of the four packed words, resulting in incorrect
values. The two PADDUSW (= packed add unsigned words) add
the three weighted pixels, forming the result of the top row.

Bytes to words The extension of the bytes read from memory can be
implemented by using the PUNPCKLBW instruction (= Packed
UNPaCK Lower Byte to Word). This instruction merges the four
least significant bytes of two quadwords into one quadword, as
shown in Figure 25.

mm/m32 mm
A3 A2 A1 A0 B3 B2 B1 B0

A3 B3 A2 B2 A1 B1 A0 B0

mm
Figure 25: Unpack operation (PUNPCKLBW MM, MM/M32)

If the second register (mm/m32) is filled with zeros, the lower
four bytes of the first (mm) are extended from bytes to words.
The counterpart of the unpack is the pack instruction, which is
described in section 2.4.5.

After the extension of the bytes to words, two sets of four pixels
are processed. After they have been calculated, the new pixel
values have to be shrunk from packed words to packed bytes,
after which they can be written to memory. Instead of processing

Eight pixels per loop cycle each loop cycle eight pixels in two portions of four, it is also
possible to process one portion of four pixels. However, this was
not done because of two reasons:
1. Other algorithms that do not require the bytes to be

extended to words require an image width of 8n pixels so the
image width has to be extended anyway.

2. The sharpen filter, which is similar to the smooth, requires
an image width of 8n. It is preferred to keep the loop
structure of the sharpen and the smooth identical, because
only the kernels differ.

Processing each loop cycle multiple sets of pixels instead of one
is called ‘loop unrolling’. Loop unrolling is sometimes applied to
achieve better pairing rates (see section 2.4.2).

3.4.4.3 The inner loop structure

The register allocation described in section 3.4.4.2 results in the
inner loop structure shown in Code example 4. The code
resembles the Process_Pixels function in the pseudocode shown
in Code example 2on page 30. Register esi and edi point to the
lower-left pixels of the data-block required to process eight
pixels. esi points to the source array, edi to the destination. The
registers mm1 to mm7 are MMX registers, ResultBuffer is a four
quadword sized buffer used to store the weighted sums used
later.

© 1998 Océ-Technologies B.V. 34 Using MMX for image processing

 Code example 4: The inner loop structure of the smooth

3.4.4.4 Image size

Before the performance for various rowset sizes can be
determined, first the resolution of the images which will be
processed has to be determined. Figure 26 shows the relation
between the number of dots per inch (dpi) and the number of
pixels for two resolutions.

Note that each pixel requires 3 bytes, resulting in an image size
of 11.6 MB for the 200 dpi scan, and 26.1 MB for the 300 dpi
scan. The image size was the primary reason why it was chosen

//Least significant 4 pixels
mm1=ResultBuffer[0] //Upper row
mm2=Resultbuffer[3] //Middle row
mm2=ShiftLeft(mm2,1) //mm2=2*mm2
mm3=Read8Pixels(esi) //Lower row
mm3=UnpackData(mm3)

mm3=CalculateRow(mm3)
mm0=(mm1+mm2+mm3)/16 //Calc. new pixels

ResultBuffer[0]=ResultBuffer[3] //Shift buffer.
Resultbuffer[3]=mm3 //Store res. of lower row

//Most significant 4 pixels
mm1=ResultBuffer[1] //Upper row
mm2=Resultbuffer[4] //Middle row
mm2=ShiftLeft(mm2,1) //mm2=2*mm2
mm3=Read8Pixels(esi+4) //Lower row
mm3=UnpackData(mm3)

mm3=CalculateRow(mm3)
mm1=(mm1+mm2+mm3)/16 //Calc. new pixels

ResultBuffer[1]=ResultBuffer[4] //Shift buffer
Resultbuffer[4]=mm3 //Store res. of lower row

mm0=PackData(mm0,mm1)
Write8Pixels(edi+1)

8.27 inch

11.70 inch

1654 pixels

2340 pixels

3.87x106 pixels

2481 pixels

3510 pixels

8.71x106 pixels

200 dpi

300 dpi

A4A4

A4

Figure 26: Relation between the resolution and the image size

© 1998 Océ-Technologies B.V. 35 Using MMX for image processing

to use 200 dpi images instead of 300. If a 300 dpi image would
be used, the minimum amount of storage space to be allocated
by the program would be 52 MB1. On a PC with a total physical
memory of 64 MB this would lead to large portions of the image
being

Minimum physical memory swapped to and from the hard disk. Generally, the minimal size
of the physical memory should be about twice the size of the
image plus 25 MB, which is required for Windows NT.

The test image scanned at 200 dpi has a total pixel size of
1580x2176. This is smaller than expected because the scanner
removes 0,42 inch from the top and bottom edges, as well as

200 dpi: 10MB 0.19 inch from the left and right edge. The 200 dpi scan with the
borders cut of has a total size of 10 MB.

3.4.4.5 The optimal rowset size

Now the final code has been built and it has been decided which
resolution images will be processed, the optimal rowset size can
be determined.

150 dpi A4 Performance is measured for two different images, an A4
200 dpi scanned at 150 dpi, another scanned at 200 dpi resulting in a

resolution of 1210x1627 for the first image and 1580x2176 for
the second (both images with 16 million colors).The performance
for different rowset sizes is shown in Table 2 (in cycles per
processed pixel).

Rowset 1210x1627x16 milj 1580x2176x16 milj
size (cycles/pixel) (cycles/pixel)

1 48 50
2 35 37
4 29 31
8 26 28
16 24 26
32 23 25
48 23 25
64 23 25
96 23 33

128 29 34
256 29 34
512 35 40
1024 37 40
Table 2: Performance for various rowset sizes

For small rowset sizes performance is sub-optimal. After
reaching a minimum, the number of cycles per pixel increases.
The latter is caused by cache lines which are overwritten
although they are still needed. For rowset sizes which are a bit
too small performance decreases marginally. For very small
rowsets the performance is poor. This is caused by the overhead
required to process the rowsets.

The performance measurements for various rowset sizes clearly
show the influence of the image size on the optimal rowset size.

1 Assuming the source an destination array both require 26 MB.

© 1998 Océ-Technologies B.V. 36 Using MMX for image processing

The optimal rowset size seems to be determined by the size of
the level two cache and the image width in pixels1.
The test PC has a level two cache of 256 KB. Assuming that
both the source and destination array require 125 KB, the
optimal rowset size for the 200 dpi scan can be determined with
the

Calculated rowset size calculation shown in [3].

1
2 L2 cache size

Image width
 rows / rowset

× = × × =
1
2 256 1024

1580
83

Test results Tests show the optimal rowset size is between 32 and 64
rows/rowset (200 dpi scan). The reason the value calculated in
[3] results in a value slightly too large is that it ignores the
cache space used for other variables, as well as the cache space
used by Windows NT.
From the previous it can be concluded that the optimal rowset
size can be estimated be dividing half the level two cache size
by the image width (in pixels), but that the accurate size can only
be determined by measuring performance with various rowset
sizes.

Rowsets of 64 It has been decided to use a rowset size of 642, because this
size gives optimal performance for both 150 and 200 dpi (A4)
scans. For smaller images the performance will be sub-optimal.

38% faster by rowsets In Table 3 the performance improvement of an optimal rowset
implementation has also been compared to an implementation
that does not use rowsets (for the 150 dpi scan).

Without rowsets: 37 cycles/pixel
Rowsets of 64: 23 cycles/pixel
Improvement: 38 %

Table 3: Performance gain by using rowsets

3.4.4.6 Pairing the code

The final step in implementing the smooth filter is pairing the
code. Because most of the processing time required is used for
the inner loop, most attention is paid to the inner loop.

Re-order statements When pairing the code, program statements are re-ordered in
such a way that the CPU can execute two instructions parallel.
Care has to be taken not to switch related statements, since this
will cause the filter to malfunction.

3.4.4.7 Filter performance

After the code has been paired performance has been tested
again, resulting in the cycle times shown in Table 4. In this table
the performance of the paired version is compared to the
unpaired version3.

1 Not the image with in bytes, because the filter operates on the separated color planes. Each
pixel is represented with one byte in each color plane.
2 The final step in the implementation of the filter (pairing the code) has no influence on the
optimal rowset size because pairing only influences the code, which is loaded into a separate
code cache.
3 The improvement is calculated by dividing the difference in number of cycles/pixel by the new
number of cycles/pixel.

[3]

© 1998 Océ-Technologies B.V. 37 Using MMX for image processing

Image size Cycle times Improvement
unpaired paired

(pixels) (cycles/pixel) (cycles/pixel) (%)
290x509 23 20 15,0

1580x2176 25 19 31,6
Table 4: Performance improvement by pairing the code

The difference in performance improvement is caused by the
fact that for the larger image the memory bandwidth has more
influence on the performance than for the smaller image.
In Table 4 it can be seen that pairing the code improves
performance of the smooth operation on the 200 dpi A4 image

32% faster by paring with 32%.

In Table 5 the performance of the paired MMX code is compared
to that of the C++ code for several images.

The last two images are A4 pages scanned at 200 dpi. The
performance of the C++ implementation differs because the

Influence of clipping images differ; in the first image more clipping1 occurs than in the
second, thus requiring more calculations. The MMX
implementation has a constant performance because no ‘if-then’
is needed2 for clipping.

From Table 5 it can be concluded that the MMX implementation
MMX 5x faster than C++ is about a factor five faster than the C++ implementation.

Processing the scanned A4 images with the C++ implementation
requires 96 cycles/pixel (1.99 seconds). The MMX
implementation requires 19 cycles/pixel (0.39 seconds).

Small images Notice that the number of cycles/pixel decreases for smaller
images. This is caused by the fact that a (very) small image can
be kept entirely in the level one cache3. A slightly larger image
can still be kept into the level two cache, but the 200 dpi
scanned A4 images (of approximately 10 MB) can not.

Added border Because the MMX implementation of the processing path adds a
border to the image to extend the image width to a multiple of
eight (8n), performance will be optimal for images where the
extra pixels do not have to be added because the image width

1 If the pixel clips has to be tested with an “If-Then” statement.
2 See section 2.4.5.
3 It is loaded into the level one cache when performing the color plane separation.

Image size Cycle times Improvement
C++ version MMX version

(pixels) (cycles/pixel) (cycles/pixel) (%) (factor)
87x16 67 13 80,6 5,2
63x96 73 16 78,1 4,6
127x96 83 17 79,5 4,9

255x320 94 19 79,8 4,9
290x509 94 20 78,7 4,7
1580x32 89 19 78,7 4,7

1580x2176 (1) 96 19 80,2 5,1
1580x2176 (2) 95 19 80,0 5,0

Table 5: Performance of the smooth filter

© 1998 Océ-Technologies B.V. 38 Using MMX for image processing

already is 8n1. When implementing a complete processing path
using MMX technology, the width of the scanned image would
have to be chosen a multiple of eight.

Finally, a it must be remarked that the number of cycles/pixel
discussed will differ if the code is run on a system with a
different

Different CPU speed CPU clock speed. This is caused by the fact that the time
required to read data from memory is constant, while the cycle
time changes. Thus for a CPU with a higher clock speed, the
number of cycles/pixel will increase.

3.4.4.8 Categorising the processing time

In Figure 27 the processing time required for the inner loop of
the unpaired smooth filter is shown categorised into five
categories:
1. Read pixels
2. Buffer (management)
3. Write pixels
4. Calculate
5. Overhead

Cycle count method If two instructions pair both are counted as using cycles.
Alternative counting methods for paired instructions are:
1. Count both half; when counting this way, a one cycle add

instruction pairing with a ten cycle memory move, is counted
as a five cycle instruction.

2. If both instructions take the same amount of cycles, count
both half. Otherwise count the one taking most cycles. Since
memory accesses are often paired with arithmetic
instructions, this way of counting cycles favours the
arithmetic instructions.

3. Weigh each instructions cycles with its proportion to the total
number of cycles the pair takes.

The first two alternatives give a wrong impression of the partition
of the cycle times. The third is the best way of counting the cycle
times, but takes a lot of time to be applied. When counting all
instructions (with a pairing rate of 100%) the total number of
cycles will be twice the amount when counted according to
method three, but the partitioning of the processing time will be
the same. Therefore this method of counting the cycle times has
been chosen.

For 200 dpi A4 The processing time is measured for an A4 image scanned at
200 dpi. However, not the entire image is processed because it
would take VTune a number of days to do this.

1 When calculating the number of cycles/pixel the total number of cycles is devided by the
number of pixels in the original image.

© 1998 Océ-Technologies B.V. 39 Using MMX for image processing

Figure 27 shows that only half of the processing time is required
40% memory for calculations. More than 40% of the processing time is needed

for memory related operations (buffer management, read and
51% calculations write pixels). 51% of the processing time is required for

calculations.

In Figure 28 the processing time categorised per instruction type
is shown. The cycle times are counted in the same way as in
Figure 27. Notice that the amount of time used for move

Read pixels
17%

Buffer
18%

Write pixels
7%

Calculate
51%

Overhead
7%

Figure 27: Categorised processing time of the smooth

Arithmetic
20%

Comparison
0%

Conversion
13%

Logical
0%

Shift
18%

Move
49%

Figure 28: Processing time per instruction type

© 1998 Océ-Technologies B.V. 40 Using MMX for image processing

operations (including memory moves) is about the same as the
amount of memory related operations in Figure 27.

Figure 28 shows that only 20% of the processing time is used for
arithmetic instructions. When taking in account that some of
these are required for the overhead, this is surprisingly low
compared to the 51% required for calculations in Figure 27.
When adding the processing time of the conversion and shift
instructions1 however, this value2 is also reached.

3.5 The sharpen algorithm

3.5.1 The algorithm

During the smooth operation discussed in the previous chapter,
sharp edges are blurred. This is unwanted for text and other
sharp object. This effect is compensated by enhancing the edges
using a sharpen operation. Thus, after performing a smooth and
a sharpen the scanner interference is suppressed, but edges are
still sharp.

In Figure 29 the sharpen filter is applied to the squared area.

Figure 29: Effect of sharpening

The sharpen operation is implemented as a 3x3 kernel
operation, with the coefficients shown in Figure 30.

-1/4 -1/4
8/4

-1/4 -1/4
Figure 30: Sharpening kernel

3.5.2 C++ implementation

3.5.2.1 Traversing the image array

Basically the only difference between the smooth and the
sharpen filter is that other coefficients are applied. Therefore the
loop structure of the C++ implementation of both filters is

Horizontal traversing identical. Thus the loop runs horizontally from left to right
through the image.

1 These instructions are counted as calculate-instructions in Figure 27 because they are
necessary to enable the calculations.
2 20%+18%+13% = 51%

© 1998 Océ-Technologies B.V. 41 Using MMX for image processing

3.5.2.2 Re-using calculated values

The limited kernel symmetry allows re-usage of calculated
values only for the left and right column of the kernel. A
calculated weighted sum of the right row can not be used in the
next loop cycle, but in the loop cycle after that. This requires a
buffer.

3.5.2.3 Clipping

The negative values of the kernel can cause the new pixel value
to be negative (if the centerpixel is zero and the other pixels are

Negative pixels not). Negative pixels are invalid and should be corrected to
zero1.
Now suppose the center-source-pixel is 255, while the other
pixels are all zero. The new pixel value calculated will be 510
(255*8/4). This value is too large and should be corrected to 255.
The described adjustment of a pixel value because it exceeds
the pixels upper or lower limit is called clipping.

Clipping requires the value of the calculated pixel to be tested,
and if necessary, adjusted. Normally, this would be done in the
way shown in Code example 5.

Code example 5: Non-optimised clipping code

This will result in non optimal performance because the compiler
will translate this using four jumps2 (one for each ‘if’, one for
each ‘else’). The code in Code example 6 uses three jumps.

Code example 6: Optimised clipping
code

Optimised clipping code This version of the clipping code will use less time because it
contains less jumps; a jump which is mispredicted requires a lot
of time because the pipeline has to be reloaded (see section
2.4.2).

3.5.2.4 The final C++ implementation

Taking the issues described in the previous sections in account,
the final structure of the C++ implementation of the sharpen filter
is shown in Code example 7.

1 If a pixels value exceeds the upper limit (255) the pixel should be saturated to 255.
2 With the compiler option for optimisation set to off.

If (New_Pixel < 0) Then
 ImageArray[Row,Col]=0
Else If (New_Pixel > 255) Then
 ImageArray[Row,Col]=255
Else
 ImageArray[Row,Col]=New_Pixel

ImageArray[Row,Col]=New_Pixel
If (New_Pixel < 0) Then
 ImageArray[Row,Col]=0
Else If (New_Pixel > 255) Then
 ImageArray[Row,Col]=255

© 1998 Océ-Technologies B.V. 42 Using MMX for image processing

Code example 7: C++ implementation of the sharpen

Performance The performance of the code is discussed in section 3.5.3.11,
where it is compared to that of the MMX implementation.

3.5.3 MMX implementation

3.5.3.1 Parallelability of the algorithm

Similar to the smooth filter, there are no limitations as far as the
parallelability of the sharpen filter is concerned.

3.5.3.2 Pixel block width

Next it has to be decided how many pixels to process in parallel.
This is determined by the number of data elements processed
parallel; eight packed bytes, four packed words or two packed
double-words.

Smooth filter The smooth filter read pixels as packed bytes from memory,
after which they are extended to packed words for accuracy
reasons. Each loop cycle eight new pixels are calculated.
Because the ten-pixel wide rows of input pixels required to
calculate eight new pixel values have to be read with two MMX
memory reads. Besides this the pixels have to be extended to
packed words (see section 3.4.4.2). Therefore instead of
calculating eight pixels per loop cycle, the smooth filter could
also be implemented calculating four pixels per loop cycle.

Sharpen filter Now, lets look at the input pixels required for the sharpen
algorithm to calculate eight new pixels. In Figure 32 the new
values for the pixels 22 to 29 are calculated, requiring input from
the grayed area.

-1/4 -1/4
8/4

Dst.Rows[0] = Src.Rows[0] // Copy top and bottom row
Dst.Rows[Height] = Src.Rows[Height]
RowCounter = 1
Do While (RowCounter < Height-1)

{
 Dst.Pixels[RowCounter,0] = Src.Pixels[RowCounter,0]
 A = Src.Pixels[RowCounter-1,0] + Src.Pixels[RowCounter+1,0]
 B = Src.Pixels[RowCounter-1,1] + Src.Pixels[RowCounter+1,1]
 ColCounter = 1
 Do While(ColCounter < Width-1)

{
 Temp=Src.Pixels[RowCounter-1,ColCounter+1] +

Src.Pixels[RowCounter+1,ColCounter+1]
 New_Pixel=(-A+8*Src.Pixels[ColCounter,RowCounter]-Temp)/4

 Dst.Pixels[RowCounter,ColCounter]=New_Pixel
 If (New_Pixel < 0) Then

Dst.Pixels[RowCounter, ColCounter]=0
 Else If (New_Pixel > 255) Then

Dst.Pixels[RowCounter, ColCounter]=255

 A = B //Shift buffer contents
 B = Temp
 ColCounter = ColCounter+1
}

 Dst.Pixels[RowCounter,Width]=Src.Pixels[RowCounter,Width]
 RowCounter = RowCounter+1
}

© 1998 Océ-Technologies B.V. 43 Using MMX for image processing

-1/4 -1/4
Figure 31: Sharpening kernel

1 2 3 4 5 6 7 8 9 10 11 12
21 22 23 24 25 26 27 28 29 30 31 32
41 42 43 44 45 46 47 48 49 50 51 52
61 62 63 64 65 66 67 68 69 70 71 72

Figure 32: Source pixels for the sharpen algorithm

Notice that the pixels 21 and 30, are not used for the calculation
of 22-29. This is caused by the fact that the kernel does not use
the pixel to the left and the pixel to the right of the centerpixel of
the kernel.

Similar to the smooth, the sharpen requires ten pixels of the top
and bottom row. But for the middle row only eight pixels are
needed. These pixels can be read with one MMX memory read,
instead of two for the top and bottom row (each).
If the filter processes eight pixels per loop cycle five memory
reads are required to calculate eight pixels. When processing
four pixels per loop cycle, three reads are required for four pixels
(=six reads for eight pixels).

Because a memory access requires relatively many cycles, it
Eight pixels per loop cycle has been decided to process eight pixels per loop cycle.

3.5.3.3 Re-usage of calculated values

Suppose the image is traversed vertically, and that the total
calculation is split into three calculations (one for each of the
kernel-rows). The calculated values for the bottom row can then
be stored to be used for the top row in the loop cycle after the
next loop cycle, like shown in the following example, with the
image shown in Figure 34 (the sharpen kernel is shown in Figure
33).

-1 -1
8

-1 -1
Figure 33: Sharpen kernel

1 2 3 4 5 6 7 8 9 10 11
21 22 23 24 25 26 27 28 29 30 31
41 42 43 44 45 46 47 48 49 50 51
61 62 63 64 65 66 67 68 69 70 71
81 82 83 84 85 86 87 88 89 90 91

101 102 103 104 105 106 107 108 109 110 111
Figure 34: The intermediate result of the bottom row

For each of the three image rows the intermediate result of the
kernel coefficients can be calculated. In the next loop cycle the
pixels 42 to 49 are calculated.

© 1998 Océ-Technologies B.V. 44 Using MMX for image processing

1 2 3 4 5 6 7 8 9 10 11
21 22 23 24 25 26 27 28 29 30 31
41 42 43 44 45 46 47 48 49 50 51
61 62 63 64 65 66 67 68 69 70 71
81 82 83 84 85 86 87 88 89 90 91

101 102 103 104 105 106 107 108 109 110 111
Figure 35: The middle row

Because the middle row of the kernel is completely different than
the bottom row, the intermediate result of the bottom row cannot
be re-used. In the next loop cycle however, the stored
intermediate result can be re-used for the top row.

1 2 3 4 5 6 7 8 9 10 11
21 22 23 24 25 26 27 28 29 30 31
41 42 43 44 45 46 47 48 49 50 51
61 62 63 64 65 66 67 68 69 70 71
81 82 83 84 85 86 87 88 89 90 91

101 102 103 104 105 106 107 108 109 110 111
Figure 36: Re-using the bottom row

Obviously re-using calculated values in this way is only possible
Vertical traversing when running vertically through the image. If the image is

traversed horizontally, only the two rightmost edge values can
be re-used, similar to the smooth algorithm (see section 3.4.3.3).

3.5.3.4 Optimal image traversing

The fact that the re-usage of calculated values only is possible
when running vertically through the image, combined with the
cache related factors described in section 3.4.2.1 leads to the
conclusion that optimal image traversing can be reached by

Using rowsets using rowsets in the same way as with the smooth filter (see
section 3.4.3.4).

The optimal rowset size has to be determined again, because
the way the sharpen filter reads the data is slightly different than
the way the smooth does. After the sharpen filter has been
implemented completely the optimal rowset size is determined
(see section 3.5.3.9).

3.5.3.5 Border pixels

Similar to the smooth, the sharpen algorithm requires special
treatment of border pixels. For example, the left-border pixels
would has to be calculated with the kernel shown in Figure 37.

-1/6
8/6

-1/6
Figure 37: Kernel for left-border pixels

Because a border of the image is cut off anyway it is decided to
skip the border pixels (top-, bottom-, left- and right edge).

With the smooth filters MMX implementation it was decided to
extend the image’s width to a multiple of eight (=8n)1. Not

1 See section 3.4.3.5.

© 1998 Océ-Technologies B.V. 45 Using MMX for image processing

surprisingly, this is an optimal width for the sharpen filter too.
Because the pixels are calculated in groups of eight, one MMX

Copy borders memory move can be used to copy one pixel of the left border
as well as seven pixels of the right border.

3.5.3.6 The basic loop structure

From the previous section it is clear that the loop structure used
for the smooth filter can be used also for the sharpen filter, as
shown in Code example 8.

Code example 8: The basic loop structure of the sharpen

The number of rows in a rowset temporarily is set to 256. After
the filter has been fully implemented the optimal rowset size has
to be determined (section 3.5.3.9).

Avoiding ‘if-then’ The jump normally required for the ‘if-then’ at the end of the
outer loop can be avoided as described in section 3.4.4.1.

3.5.3.7 Register allocation

Next the register allocation has to be determined. Basically, all
the pixels needed to calculate a new pixel are loaded into MMX
registers. After the centerpixels are multiplied with their weight
(8) the four pixels of the upper and lower corners are subtracted.
Finally the result is divided by four.

Now consider a pixel in a white plane like shown in Figure 38 is
calculated.

Pixels: Kernel:
255 255 255 -1 -1
255 255 255 8
255 255 255 -1 -1

Figure 38: Calculating a pixel in a white plane

Suppose the new pixel value is calculated using packed bytes.
Signed packed bytes are required because of the subtraction of
the corner-pixels, resulting in a range of -128 to +127. The
calculation of the new pixel is shown in [4] (saturated values
are italic).

NrOfRowsInSet=256
NrOfColSets=Width/8
ColCounter = Height
Do While (ColCounter > 0)

{
 ColSetCounter=NrOfColSets
 Do While (ColSetCounter > 0)

{
 RowCounter= NrOfRowsInSet
 Do While (RowCounter > 0)

{
 Process_Pixels()

 RowCounter=RowCounter-1
 }
 ColSetCounter=ColSetCounter-1
}

 ColCounter = ColCounter-NrOfRowsInSet
 If (ColCounter < 256) Then

NrOfRowsInSet=ColCounter
}

[4]

© 1998 Océ-Technologies B.V. 46 Using MMX for image processing

new pixel (clipped)= − − + − − = − =255 255 255 255
4

191
255

0

Bytes saturate After the multiplication with eight the centerpixel saturates to
255. In [4] the corner pixels are subtracted unsigned with
saturation, leading to the result shown1. Because negative pixels
are not allowed, this value has to be clipped to 0 (see section
3.5.2.3).

The calculation without the (unwanted) saturation is shown in
[5].

new pixel =
− − + × − − =255 255 8 255 255 255

4
255

()

The two resulting pixels are shown in Figure 39.

 0 255
Figure 39: Difference between pixel value 0 and 255

Because these changes are unacceptable it has been decided to
extend the packed unsigned bytes of the source image to
packed

Packed signed words signed words before performing calculations.

Suppose with the memory shown in Figure 40 the new values for
the pixels 12 to 15 have to be calculated.

Image: Kernel:
01 02 03 04 05 06 07 08 09 -1 -1
11 12 13 14 15 16 17 18 19 8
21 22 23 24 25 26 27 28 29 -1 -1
31 32 33 34 35 36 37 38 39

Figure 40: Calculating four pixels

The calculation is divided into four parts; one part for each row,
and a fifth to merge the three rows. The example in Figure 41

Top kernel row shows how the intermediate result for the top row is calculated.
Similar to the smooth, register esi points to the source array.

movq mm0, [esi] mm0= 04 03 02 01

movq mm1[esi+4] mm1= 06 05 04 03

paddusw mm0,mm1 mm0= 04+06 03+05 02+04 01+03

Figure 41: Calculating an intermediate result

The example assumes the pixels are written in the array as
signed words; in the real implementation the pixels are written as
unsigned bytes. The second instruction then reads data from
(esi+2) instead of (esi+4).

Notice that the pixels are reverse ordered compared to the pixels
in memory. This is caused by the way multi-byte data is read
from memory in Intel Architecture microprocessors (see section
2.4.5).

1 Other implementation of the calculation have been investigated, but they all produce incorrect
results.

[5]

© 1998 Océ-Technologies B.V. 47 Using MMX for image processing

In the same way like shown in Figure 41 the intermediate values
Merge kernel rows for the bottom row is calculated. The code in Figure 42 merges

the three intermediate results, and writes the resulting pixels.
The intermediate results are assumed to be loaded into mm0
(top-), mm1 (middle-) and mm2 (bottom row). In the final
implementation the top row’s intermediate value is re-used from
the bottom row of previous pixels.

Next, the value in mm1 has to be divided by four to complete
the operation. This is done with the instruction ‘PSRAW MM1, 2’
(Packed Shift Right Arithmetic Words) which shifts the words in
mm1 two bits to the right. A common mistake is that instead of

Arithmetic vs. logical shift the arithmetic shift the logical shift instruction is used. For
negative values this will produce incorrect results because then
the (leftmost) sign-bit is also shifted, as illustrated in the
example in Figure 43 where a byte is shifted.

Binary Decimal
Start value: 11111100 -4
After shift right logical 1 bit: 01111110 129
After shift right arithmetic 1 bit: 11111110 -2

Figure 43: Shift logical vs. shift arithmetic

Notice that the logical shift inserts zeroes at the left side of the
byte, while the arithmetic shift inserts the sign bit.

Similar to the smooth, the extension from packed bytes to
packed words is done with the PUNPCKLBW (Packed UNPaCK
Lower Bytes to Words) instruction.

3.5.3.8 The inner loop structure

The previous section describes how four pixels are calculated
with input from packed words. In the final implementation the
input pixels are read as packed bytes, and each loop cycle eight
pixels are calculated.

This results in the inner loop pseudocode shown in Code
example 9. This code resembles the Process_Pixels function in
the pseudocode shown on page 45.

mm0= 04+06 03+05 02+04 01+03

mm1= 15 14 13 12

mm2= 24+26 23+25 22+24 21+23

psubw mm1,mm0 mm1= -04-06+15 -03-05+14 -02-04+13 -01-03+12

psubw mm1,mm2 mm1= -04-06+15-24-26 -03-05+14-23-25 -02-04+13-22-24 -01-03+12-21-23
Figure 42: Merging the three intermediate results

© 1998 Océ-Technologies B.V. 48 Using MMX for image processing

Code example 9: Inner loop structure of the sharpen

In the pseudocode in Code example 9 register esi points to the
source array; edi points to the destination array like shown in
Figure 44.

1 2 3 4 5 6 7 8 9 10 11 12
21 22 23 24 25 26 27 28 29 30 31 32
41 42 43 44 45 46 47 48 49 50 51 52
61 62 63 64 65 66 67 68 69 70 71 72

esi / edi
Figure 44: Pointer positioning

Notice that in the pseudocode no statements are placed to
Automatic clipping perform clipping of pixels whose values lie outside the range 0 to

255. This code can be omitted because the pack instruction used
to pack the two packed words into a packed byte automatically
clips the pixels1. This is a huge advantage compared to the C++
implementation, because the ‘if-then’ required there consumes a
lot of processing time.

3.5.3.9 The optimal rowset size

In section 3.5.3.4 it was decided to use rowsets for optimal
image traversing. Now the entire filter has been implemented the
optimal rowset size has to be determined. Performance is
measured for two A4 images; the first scanned at 150 dpi, the
second at 200.

1 See section 2.4.5.

//Least significant 4 pixels
mm1=ResultBuffer[0] //Upper row
mm2=Read8Pixels(esi+1) //Middle row
mm6=mm2 //Copy
mm2=UnpackData(mm2)
mm3=Read8Pixels(esi+Width)//Lower row
mm3=UnpackData(mm3)

mm3=CalculateRow(mm3)
mm0=(8*mm2-mm1-mm3)/4 //Calc. new pixels

ResultBuffer[0]=ResultBuffer[3] //Shift buffer.
Resultbuffer[3]=mm3 //Store res. of lower row

//Most significant 4 pixels
mm1=ResultBuffer[1] //Upper row
mm2=UnpackData(mm2) //Middle row
mm3=Read8Pixels(esi+Width+2)//Lower row
mm3=UnpackData(mm3)

mm3=CalculateRow(mm3)
mm1=(8*mm2-mm1-mm3)/4 //Calc. new pixels

ResultBuffer[1]=ResultBuffer[4] //Shift buffer
Resultbuffer[4]=mm3 //Store res. of lower row

mm0=PackData(mm0,mm1)
Write8Pixels(edi+1)

© 1998 Océ-Technologies B.V. 49 Using MMX for image processing

Row set 1210x1627x16 milj 1580x2176x16 milj
size (cycles/pixel) (cycles/pixel)

1 44 45
2 35 37
4 31 33
8 30 31
16 28 29
32 28 29
48 28 29
64 27 29
96 27 36

128 33 37
256 34 37
512 37 41
1024 38 41

Table 6: Sharpen performance for various rowset sizes

Notice that the range of optimal rowset sizes is much larger as
with the smooth filter1.
For the reference image of 200 dpi (right column) the optimal
rowset size is between 16 and 64. Because smaller images, such
as shown in the left column, seem to prefer larger rowset sizes, it

Rowsets of 64 has been chosen to use rowsets of 64.

It is expected that for images much smaller than the 200 dpi A4
scan performance will be far from optimal, because the 150 dpi
already shows optimal performance with 64 rows/rowset.

3.5.3.10 Performance gain caused by re-using results

Before paring the code it was measured if the re-using results
causes a performance improvement. It appeared that re-using

26% gain by re-using results causes a performance improvement of 26% for the
sharpen algorithm. Since the smooth kernel is symmetrical,
there the performance gain will be even more.

3.5.3.11 Filter performance

After the inner loop of the filter has been paired, performance is
compared to that of the unpaired code. The results are shown in
Table 7.

Image size Cycle times Improvement
unpaired paired

(pixels) (cycles/pixel) (cycles/pixel) (%)
290x509 27 20 25,9

1580x2176 29 20 31,0
Table 7: Performance gain caused by pairing

31% gain by pairing In Table 7 it can be seen that pairing improves the performance
of the sharpen filter significantly. The improvement for the 200
dpi A4 is 31%. This is slightly less than for the smooth filter
because the amount of (unpairable) memory accesses of the
sharpen is higher.

In Table 8 the performance of the paired version is compared to
that of the C++ version for several images.

1 See section 3.4.4.5.

© 1998 Océ-Technologies B.V. 50 Using MMX for image processing

Image size Cycle times Improvement
C++ version MMX version

(pixels) (cycles/pixel) (cycles/pixel) (%) (factor)
87x16 55 12 78,2 4,6
63x96 63 16 74,6 3,9

127x96 75 18 76,0 4,2
255x320 85 19 77,6 4,5
290x509 88 20 77,3 4,4
1580x32 83 18 78,3 4,6

1580x2176 (1) 90 20 77,8 4,5
1580x2176 (2) 88 20 77,3 4,4

Table 8: Performance of the sharpen algorithm

The lower two images are A4 images scanned at 200 dpi. The
difference between the cycle times is caused by the fact that in
the first image more clipping1 occurs than in the second. In the
C++ implementation this causes a slight performance reduction
because of the additional code processed.

From Table 8 it can be concluded that the MMX implementation
is

MMX 4x faster than C++ about a factor 4.4 faster that the C++ implementation.
Processing 200 dpi A4 images with the C++ implementation
takes 90 cycles/pixel (1.86 seconds. The MMX implementation
requires 20 cycles/pixel (0.41 seconds).

Similar to the smooth, the number of cycles/pixel for the sharpen
generally decreases when processing smaller images. As
discussed in section 3.4.4.7 this is caused by caching effects.

Borders Performance of the MMX implementation could be increased
with 0.5%(2) by removing the function that increases the width of
the image to a multiple of eight. Note that such a version of the
processing path can only process image with a width of a
multiple of eight.

3.5.3.12 Categorising the processing time

Figure 45 shows the categorised processing time of the sharpen
algorithm. The cycle times are counted in the same way as for
the smooth filter3.

Notice that, compared to the smooth filter4, less time is required
43% calculations for calculations (43% vs. 51%) this is caused by the fact that the

sharpen kernel requires less calculations. The time required to
read the pixels has increased from 17% to 26% because the
sharpen filter requires the middle kernel row to be read form the
source image, whereas the smooth filter can re-use the bottom
kernel row. Because of this the time required for memory

49% memory operations has increased to 49%(5).

1 See section 3.5.2.3.
2 8 / 1580*100%.
3 See section 3.4.4.8.
4 See Figure 27.
5 26%+15%+8% = 49%

© 1998 Océ-Technologies B.V. 51 Using MMX for image processing

In Figure 46 the processing time usage is shown categorised
according to the instruction type. This chart also shows that the
number of memory operations has increased.

Read pixels
26%

Buffer
15%

Write pixels
8%

Calculate
43%

Overhead
8%

Figure 45: Categorised processing time of the sharpen

Arithmetic
16%

Comparison
0%

Conversion
14%

Logical
0%

Shift
12%

Move
58%

Figure 46: Processing time per instruction type

© 1998 Océ-Technologies B.V. 52 Using MMX for image processing

3.6 RGB to CMYK conversion

3.6.1 The algorithm

3.6.1.1 The basic conversion

After the smoothing and sharpening the image has to be
prepared for printing. This is primarily done by the halftoning
algorithm discussed in section 3.7.

Prepare for halftoning Before the halftoning algorithm can be applied the image has to
be converted from the RGB color representation to the CMYK1

representation. This is necessary for two reasons:
1. Print engines print from the CMYK2 color domain.
2. When halftoning RGB images around black areas, such as

black text, color is created.

Complement Since the CMYK color representation basically is the
complement of the RGB representation, the corresponding
CMYK value can be calculated from an RGB value.

This calculation is performed in three steps:
1. Cyan = 255-Red.

Magenta = 255-Green
Yellow = 255-Blue

2. Black = Min(Cyan, Magenta, Yellow)
3. Cyan = Cyan-Black

Magenta = Magenta-Black
Yellow = Yellow-Black

3.6.1.2 The interpolation

The conversion described in section 3.6.1.1 is not used in Océ
processing paths. Instead the conversion is performed by using

Lookup table a 3D lookup table. The RGB values are used to determine the
position in the table from where the CMYK value can be read.

Corrections The conversion is performed this way to enable corrections in
the processing path. These correction are required to correct the
non-linear toner characteristics.

Unfortunately, if all RGB values would be placed in the lookup
table, it would have a size of 64 MB3. Since this is much too
large, the table is made smaller by placing every eighth R, G
and B entry on the axis’, instead of all R, G and B values.

Since most CMYK values cannot be read directly from the table
3D interpolation a 3D interpolation has to be performed. Figure 47 and [6] show

how this interpolation is performed. The value of point x is
calculated by weighed adding the eight angular points that lie
around it. The weights are represented by three fractions α, β
and γ. If the interpolated point lies at angular point zero for
example, α, β and γ are zero. In [6] all except point zero will be
weighed zero and x will have the same value as point zero.

1 Cyan, Magenta, Yellow, Black.
2 See section 2.1.2.2.
3 256*256*256*4 = 67,108,864 B = 64MB.

© 1998 Océ-Technologies B.V. 53 Using MMX for image processing

0

2

1

5
3

76

4
x

α
β

γ

Figure 47: 3D interpolation

X f
f

f
f

f
f

f
f

≈ − − − ⋅
+ ⋅ − − ⋅
+ − ⋅ ⋅ − ⋅
+ ⋅ ⋅ − ⋅
+ − − ⋅ ⋅
+ ⋅ − ⋅ ⋅
+ − ⋅ ⋅ ⋅
+ ⋅ ⋅ ⋅

()()() ()
()() ()

() () ()
() ()

()() ()
() ()

() ()
()

1 1 1 0
1 1 1

1 1 2
1 3

1 1 4
1 5

1 6
7

α β γ
α β γ
α β γ
α β γ
α β γ
α β γ
α β γ
α β γ

3.6.2 C++ implementation

3.6.2.1 Traversing the image arrays

The first question to ask when implementing the conversion is
how to traverse the image array(s). Since none of the directions
offers special advantages (such as the re-use of intermediate
results) the direction that uses the caches optimally can be
chosen. Based on the arguments described in section 3.4.3.4

Horizontal traversing the horizontal direction is chosen. This way of traversing the
image can be implemented with one loop.

Since the input of the conversion function consists of three RGB
arrays and the output of four CMYK arrays, a total of seven
arrays have to be processed. Obviously, all the arrays are
traversed in the same way.

3.6.2.2 Reading the lookup table

3D lookup table The three dimensional lookup table can be stored in memory in
two ways:
1. As a three dimensional array containing 32 bit values (each

containing the packed CMYK value. To be able to read the
individual values the 32 bit quantity is copied into an array of
four bytes.

2. As a four dimensional array. This way the fourth dimension
can be used to select the individual color components of the
angular points.

A disadvantage of the first method is that the 32 bit quantity
Copy 32 bit value must be copied into an array of four bytes. A disadvantage of the

second is that an additional multiply operation, which costs many
cycles, is used by the compiler to calculate the address of the

[6]

© 1998 Océ-Technologies B.V. 54 Using MMX for image processing

element1. Since a multiply operation is a very time consuming
operation the first method of storing the lookup table is chosen,
but both methods seem to require about the same amount of
time.

Another method of addressing the color components in the
lookup table is overlaying the lookup table with an array of four
bytes. This method seems to be the most elegant one, but the
required pointer manipulation will cost the same amount of time
as needed to copy the 32 bit value to another array (the pointer
is also stored as a 32 bit variable in the memory).

3.6.2.3 Implementation of the interpolation

Basically the interpolation can be devided into:
1. Calculate the fractions (α, β, γ) that determine the weight of

the eight angular points.
2. Multiply each of the angular points values with its appropriate

weight for all four color planes.
3. Add the eight weighted angular points.

Fractions α, β and γ The fractions α, β and γ would normally have a value between
zero and one. These values would be calculated by dividing the
distance from point zero (which is zero to seven) by eight (the
distance between two R, G, or B entries in the lookup table).
To avoid rounding errors the division by eight is performed after
each points’ values have been multiplied with the distance to
point zero. Obviously, fractions like (1-α) should be converted to
(8-α).

Multiply operations Since multiply operations required require much more cycles
(10) than other operations, it is important to keep the number of
multiplies as low as possible.
When implementing the interpolation straightforward, 21
multiplies are required (see [6]). If the gammas are ignored, the
weights of the points zero to three are the same as the weights
of the points four to seven (see [7]). Computing these four
different weights requires four2 multiplies. After the points zero to
three have been weighed (four multiplies), the sum of those
values is multiplied with 8-gamma.

Re-using weights Since the alpha and beta weights of point zero to three can be
re-used to weigh the points four to seven, this only requires five
multiplies, resulting in a total of 14 multiplies.

1 The address of an element in a multidimensional array is calculated by the compiler using a
multiply for each dimension (the index times the size of the lower dimension). For more
information on how the elements in a multidimensional arrays are addressed see section 3.6.3.4.
2 One multiply per weight.

© 1998 Océ-Technologies B.V. 55 Using MMX for image processing

X f

f
f

f

f
f
f

f

≈ − −
+ ⋅ −
+ − ⋅ ⋅
+ ⋅ ⋅
+ − −
+ ⋅ −
+ − ⋅ ⋅
+ ⋅ ⋅

()() ()

() ()
() ()

()

()() ()
() ()

() ()

()

8 8 0

8 1
8 2

3

8 8 4
8 5

8 6

7

α β
α β
α β

α β
α β

α β
α β

α β

Since this reduces the number of multiplies significantly, it has
been decided to calculate the four alpha and beta weights
separately. The calculated values are stored in an array.

Notice that the above describes the interpolation of one value.
Four interpolations Four of these interpolations are required for the entire RGB to

CMYK conversion.

Before the interpolations can be implemented, it has to be
chosen which data type to use when performing the calculations.
It is not possible to use eight bit arithmetic because of the
multiplications1.

32-bit arithmetic Sixteen bit arithmetic would be sufficient, but since 32-bit
arithmetic is faster2 it has been chosen to use 32-bit arithmetic
(integers).

3.6.2.4 Reading and writing the pixels

Reading angular points Reading the required eight angular points from the lookup table
is not difficult; the R, G and B values divided by eight can be
used as indexes. At position (R/8, G/8, B/8) point zero is located,
point one is loaded from position (R/8+1, G/8, B/8) and so on.
The individual color components are selected by mapping an
array of four bytes over the position in the lookup table indexed
by the RGB value.

Reading RGB The R, G and B values are read from the input arrays. Their
position is indicated by the loop index.

Writing CMYK Writing the interpolated CMYK values to the four respective
arrays is not be a problem either. However, it would not be very
efficient to write the CMYK values to four new arrays. Since the
RGB values read are no longer needed, they can be overwritten
by three of the calculated values. By overwriting the source

Write to source arrays pixels by calculated values, the memory bandwidth can be
reduced drastically, resulting in better performance.

3.6.2.5 The final C++ implementation

The issues described in the previous sections lead to the
implementation shown in Code example 10. The fractions α, β

α, β and γ: remainder and γ are calculated by taking the remainder of the division of R,
G and B by eight. Of course the added neighbours have to be
divided three times by eight3 to compensate this.

1 This would cause overflow.
2 Source: “How to optimize for the Pentium Processor” [11], section 20.
3 One time for α, β and γ each.

[7]

http://www.announce.com/agner/assem/

© 1998 Océ-Technologies B.V. 56 Using MMX for image processing

Code example 10: The RGB to CMYK conversion

Performance The performance of the code is discussed in section 3.6.3.9,
where the performance is compared to the MMX
implementation.

3.6.3 MMX implementation

3.6.3.1 Parallelability of the algorithm

Parallel pixel processing

Since no dependencies between the pixels exist, the basic RGB
to CMYK conversion does not limit the number of pixels to
process in parallel.

Lookup table By using a lookup table however the number of pixel processed
in parallel is limited to one, since the lookup operation can only
be performed for one pixel. It is possible to create a lookup table
in which multiple pixels can be looked up, but such a table would
be very large.

Parallel interpolation To perform the interpolation for multiple pixels in parallel, the
pixels have to be packed manually, since they have to be looked
up one at the time. Obviously, packing the pixels manually will
decrease performance significantly. In the next two paragraphs

Integer x, y, z // Position of neighb. 0
Integer alpha, beta, gamma
Integer Weights[4] // Weights of neighb. (ignore gamma)
Byte Neighbours[8][4] // 8 neighbours, each CMYK

Integer i=0
Do While (i < Width*Height)

{
 alpha=cArrayR[i]%8
 beta =cArrayG[i]%8
 gamma=cArrayB[i]%8
 Weights=Calculate4Weights(alpha,beta)

 x=cArrayR[i]/8
 y=cArrayG[i]/8
 z=cArrayB[i]/8
 Neighbours=Read8Neighbours(x,y,z)

 cArrayR[i]=(Weights[0 to 3]* // Cyan
 Neighbours[0 to 3][0]*(8-gamma))+

 (Weights[0 to 3]*
 Neighbours[4 to 7][0]*gamma))/8/8/8

 cArrayG[i]=(Weights[0 to 3]* // Magenta
 Neighbours[0 to 3][1]*(8-gamma))+

 (Weights[0 to 3]*
 Neighbours[4 to 7][1]*gamma))/8/8/8

 cArrayB[i]=(Weights[0 to 3]* // Yellow
 Neighbours[0 to 3][2]*(8-gamma))+

 (Weights[0 to 3]*
 Neighbours[4 to 7][2]*gamma))/8/8/8

 cArrayK[i]=(Weights[0 to 3]* // Black
 Neighbours[0 to 3][3]*(8-gamma))+

 (Weights[0 to 3]*
 Neighbours[4 to 7][3]*gamma))/8/8/8

 i++
}

© 1998 Océ-Technologies B.V. 57 Using MMX for image processing

two other ways to implement parallelism in the algorithm will be
discussed.

Both methods perform the interpolation in parallel. A key factor
in the choice of one of these methods is the way the weights are

Four weights calculated. Obviously the four weights required (ignoring
gamma) are calculated in parallel. The resulting weights are
loaded in a register as shown in Figure 48 (the weights could be
reverse ordered). The weights are numbered according to the
angular point they are applied to.

(8-α)(8-β) α (8-β) (8-α) β α β
=W0 =W1 =W2 =W3

Figure 48: Calculated weights in register

Figure 49 shows the four color components of angular point zero
loaded into a register1. Notice that these registers cannot be

Re-ordering multiplied without some re-ordering because all the color
components of a point have to multiplied with the same weight
(in this case W0). Since re-ordering a register requires quite an
amount of computations, the choice on how to perform the
interpolation in parallel primarily depends on the amount of re-
ordering required.

C0 M0 Y0 K0

Figure 49: Loaded angular point in register

Before the two methods of parallel pixel processing can be
discussed, the number of pixels calculated in parallel has to be
determined. It might be tempting to try to interpolate eight pixels
in parallel. However, this is not possible because the multiply
operations required operate on packed words only. Therefore

Four words in parallel four words are multiplied in parallel,

The four planes in parallel

The first method of parallel processing is to interpolate the four
color planes in parallel. The neighbour points read from the
lookup table are loaded in the right format (see Figure 49) but
the

Re-order four weights weights (see Figure 48) have to be re-ordered. Since four
different weights are used2, four registers have to be re-ordered.
To be more precise; four weights have to be duplicated to four
words.

After the weights have been duplicated correctly, they can be
multiplied with the angular points. Finally the multiplied angular
points can be added and divided without any re-ordering.

Process four points in parallel

The second method processes the input of four angular points in
parallel. An advantage of this method is that the weights do not

Re-order eight points have to be re-ordered in any way. The eight angular points
however have to be re-ordered completely. They are read from
the lookup table as shown in Figure 49, but in order to multiply

1 The four components are extended to words because the multiplication can only be performed
in packed words.
2 Each is used for two of the eight angular points.

© 1998 Océ-Technologies B.V. 58 Using MMX for image processing

them correctly they have to be re-ordered to the format shown in
Figure 50.

C0 C1 C2 C3

Figure 50: Format to process four pixels in parallel

After the multiplications have been performed, the input of the
four angular points has to added. Since the packed add
operation

Shift before addition cannot add the four words straightway, they first have to be
shifted to the format shown in Figure 51. Notice that this addition
uses only one of the four datapaths available.

C3

C2

C1

C0

Figure 51: Format to add the pixels

Four points or four planes ?

Processing four planes in parallel requires four weights to be re-
ordered. The angular points read from the lookup table do not
have to be re-ordered. Processing four angular points in parallel
requires eight angular points to be re-ordered. Additionally the
results have to be shifted before the weighed points can be
added.

Obviously the first method requires less operations than the
Four planes in parallel second. Therefore it has been chosen to process the four planes

in parallel.

3.6.3.2 Optimal image traversing

In section 3.6.2.1 it can be read that the RGB to CMYK
conversion sets no limitations on the way the image is traversed.
Therefore it has been decided that the MMX implementation will

Horizontally traverse the image horizontally, since this direction uses the
caches optimally1.

Normally horizontal traversing means the image is traversed
from the top-left to the down-right pixel of the image (each row
from left to right). Such an implementation generally requires
three registers;
1. A counter of the number of pixels to process (or the number

of pixels processed).
2. One or more pointers to the position of the input array(s)

currently processed.
3. One or more pointers to the location in the output array(s)

where the calculated result has to be stored.

Since the RGB to CMYK conversion requires multiple pointers to
source and destination registers, there are not enough registers
available for such an implementation.

1 See section 3.4.3.4.

© 1998 Océ-Technologies B.V. 59 Using MMX for image processing

Pixel addressing Therefore a different way of addressing the pixels has been
chosen. One register is used to count the number of pixels left to
process1, while the addresses of the input and output pixels are
determined by adding the base address of the arrays to the
register. Since the register is decremented the image array is
processed backwards.

This way of indexed addressing is commonly used in C++ code.
A disadvantage of this method is that the base address of the
array has to be read from memory, but since this memory
location is frequently accessed it generally will be loaded into the
cache.

3.6.3.3 Determining α, β and γ

Now that it has been decided how to implement parallelism, the
way to calculate the distances of the interpolated point to
neighbour zero has to be determined. These three values
(α, β and γ) are used to determine the weights of the points zero
to three (ignoring gamma). These values are loaded into a
register as shown in Figure 48.

Remainder Alpha, beta and gamma are determined by taking the remainder
of the division by eight of the R, G and B values.

3.6.3.4 Absolute addresses of angular points

Point zero

The next preparation necessary before the actual interpolation
Absolute address point zero can be performed is the calculation of the absolute position of

point zero. This is necessary because addressing a three
dimensional array in assembly is not as easy as in C++. The
addresses of the other angular points are calculated by adding
an offset to the address of point zero.

To understand the way this address is calculated, it is necessary
to understand the way multidimensional arrays are placed in

2D array in memory memory. Figure 52 shows how a two dimensional array A is
placed in memory. Notice that the rightmost dimension is placed
linear in the memory.

A [0][0]
[0][1]
[0][2]
[1][0]
[1][1]
[1][2]

Figure 52: Memory for array A[2][3]

In [8] the calculation of the absolute position of an element in
an m-dimensional array is shown. ‘S’ represents the size of the

Base address dimension, ‘I’ the index. A is the base address of the array.

1 This way, after the register has been decremented, a jump-non-zero can be used. When
counting the number of pixels already processed, the register has to be compared to the total
number of pixels, after which a jump-equal can be used. This method is slower because an
additional compare is necessary.

© 1998 Océ-Technologies B.V. 60 Using MMX for image processing

pos A I S Iq
q

p

p
p

n

= + +
F
HGG

I
KJJ ⋅

R
S|
T|

U
V|
W|

−
==

−

∏∑[] [] []0 1
11

1

The lookup table is a three dimensional array with three axis’ of
33(1) elements. The position of element [x][y][z] can be
calculated as shown in [9].

pos A I S I

A I S I S S I

A z y x

q
q

p

p
p

n

= + ⋅ +
F
HGG

I
KJJ ⋅

R
S|
T|

U
V|
W|

R
S|
T|

U
V|
W|

= + ⋅ + ⋅ + ⋅ ⋅

= + ⋅ + ⋅ + ⋅ ⋅

−
==

−

∏∑4

4

4 33 33 33

0 1
11

1

0 0 1 1 0 2

[] [] []

[] [] [] [] [] []n so t
k p

Notice that the calculated index value is multiplied by four.
32 bit array This is necessary because the lookup table consists of 32 bit

doublewords.

The offset of the other points

Relative to point zero The offset of the other angular points relative to point zero can
be determined in the same way as the physical address of point
zero is calculated. Figure 53 shows the offset of the angular
points relative to point zero. Point two for example can be read
from the memory location 4x33 bytes after point zero. The offset
of point seven is (4x1+4x33+4x33x33).

0

2

1

5
3

76

4

4x1

4x33
4x33x33

Figure 53: Physical addresses of angular points

3.6.3.5 Weighed addition of the angular points

The weighed addition of the angular points basically consists of
six steps. The first four steps have to be performed for each
angular point, the last two are performed once for all the points.

1. Duplicate the weight.
2. Read the angular point and extend the point to packed words.
3. Multiply the point with the weight.
4. Add the result of the multiplication to the intermediate result.
5. Multiply the (total) intermediate result with the appropriate

gamma factor.
6. Add intermediate results and divide by a factor to

compensate the too large fractions α, β and γ.

1 One would expect 32 elements. The last is added for interpolation purposes.

[8]

[9]

© 1998 Océ-Technologies B.V. 61 Using MMX for image processing

Duplicating the weight

Duplicating the weight can be done straightforward. Code
example 11 shows how. Notice that the other weights are lost.
Therefore a copy of the original weights has to be made before
starting the duplication.

Code example 11: Duplicating Weights

On page 55 it can be read that, when ignoring gamma, a weight
Two angular points can be used for two angular points. To minimise the number of

registers used these two points are processed right after each
other.

An alternative method of duplicating the weight is to write the
Duplicate via memory non-duplicated value four times to adjacent memory locations,

after which the MMX register can be read from memory. This
method has not been chosen because of the required memory
bandwidth.

Read the angular point

After the weights have been duplicated the angular point has to
Lookup table be read from the lookup table. The way the address of the point

is determined is described in section 3.6.3.4. After a point has
been read from the calculated address, the unpack instruction
(PUNPCKLBW) is used to extend it to packed words.

Multiply with the weight

The multiplication of the pixels with the weights is done with the
PMULLW instruction. Theoretically, the multiplication of two 16 bit
values normally requires 32 bits to store. Obviously four 32 bits
values cannot be stored in a 64 bit MMX register. To solve this
problem two multiply instructions are available: one storing the
lower 16 bits of the result (PMULLLW), another storing the higher
16 bits (PMULHW). In our algorithm 16 bits should be sufficient to
store all possible results1.

Add to intermediate result

After the multiplication is performed, the result is added to the
Two intermediate results previously multiplied angular points. This way two intermediate

results (for each color plane) are calculated; one that must be
multiplied with gamma, another to be multiplied with 8-gamma.

But can this result always be stored in a 16 bit quantity ? The
angular points read from the lookup table are eight bit values.
Figure 54 shows the four weights. Notice that the net result when
adding these weights always is 64, as shown in [10].

1 The maximum values multiplied are 255 (pixel) and 64 (α and β weight). The result (16320) can
easily be stored in a 16 bits quantity.

;mm4=[W0 W1 W2 W3]
psllq mm4, 16 ;mm4=[W1 W2 W3 00]
psrlq mm4, 48 ;mm4=[00 00 00 W1]
movq mm5, mm4 ;mm5=[00 00 00 W1]
psllq mm5, 32 ;mm5=[00 W1 00 00]
por mm4, mm5 ;mm4=[00 W1 00 W1]
movq mm5, mm4 ;mm5=[00 W1 00 W1]
psllq mm5, 32 ;mm5=[W1 00 W1 00]
por mm4, mm5 ;mm4=[W1 W1 W1 W1]

© 1998 Océ-Technologies B.V. 62 Using MMX for image processing

(8-α)(8-β) α (8-β) (8-α) β α β
=W0 =W1 =W2 =W3

Figure 54: Calculated weights in register

sum = − − + − + − +
= − − + + − + − +
=

()() () ()8 8 8 8
64 8 8 8 8
64

α β α β α β αβ
β α αβ α αβ β αβ αβ

Since 64 is a seven bit number the result of the weighed addition
15 bit value of four angular points can be stored in a 15 bit quantity.

Multiply with gamma

When multiplying the two intermediate results (each produced by
weighed adding four angular points), these 15 bit values are
multiplied with a four bit gamma (ranging from zero to eight).

19 bit value This results in a 19 bit value. Since the register contains (16 bit)
packed words the result will saturate, causing severe rounding
errors. To avoid this, the intermediate result is shifted1 three2 bits
to the right before multiplying with gamma. This results in a 16
bit value.

Add and divide

Finally, the two intermediate results have to be added and
17 bit value divided. The addition of the two 16 bits values would result in a

17 bit value, causing saturation. Therefore the intermediate
results are shifted one3 bit to the right before the addition is
performed.

Now all the weighed angular points have been added, the sum
would have to be divided three by times by eight (/8/8/8). This
would be done by shifting three times three bits to the right (=9
bits). Since the value already has been shifted four bits to the
right, the sum is shifted five4 bits to the right.

Rounding errors

During the interpolation the divisions cause rounding errors.
Three divisions are performed:
1. The two intermediate results are divided by eight before

multiplying them with gamma.
2. After they have been multiplied they are divided by two

before the are added.
3. After the have been added the result is divided by 32.

When dividing by eight the maximum rounding error is 7(5). After
this, these errors (in the two intermediate results) are multiplied
with γ respectively (8-γ) resulting in the errors shown in
[11] and [12].

1 Shift right arithmetic has to be used. If shift right logical is used incorrect results will be
produced (see page 47).
2 Equivalent to a division by eight.
3 Equivalent to a division by two.
4 Equivalent to a division by 32.
5 Fractions are always rounded down.

[10]

© 1998 Océ-Technologies B.V. 63 Using MMX for image processing

∆ ∆1 1 7 7 49≤ × ≤ × ≤γmax

∆ ∆2 2 8 7 8 56≤ × − ≤ × ≤()minγ

Next, a division by two is performed to prevent saturation when
adding the two intermediate values. Since this division also
rounds the value, the error values in [13] and [14] are rounded
up.

∆ ∆
1

1

2
49
2

25≤
L
MM

O
PP≤L

MM
O
PP≤

∆ ∆
2

2

2
56
2

28≤
L
MM

O
PP≤L

MM
O
PP≤

Finally, the two intermediate results are added and divided by
32.

∆ ∆ ∆≤ +L
MM

O
PP≤ +L

MM
O
PP≤1 2

32
25 28

32
2

Rounding error These rounding errors are considered acceptable.

Cycle times of the multiply

The multiply operation normally takes three cycles to complete.
When pairing the code the time necessary for this operation can

Pipelining be reduced in two ways. First multiplies can be pipelined. This
means each cycle one multiply operation is started and one is

Interleaving completed. Second, by moving two pairs of non-related
statements between the multiplication and the instruction that
uses the result of the multiplication, two of the three cycles
needed by the multiply unit can be used to perform other
actions, as shown in Code example 12.

Code example 12: Adding non-related statements

3.6.3.6 Reading and writing the pixels

Reading the source pixels

In section 3.6.3.2 it can be seen that pixels are read from the
Base pointer input arrays by means of the base pointer to the array and an

index register.

The base pointer to the array is stored at a memory location,
similar to common C++ code. The required memory space is
allocated by declaring a pointer variable in the C++ section of

[11]

[12]

[13]

[14]

[15]

pmullw mm0, mm1

pand mm3, mm4
por mm5, mm6

mov mm4, mm3
mov mm5, mm6

padd mm7, mm0

© 1998 Océ-Technologies B.V. 64 Using MMX for image processing

the filter implementation. This variable is declared ‘static’ to
ensure that it is aligned correctly1.

The pixel cannot be read by simply adding the declared variable
Addressing mode and the index register, since there is no such addressing mode.

Therefore the variable containing the base address of the array
is first loaded into a general purpose register, after which the
pixel can be read.

Because the memory location where the base address is stored
is accessed each loop cycle, it will be loaded into the level one
cache. Therefore reading the base address takes only one cycle.
Reading the pixel with the more complex addressing mode does
not take any extra cycles, so this way of reading the source
pixels does not decreases performance significantly.

Writing the resulting pixels

After the interpolation is completed the calculated pixels have to
be written to the destination arrays. Similar to the C++ version

Write to source array (see section 3.6.2.4) the three source arrays are used to store
the calculated pixels. The pixels are addressed in the same way
as the source pixels.

A problem is caused by the fact that the four color components,
which have to be written to four separate arrays, are loaded in a
MMX register as packed words in the format shown in Figure 55.

C M Y K
Figure 55: Register format after the interpolation

Because the calculated values are written over the source
Write one byte pixels, only one byte must be written. This is only possible by

using a general purpose register. The data is copied to this
register with the MOVD instruction. Since this instruction only
copies the least significant 32 bits, the MMX register has to be
shifted to copy the right color component.
After the 32 bits have been copied into the general purpose
register, the least significant byte can be written to memory.

Code example 13 shows how the Yellow component is saved to
ArrayB[esi]. Notice that the least significant byte of eax is moved
by applying a conventional move instruction to register AL.
Notice also that the blacK component is lost when shifting the
MMX register 16 bits to the right, so color components have to
be saved from right to left.

Code example 13: Writing the Yellow component

1 Static variables are aligned automatically by the compiler to the appropriate boundary. For
more information on data alignment see page 15.

;mm1=[C M Y K]
pslrq mm1, 16 ;mm1=[0 C M Y]
movd eax, mm1 ;eax=[M Y]
mov edi, ArrayB
mov [edi+esi], al ;ArrayB[esi]=Y

© 1998 Océ-Technologies B.V. 65 Using MMX for image processing

3.6.3.7 Border pixels

The C++ implementation processes all pixels, since all of them
contain valuable information. The MMX version of the
processing

White borders path however, has an eight pixel wide, white border1 on both
edges (see section 3.3). Since a white pixel will result in a CMYK
value with all components zero, these pixels do not have to be
interpolated. Because most of the time required to convert a
pixel is needed for the interpolation, it might be a good idea not
to interpolate these border pixels.

Let us take a look at the amount of pixels skipped this way. An
A4 image scanned at 200 dpi has a width of 1580 pixels. After
adding two, eight pixel wide borders, the image width is 1596

Borders are 1% pixels. The 16 pixels only make one percent of this2.

The performance gain possible when not interpolating these
pixels will be less than one percent because the memory
accesses required to read and write the pixels are still
necessary3.

Additional overhead The overhead caused by the added complexity of the loop
structure will be:
• Two loop counter registers are required instead of one. This

makes the usage of the loop counter to address the pixels
much more complex (and therefore costs time).

• One or more jumps will be required. Since these jumps will
be hard to predict for the Pentium’s branch prediction they
will consume many cycles.

Because this will probably cost more cycles than the
performance gain possible, it has been decided not to skip the
border pixels.

3.6.3.8 The final MMX implementation

Code example 14 shows the final structure of the RGB to CMYK
color conversion in pseudocode.

The functions, such as “DuplicateWeight()”, represent a number
of actions. For the sake of clarity they are represented through a
function call. In the implementation however they are
implemented in-line with a number of statements.

1 The border added to extend the image width to a multiple of eight is not always white, and can
therefore not be skipped.
2 16/1596*100 = 1,0%
3 After the conversion has been implemented it turned out that 91% of the processing time is
needed for the interpolation (and preparations for it; see page 68). From this it can be concluded
that skipping the border pixels can maximally result in a performance gain of 0.9%.

© 1998 Océ-Technologies B.V. 66 Using MMX for image processing

Code example 14: MMX version of the conversion

3.6.3.9 Filter performance

After the code has been paired the performance is compared to
the performance of the unpaired version. Table 9 shows that a

40% faster by pairing performance improvement of about 40% is achieved.

Static PIXEL *ArrayR, ArrayG, ArrayB, ArrayK // Ptrs to arrays

esi=Width*Height
Do While (esi >= 0)

{
// Alpha and beta weights

 mm0=CalcWeights(ArrayR[esi],ArrayG[esi])
 eax=CalcPosOfPoint0(ArrayR[esi],ArrayG[esi],

 ArrayB[esi], LTable)

 mm2=mm0
 DuplicateWeight(mm2,W0)
 mm6=ReadPoint(eax,0) // Point 0
 mm6=Pmul(mm6,mm2) // Interm. result 1 in mm6
 mm1=ReadPoint(eax,4) // Point 4
 mm1=Pmul(mm1,mm2) // Interm. result 2 in mm1

 mm2=mm0
 DuplicateWeight(mm2,W1)
 mm5=ReadPoint(eax,1) // Point 1
 mm5=Pmul(mm5,mm2)
 mm6=mm6+mm5 // Add to result 1
 mm3=ReadPoint(eax,5) // Point 5
 mm3=Pmul(mm3,mm2)
 mm1=mm1+mm3 // Add to result 2

 mm2=mm0
 DuplicateWeight(mm2,W2)
 mm5=ReadPoint(eax,2) // Point 2
 mm5=Pmul(mm5,mm2)
 mm6=mm6+mm5 // Add to result 1
 mm3=ReadPoint(eax,6) // Point 6
 mm3=Pmul(mm3,mm2)
 mm1=mm1+mm3 // Add to result 2

 DuplicateWeight(mm0,W3)
 mm5=ReadPoint(eax,3) // Point 3
 mm5=Pmul(mm5,mm0)
 mm6=mm6+mm5 // Add to result 1
 mm3=ReadPoint(eax,7) // Point 7
 mm3=Pmul(mm3,mm0)
 mm1=mm1+mm3 // Add to result 2

 ebx=CalcGamma(ArrayB[esi]
 mm5=Duplicate(ebx)
 mm1=ShiftRightArithmetic(mm1,3)
 mm1=mm1*mm5 // Result 2 * gamma

 mm5=8-mm5
 mm6=ShiftRightArithmetic(mm6,3)
 mm6=mm6*mm5 // Result 1 * (8-gamma)

 mm1=ShiftRightArithmetic(mm1,1)
 mm6=ShiftRightArithmetic(mm6,1)
 mm1=mm1+mm6 // Add interm. results
 mm1=ShiftRightArithmetic(mm1,5)

 WritePixels(mm1, ArrayR[esi],
 ArrayG[esi],
 ArrayB[esi],
 ArrayK[esi])

 esi-- // Next pixel
}

© 1998 Océ-Technologies B.V. 67 Using MMX for image processing

Notice that this is more than for the kernel operations (31%).
This is primarily caused by the fact that the interpolation requires
many register-register operations. Code containing many
register-register operations will benefit more from pairing than
code with many register-memory operations, because two
operations that access memory cannot pair.

Image size Cycle times Improvement
unpaired paired

(pixels) (cycles/pixel) (cycles/pixel) (%)
290x509 208 125 39,9

1580x2176 201 123 38,8
Table 9: performance gain by pairing

Table 10 lists the performance of the C++ and the paired MMX
version of the RGB to CMYK conversion. The two images of
1580x2176 pixels are A4 images scanned at 200 dpi.

For those images the MMX implementation of the conversion is
MMX 5x faster than C++ 5.2 times faster than the C++ version. The performance gain is

not only reached by processing four data elements in parallel,
but also by using a much more efficient multiplier1.

3.6.3.10 Categorising the processing time

Figure 56 shows the processing time of the paired version
divided into the categories discussed in the previous sections.
The cycle times are counted as described in section 3.4.4.8.
Notice that

50% for weighed addition almost 50% of the processing time is used to weighed-add the
angular points.

Only 8% to write pixels Notice also that only eight percent of the processing time is used
to write the pixels, although the unpacking operations require
quite an amount of computations. This is primarily caused by the
fact that the memory locations the pixels are written to are still
loaded into the level one cache (the source pixels are read from
the same location).

1 The conventional multiplier takes 10 cycles to complete. The MMX multiplier takes three but an
average throughput of one per cycle can be reached by pipelining the multiplies.

Image size Cycle times Improvement
C++ version MMX version

(pixels) (cycles/pixel) (cycles/pixel) (%) (factor)
87x16 628 130 79,3 4,8
63x96 639 143 77,6 4,5
127x96 642 133 79,3 4,8
255x320 640 125 80,5 5,1
290x509 641 125 80,5 5,1
1580x32 639 118 81,5 5,4

1580x2176 (1) 646 123 81,0 5,3
1580x2176 (2) 646 124 80,8 5,2

Table 10: Performance of the RGB to CMYK conversion

© 1998 Océ-Technologies B.V. 68 Using MMX for image processing

In Figure 56 it can be seen that 17% of the processing time is
used to calculate the position of neighbour zero. During this
calculation, the R, G and B color components can be added. By
testing the result of this addition, it can be checked if the pixel is
has a certain color. Generally, scans contain a lot of white pixels
-for example around text-, so by testing if a pixel is white, a fixed
value1 can be written to the output array, instead of performing

White detection the interpolation. This is called ‘white detection’.

Since writing the CMYK value to the output array also takes
eight percent of the processing time, a white pixel could be
written in 25% percent of the time needed to calculate another
pixel.
The actual performance gain will be less because of the
additional overhead required. Especially the required jump will
take many cycles. This overhead will cause the performance to
decrease for images containing no white pixels.

It has been decided not to apply white detection because then
the performance would depend on the test image used to
measure the performance. Besides this, the peak performance
of an implementation using white detection can be predicted
quite

Peak: 4x faster accurately to be a factor three to four times the performance of
the implemented algorithm. When processing images containing
no white pixels the performance will decrease slightly.
The white detection has no influence on the proportion of the
performance of the C++ implementation and the MMX
implementation. The MMX implementation has no advantages
over the C++ version because both the calculation of point

1 For a white pixels all the CMYK components will have to be made zero.

Calc. position of
point 0
17%

Calc. w eights
25%

Weighed add
points
49%

Write
8%

Overhead
1%

Figure 56: Categorised processing time of the entire RGB to CMYK
conversion

© 1998 Océ-Technologies B.V. 69 Using MMX for image processing

zeroes position and writing the calculated pixels to the arrays is
done in conventional assembly code.

Figure 57 shows the processing time needed to weighed add two
angular points (point five and one). This represents the
“Weighed add points” section in Figure 56.

Duplicate weight 41% Notice that duplicating the weights costs 41% of the processing
time required to weighed add a point. With this amount of time in
mind it might be a good idea to duplicate the weight by writing

Duplicate via memory the individual value four times to memory, as discussed on page
61. If duplicating the weights would be entirely omitted the
weighed addition of an angular points would be 41% faster.
Since the weighed addition of the angular points takes 49% of
the total processing time (see Figure 56), this would improve the
overall performance with 20%(1).
When duplicating the weights via the memory, the calculated
weights first have to be unpacked2. After this, they have to be
moved four times to the memory. Obviously this requires some
processing time, but remember that the memory locations were
the weights are stored will generally be loaded into the level one
cache. Therefore it is reasonable to expect a performance gain

About 10% faster of about ten percent.

Figure 58 shows the processing time categorised according to
the instruction type. The amount of time required for arithmetic

17% arithmetic operations is surprisingly low; only 17%. This is, among others,
caused by the fact that the multiplies are pipelined and
interleaved with other instructions.

The reason the number of shift operations is relatively high
20% shift (20%) is that duplicating the weights, as well as (un)packing,

requires many shift operations.

1 0.41x0.49 = 0.20
2 The package format is shown in Figure 48.

Duplicate w eight
41%

Read
neightbours

33%

Multiply
13%

Add
13%

Figure 57: Categorised processing time of the weighed add section

© 1998 Océ-Technologies B.V. 70 Using MMX for image processing

3.7 The halftoning algorithm

3.7.1 The algorithm

Halftoning is used in every printing device to decrease the
Decrease color depth number of colors in the image to a number of colors printable by

the print engine. This is necessary because a single-color pixel
printed by a print engine can only have two values, on (‘1’) or off
(‘0’)1. Since print engines normally use four base colors (CMYK
2), a total of nine3 different colors can be printed.

The pixels in an image are normally represented with 3*8 bits in
the RGB color representation, allowing 16 million4 colors. Before
applying the halftoning algorithm, the RGB image is converted to

CMYK color planes four separate CMYK color planes, after which the individual
planes are halftoned.

Note that because the halftoned pixels in a single color plane
Bitwise pixels can only have two values a single bit is sufficient for each pixel.

Because the pixels in the source image -with separated color
planes- are represented with eight bits, generally the halftoning
generates pixels which are either 0 (all bits ‘0’) or 255 (all bits
‘1’), after which only one bit of the calculated pixel value is
written to the destination image.

1 Analog print engines can print gray scale pixels but the image processing discussed in this
report is designed for digital print engines.
2 Cyan, Magenta, Yellow and Black. See section 2.1.2.2 for more information on color
representation.
3 Cyan, Magenta and Yellow allow 23=8 different colors. Black is only used to print black pixels,
resulting in a total of nine different colors.
4 2(8+8+8) = 16,777,216

Arithmetic
17%

Comparison
1%

Conversion
4%

Logical
10%

Shift
20%

Move
48%

Figure 58: Processing time per instruction type

© 1998 Océ-Technologies B.V. 71 Using MMX for image processing

Variations Halftoning algorithms with varying image quality and algorithm
complexity exist. In the following sections some of them are
shortly discussed. To compare the quality of the processed
images1, a (256 gray scale) test image called ‘Lena’ is printed2 in
Figure 59 at 28% of its original size. This image is used to
compare the image quality of the various halftoning algorithms.

Figure 59: Original 'Lena'

3.7.1.1 Thresholding

Thresholding is the most basic form of halftoning. Each pixel in
Fixed threshold each of the separated color planes is compared to a fixed

threshold; if the pixel’s value exceeds the threshold the pixel is
rounded to 255 (=on=’1’), otherwise it is made 0 (=off=’0’).

In Figure 60 the thresholded ‘Lena’ is printed. A threshold of 128
has been used.

Figure 60: Thresholded 'Lena'

Figure 60 shows that thresholding gives reasonable quality for
black text, but unacceptable quality for pictures. For this reason,
thresholding is not often used.

3.7.1.2 Dithering

Dithering is a halftoning variant where the threshold depends on
Dither matrix the pixel’s position. The threshold is read from the dither matrix,

which is layed-over the image like shown in Figure 61.

1 Because 24-bit color images are separated into four color planes, the individual planes can be
thought to be 256 gray scales images.
2 Because the printer this report is printed on also halftones the image, this is not the exact
original. The image quality however is sufficient to compare the halftone algorithms.

© 1998 Océ-Technologies B.V. 72 Using MMX for image processing

Image

DithermatrixDither matrix

Figure 61: Dithering

In Figure 62 an 8x8 dither matrix is shown.

1 2 3 4 5 6 7 8

1 251 235 187 155 123 91 59 51

2 243 227 179 135 115 83 43 35

3 219 211 171 115 107 75 27 11

4 203 195 163 100 99 67 19 3

5 123 91 59 51 251 235 187 155

6 115 83 43 35 243 227 179 135

7 107 75 27 11 219 211 171 115

8 99 67 19 3 203 195 163 100

Figure 62: An 8x8 dither matrix

In Figure 63 the dithered ‘Lena’ is shown.

Figure 63: Dithered 'Lena'

For photos dithering gives acceptable results. When dithering
text however, the edges of the letters are frayed as shown in
Figure 64. Because this is very disturbing when reading the text,
pure dithering is not often used for images containing text.

Figure 64: Dithered text

3.7.1.3 Error diffusion

Error diffusion uses a fixed threshold, similar to thresholding.
The difference is that with error diffusion the error made when
rounding a pixel is passed to the neighbouring pixels.

© 1998 Océ-Technologies B.V. 73 Using MMX for image processing

The error is calculated by subtracting the new pixel value from
the original pixel value. When calculating the black pixel in
Figure 65

Error passing the error is added to four of the neighbouring pixels with the
factors shown. The gray pixels are processed previously, the
black pixel is the one currently processed.

7/16

3/16 5/16 1/16

Figure 65: Floyd-Steinberg error passing

“Floyd-Steinberg” This technique of passing the error called the “Floyd-Steinberg”
algorithm. In Figure 66 the error diffused ‘Lena’ is shown.

Figure 66: Error diffused 'Lena'

Figure 67 shows an error diffused gray plane (real size). Notice
‘Worms’ the little ‘worms’. These are created when applying an error

passing algorithm to very light or very dark planes.

Figure 67: Error diffused gray plane

Good quality Because error diffusion produces good results for text and for
(most) photos, this is a much used halftoning variant. A
disadvantage of error diffusion are the ‘worms’ that sometimes
are created in images containing large areas of the same color.

3.7.1.4 Other variants

In the previous sections the most common halftoning algorithms
are discussed. Because most algorithms produce optimal results
only for certain image types (text or photos), mixtures of the
discussed variants are used. These mixtures commonly use
dithering for photos and error diffusion for text areas.

It is expected that when implementing an algorithm, passing the
error to the neighbouring pixels will cause most problems. For

Implement error diffusion this reason it has been chosen to implement the error diffusion
algorithm. Based on the problems encountered there, an

© 1998 Océ-Technologies B.V. 74 Using MMX for image processing

indication of the difficulties expected when implementing other
algorithms can be given.

An implementation of an error dithering algorithm with MMX or
C++ will only differ from error diffusion in the way the threshold
is determined. A mixture of error diffusion and dithering will
probably be more complex because switching between the two
algorithm types is difficult to implement.

3.7.2 C++ implementation

3.7.2.1 Traversing the image array

Similar to the algorithms previously implemented, the first
question to ask when implementing the error diffusion algorithm
is how to traverse the image array; horizontally, vertically or
diagonally.

When taking a closer look at the algorithm it is noticed that it is
No re-usage not possible to re-use intermediate results as with the smooth

and the sharpen algorithm. Only the error passing algorithm
might prefer some way of traversing the image.

Figure 68 shows the way the error is passed to the four
neighbour pixels; the black pixel is the one currently processed.

7
3 5 1

Figure 68: Floyd-Steinberg error passing

From Figure 68 it can be concluded that two ways of traversing
the image array are possible; horizontally from left to right or
diagonally from the left top to the right bottom. In both situations
one of the error values has to be passed to the next pixel
processed. The other error values are needed when processing
the next row or (diagonal) column1.

In section 3.4.2.1 it was concluded that optimal caching can be
Horizontal traversing achieved when traversing the image horizontally. Additionally, a

loop that traverses an image diagonally, is more difficult to
implement than a loop that traverses an image horizontally2.
Therefore it is decided to process the image array horizontally.

3.7.2.2 The basic inner loop structure

Basically error diffusing one pixel consists of the following steps:
1. Receive the error from other pixels
2. Determine the new pixel value
3. Pass the error to other pixels

Step one and three are described in section 3.7.2.3.

1 Lacking a correct name diagonal column is used.
2 Vertical image traversing would be possible when using other Floyd-Steinberg error passing
algorithms. The variant shown in Figure 68 has been chosen because it is most often used.
Besides this, vertical image traversing does not offer any advantages over horizontal image
traversing (for as far as the implementation is concerned).

© 1998 Océ-Technologies B.V. 75 Using MMX for image processing

Determining the new pixel value is not complex; after the error
passed from other pixels is added, the pixel is compared to the
threshold. If the pixel is smaller the new pixel value is zero,
otherwise it is 255. After the new pixel value has been
determined the error can be determined by subtracting the new
pixel value from the old one.

3.7.2.3 Passing the error

When processing the image horizontally, the error weighed 7/16
has to be added to the next pixel processed. The other three
error values have to be stored in an array for later usage.

Array Since the image is traversed horizontally, the array where the
error values are stored must have enough positions to store
errors for an entire row of the image. Figure 69 shows how this
array is filled.

Image

a b c

Error passing array
3a/16 5a/16+

3b/16
a/16+
5b/16+
3c/16

5c/16+
6/16+
… ..

c/16+
… ..

… ..

Figure 69: Using an error passing array

In Figure 69 the way the errors have to be passed from the three
dark-grayed pixels to the light grayed pixels is shown. The black
pixel, which is processed the next loop cycle, receives an error
from pixel c. This error value can be stored in a local variable,
the light gray errors have to be stored in the error passing array.
As shown in Figure 69 the middle of the light gray pixels
receives

Receive three errors three errors passed from above. Only edge pixels receive less
error values, all the other pixels in an image receive three error
values from above (and one from the right).

It has been chosen to store the errors which have to be passed
to the lower row in the array. It is also possible to store the
rounding errors that have been made in the array and calculate
the error to pass to the lower pixels later. This way, passing the
error requires less calculations to store the error values but more
to calculate the error to add to a pixel. For the entire image the
total number of calculations is the same. Both implementations
benefit from the caches in the same way, so any one of them
can be chosen. As mentioned before it has been chosen to use
the error passing array in the way shown in Figure 69.

When storing the error values in the array, care has to be taken
not to overwrite values needed later.

© 1998 Océ-Technologies B.V. 76 Using MMX for image processing

Image
01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

Error passing array
a b c

Figure 70: Error passing via array

Suppose (in Figure 70) pixel 15 is currently processed. After the
error has been determined, the weighed error has to be saved to
the error passing array in order to pass it to the pixels 24, 25 and
26. Note that the positions a and b in the array contain errors
passed previously from the pixels 13 and 14. The error made
with pixel 15 has to be added to those errors. Position c of the
error passing array contains the error that has to be passed to
pixel 16 in the next loop cycle. Unfortunately this position is also
needed

Overwrite next error for the error passed from pixel 15 to 26. This problem has been
solved by reading position c from the error passing array into a
variable called “NextError”, after which the error to pass to pixel
26 can be written to the array.

Now the basic way of passing the error is designed the data type
for the positions in the error passing array have to be chosen.
The pixels in the image are written as unsigned bytes, so it
would be obvious to create an error passing array of this type.

Negative error values Because negative error values are also possible a sign bit is
required. Since it is not possible to multiply the unsigned bytes
read from the source image with the signed bytes, both the
pixels and the error values have to be extended to signed words.
An additional advantage of this extension is that rounding errors
are avoided, because the division by sixteen can be delayed
until the addition of the error value and the pixel value read from
the image array is performed. A disadvantage of the extension is
that instead of processing eight pixels per loop cycle, now only
four pixels are processed.

Because the top row of the image does not receive error values
from above, the error passing array has to be cleared before the
actual filter loop is started. This is necessary because C++ does
not clear storage space when allocated by an application.

3.7.2.4 Border pixels

The Floyd-Steinberg error passing shown in Figure 68 requires
special attention for border pixels, since either the left or the
right neighbour pixel is missing.

To avoid problems, a special error passing algorithm can be
Skip borders implemented for border pixels, or the border pixels can be

skipped entirely when processing the image. Since applying
different error passing mechanisms to border pixels requires four
additional error passing versions, it has been decided not to
process border pixels.

3.7.2.5 Writing the resulting pixels

Error diffusion produces pixels which are either zero or 255.
Their values can therefore be represented with one bit.

© 1998 Océ-Technologies B.V. 77 Using MMX for image processing

Compared to the eight bit (= one byte) pixels read from the input
file the one bit data requires much less memory bandwidth. For
this reason it is

Bitwise common practice to write the halftoned pixels as bits1 instead of
bytes.

Collecting bits Since bitwise addressing is not possible, eight bits have to be
collected, after which they are written as a one byte to the
destination array.
If it was chosen not to traverse the image horizontally in section
3.7.2.1 this way of storing the bits would re-order the pixels.
If the image would be traversed vertically for example, the
resulting bits (which are collected into one byte) are
automatically written horizontally. Thus the pixels would be
rotated 90° !

Collecting the bits into a byte is implemented as shown in Code
example 15.

Code example 15: Collecting bits into a byte

Skipping border pixels Caution has to be taken when skipping the border pixels. When
storing the pixels as bytes a single byte can be skipped by
simply incrementing the index to the array by one. However
when writing the pixels as bits it is not sufficient to increment the
BitCounter. The previously packed bits have to be shifted one bit
to the left too. Additionally, if BitCounter has reached the value
eight, the byte containing the packed bits has to be stored.

Since a pixel value only depends on the value of one source
pixel and the error passed from other pixels, it is possible to
overwrite

Overwrite source pixels the source pixels with the calculated values2. Because the
memory location is loaded into the cache when reading the
source pixel this could reduce the time necessary to write the
pixel. However since the resulting pixels are written as bits, the
calculated pixels require eight times less storage space than the
original pixels. This causes the pointer to the currently processed

1 Obviously, when halftoning to more than one level more bits are required. Halftoning to, for
example four levels produces pixels which can be represented with two bits.
2 For the smooth and the sharpen algorithm this is not possible because a source pixel is input
for nine pixel calculations.

byte PackedBits = 0 // Initialisation
byte Temp
int BitCounter = 0

Do While (…………) // The loop...
{
 Temp = GetPixel()

// Store bit
 Temp = And(Temp,0x01)
 PackedBits = Or(Temp,PackedBits)
 ShiftLeft(PackedBits,1)
 BitCounter++
 If (BitCounter==8) Then

{
 StoreByte(PackedBits)
 PackedBits = 0
 BitCounter = 0
}

}

© 1998 Océ-Technologies B.V. 78 Using MMX for image processing

source pixel to ‘run away’ from the pointer to the storage space
for the calculated value, eliminating the caching advantage.
Therefore it has been decided to store the calculated values in a
separate array.

3.7.2.6 The final C++ implementation

The complete C++ implementation of the error diffusion
algorithm is shown in Code example 16 (in pseudocode).

Code example 16: The final C++ implementation

Nested loops It has been chosen to implement two nested loops because the
border pixels require special attention. The functions
SkipLeftPixel() and SkipRightPixel() represent the actions
necessary to skip the border pixels. The PackBits() and
StoreBits() functions1 pack the bits into a byte respectively stores
the collected bits. All four functions are described in section
3.7.2.5.

3.7.3 MMX implementation

3.7.3.1 Parallelability of the algorithm

The parallelability of the error diffusion algorithm is limited by
the way the error is passed to the neighbour pixels.
In Figure 71 the way the error is spread across the neighbours is
shown.

1 In the C++ implementation these sub-functions are not used because of the extra overhead
required; all the code is placed in one function.

Clear(ErrorArray)
BitCounter = 0
PackedBits = 0

RowCounter = 1
Do While (RowCounter < Height-1)

{
 SkipLeftPixel()
 ColCounter = 1
 NextError = ErrorArray[ColCounter] // Error from above
 Do While (ColCounter < Width-1)

{
// Get input value

 Old_Pixel = Src.Pixels[RowCounter,ColCounter]
 Old_Pixel = Pixel + (NextError/16)

// Get new pixel
 If (Old_Pixel < Treshold) Then

 New_Pixel=0
 Else

 New_Pixel=255
 PackBits()
 If (BitCounter==8) Then StoreBits()

// Error passing
 Error=Old_Pixel-New_Pixel
 NextError= (7*Error) + ErrorArray[ColCounter+1]
 ErrorArray[ColCounter+1]=1*Error
 ErrorArray[ColCounter] +=5*Error
 ErrorArray[ColCounter] +=3*Error

 ColCounter++
}

 SkipRightPixel()
 RowCounter ++
}

© 1998 Océ-Technologies B.V. 79 Using MMX for image processing

7
3 5 1

Figure 71: Floyd-Steinberg error passing

Obviously, pixels that receive an error from other pixels can not
Pixel dependencies be processed before the error is known. These dependencies

highly limit the possibilities for parallel pixel processing. In
Figure 72 the dependencies are shown. The pixel currently
processed is black. This pixel receives errors from the light gray
pixels. The dark gray pixels are influenced by the error passed
from the black pixel.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

Figure 72: Pixel dependencies

From Figure 72 it can be concluded that it is not possible to
process a number of pixels placed next to each other, as with for
example the smooth algorithm. Worse, it seems to be
impossible to process pixels in parallel. However, there are two
ways to process pixels in parallel; skewing and tiling. In the next
two paragraphs these two alternatives will be compared.

Both ways can be implemented with horizontal as well as
diagonal image traversing. Since diagonal image traversing
requires a more complex loop structure, and gives no advantage
over horizontal traversing1, it has been chosen to traverse the

Horizontal traversing image horizontally.

Skewing

Basically skewing avoids the dependencies between pixels by
Independent pixels processing independent pixels. Figure 73 shows the

dependencies for a pixel in the middle of the image.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

Figure 73: Dependencies

The dependencies are limited to the areas to the upper left and
lower right of the pixel processed. The pixels in the light gray
area pass an error to the pixel, the pixels in the dark gray area
receive an error from the pixel.

From Figure 73 it can be concluded that parallel pixel processing
is possible for pixel 12, 30 48 and so on. This is shown in Figure
74.

1 See section 3.7.2.1.

© 1998 Océ-Technologies B.V. 80 Using MMX for image processing

01 02 03 04 05 06 07 08 09 10 11 12 13 14
21 22 23 24 25 26 27 28 29 30 31 32 33 34
41 42 43 44 45 46 47 48 49 50 51 52 53 54
61 62 63 64 65 66 67 68 69 70 71 72 73 74
81 82 83 84 85 86 87 88 89 90 91 92 93 94

101 102 103 104 105 106 107 108 109 110 111 112 113 114
121 122 123 124 125 126 127 128 129 130 131 132 133 134

Figure 74: Skewed processing

A disadvantage of skewed processing is that the pixels to be
processed can not be read into an MMX register with one
memory read, as done for example with the smooth algorithm.

Manual packing The pixels have to be read one at a time, after which they can
be packed manually into an MMX register to allow parallel
processing.

Figure 75 shows the required error passing when processing a
number of pixels skewed. The black pixels are the pixels
currently processed. The resulting error values a, b and c have
to be passed as shown.

a 7a/16

b 3a/16+
7b/16

5a/16 a/16

c 3b/16+
7c/16

5b/16 b/16

3c/16 5c/16 c/16

Figure 75: Error passing with skewing

Notice that, when traversing the image array horizontally from
left to right, some of the error values are required for the next
pixel processed (dark gray pixels). The errors passed to the light
gray pixels are required in the two next loop cycles. These three
groups of error values can be stored in register, instead of an
array to improve performance. The errors passed to the lower
row cannot, because they have to be stored until the next row is
processed.

The array required to store these error values can be
implemented in a similar way as the error passing array of the
C++ version of the error diffusion. In section 3.7.2.3 it was
concluded that it was necessary for the C++ implementation to
use signed words for the error passing array, and to extend the
pixels from unsigned bytes to signed words.
For a skewed MMX implementation this is also required. This

Four pixels/loop cycle implies that each loop cycle only four pixels can be processed.

Now let us take a look at the number of memory accesses
required to pass the error values when processing four pixels in
a skewed implementation (see Figure 76). Assuming that the
error passing array contains the error value received by a pixel
(instead of the error value to pass from a pixel1), one memory
read is required to receive an error from above to add to pixel a.

1 In section 3.7.2.3 it was concluded that both ways of storing the errors require the same amount
of computations.

© 1998 Océ-Technologies B.V. 81 Using MMX for image processing

The error passed from pixel d to pixel a of the lower row has to
be stored with three memory operations; two memory adds, one
memory move. Thus, four memory operations are required to

One memory operation process four pixels (one per pixel).

a
b

c
d

Figure 76: Error passing via array

A disadvantage of skewing is that seven of the border pixels can
not be processed in the same way the other pixels are, as can be
seen in Figure 77.

7

Figure 77: Skewed edge pixels

Six pixels have to be skipped because of the sloped processing.
The leftmost pixel has to be skipped because the error passed
from that pixel to another cannot be passed since there is no left
neighbour. This is an inevitable side effect of skewing that can
be avoided by temporarily adding two, seven pixels wide borders
to the left and right of the image. This causes an extra overhead
of

Overhead of 0.9% 0.9%1 for A4 image scanned at 200 dpi.

Tiling

Another method of processing pixels in parallel is tiling. This
Overlapping tiles methods divides an image into a number of overlapping2 tiles,

after which each loop cycle one pixel of each tile is processed. In
Figure 78 for example the first iteration of the loop processes the
four light gray pixels. The next processes the dark gray pixels
and so on.

Figure 78: Tiling

Dividing the image into tiles is only allowed when the tiles do not
influence each other. For error diffusion this is not true, but by
creating an overlap of minimal 32 pixels3 an acceptable result
can be obtained. When dividing an A4 image scanned at 200 dpi

1 (2*7)/(2*7+1580)*100% = 0.9%
2 To eliminate the influence of one tile on another.
3 Source: "Image processing with SIMD architectures" [10].

© 1998 Océ-Technologies B.V. 82 Using MMX for image processing

7.5% overhead (1580 pixels wide) into four tiles, each 395 pixels wide, 7.5%(1)

redundant pixels have to be processed.

Similar to a skewed implementation, the negative error values
that have to be passed necessitate the extension of the pixels
from unsigned bytes to signed words. This automatically reduces

Four pixels/loop cycle the number of pixels to process in parallel to four.

Now lets take a look at the way the error has to be passed. Since
the error passing mechanism is identical for all four tiles, the
error passing for only one tile is shown in Figure 79 (The black
pixel is the one currently processed).

Figure 79: Error passing with tiling

Since the image is traversed from left to right the error to pass to
the gray pixel can be stored in a register. The error received
from above and the errors to pass to the lower neighbours have
to be read/stored in an array. Thus, four memory accesses are

Four memory accesses necessary to pass the error for one pixel. If the image is divided
into four tiles, a total of sixteen memory accesses is required to
pass the errors of four pixels.

Skewing or tiling ?

Both for skewing and for tiling manual packing of the pixels
processed is required. An advantage of tiling compared to
skewing is that manually packing the pixels is less complex than
with skewing.

A tiled implementation processes 7.5% redundant pixels,
compared to 0.9% for a skewed implementation. Clearly this is a
considerable advantage of a skewed implementation.

The error passing mechanism of a tiled implementation requires
sixteen memory accesses to process four pixels, compared to
four for the skewed implementation. By implementing the error
passing of the tiled implementation in a smart way the number of
memory accesses can be reduced, but the required memory
bandwidth still remains four times the value of the skewed
implementation.

Skewed Therefore it has been chosen to implement the error diffusion
algorithm skewed.

Besides skewing and tiling it is also possible to process one pixel
of each of the four color planes. Since this method does not
require the additional code necessary for skewing, performance
will probably be better, while the implementation will be much
easier.
This method has not been chosen for two reasons:
1. It is not possible for a gray-scale implementation.

1 32/(32+395)*100% = 7.5%

© 1998 Océ-Technologies B.V. 83 Using MMX for image processing

2. This method avoids the specific problems of the error
diffusion. Océ wants to know how these problems can be
solved.

3.7.3.2 Reading the source pixels

When processing an image skewed the source pixels have to
Manual packing be packed manually. This requires the four pixels processed to

be loaded individually, after which they can be packed into an
MMX register.

Pixel addressing It seems to be necessary to have four pointers to the four pixels
processed. Since only six1 general purpose registers are
available, this is not the most optimal way to locate the pixels.
In Figure 80 four skewed pixels are shown, with a pointer set to
the upper pixel (19).

esi

01 02 03 04 05 06 07 08 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60

width
Figure 80: Pixel addressing

The position of the pixels 27, 35 and 43 in the image array can
be calculated by adding the image width minus two to the
position of pixel 19. This way all four pixel can be loaded into
registers.

MMX memory moves It has been chosen to load the pixels with MMX memory moves,
instead of byte-moves for three reasons:
1. Loading the pixels requires a number of registers. While

implementing the filter, it turned out that all conventional
registers where used already2.

2. To be able to process the pixels the packed pixels have to be
loaded into an MMX register.

Manual packing The way the pixels are packed is shown in Code example 17.
Register eax contains the image width in pixels, esi the position
of the upper pixel. Because the addressing mode [esi+3*eax-6]
is not allowed, the image width (eax) has to be added to esi to
read to lower pixel. More additions can be avoided by using the

Addressing modes right the addressing modes.
The comment added to the code assumes the pixels are
numbered as shown in Figure 81.

1 eax, ebx, ecx, edx, esi and edi.
2 See section 3.7.3.4.

© 1998 Océ-Technologies B.V. 84 Using MMX for image processing

Code example 17: Packing skewed pixels

a
b

c
d

Figure 81: Pixel numbering

Notice the large amount of statements required to pack the
pixels, where in the smooth filter one statement was sufficient.
Obviously, this will consume a lot of processing time.

3.7.3.3 Writing the resulting pixels

After the new pixel values have been calculated the resulting
Write bitwise pixel have to be written as bits. The C++ implementation1

collects the bits into a byte, after which the byte is written to
memory.

For the MMX implementation writing the bits this way is not
possible. Figure 82 shows an image of 16(2)x6 pixels.

After pixel 24 is processed it, along with the grayed pixels, would
have to be written to the destination array. Because the pixels
are written skewed, the row containing pixel 38 can not be
written yet (only six pixels are processed); this write would have
to be delayed two loop cycles. The two rows containing the
pixels 52 and 66 would have to be delayed four respectively six

1 See section 3.7.2.5.
2 The image width always is a multiple of eight. This is caused by the functions that add a border
to the image (see section 3.4.3.5).

//mm2=[0000 0000 0000 00FF]
movq mm0, [esi] //Read pixel a
pand mm0, mm2 //mm0=[0000 0000 0000 00 a]
psllq mm0, 48 //mm0=[00 a 0000 0000 0000]
add esi, eax
movq mm1, [esi-2] //Read pixel b
pand mm1, mm2 //mm1=[0000 0000 0000 00 b]
psllq mm1, 32 //mm1=[0000 00 b 0000 0000]
por mm0, mm1 ;mm0=[00 a 00 b 0000 0000]
movq mm1, [esi-4+eax] ;Read pixel c
pand mm1, mm2 ;mm1=[0000 0000 0000 00 c]
psllq mm1, 16 ;mm1=[0000 0000 00 c 0000]
por mm0, mm1 ;mm0=[00 a 00 b 00 c 0000]
movq mm1, [esi-6+2*eax] ;Read pixel d
pand mm1, mm2 ;mm1=[0000 0000 0000 00 d]
por mm0, mm1 ;mm0=[00 a 00 b 00 c 00 d]

sub esi, eax ;Restore original value of esi

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

88

Figure 82: Writing eight collected bits

© 1998 Océ-Technologies B.V. 85 Using MMX for image processing

loop cycles. It is obvious that writing the pixels this way requires
a complex loop structure with a number of storage spaces to
temporarily store the bits.

Shrink four rows An alternative method is to shrink the bytes to bits after and an
entire row (thus four rows of pixels) is processed. This is possible
because two nested loops are required, one to process the rows,
another to process the columns1. The inner loop of the error
diffusion algorithm can then write the calculated pixels as bytes,
after which they are shrinked by a loop that is executed after a
row is processed.
This method does not require any additional storage space
because the shrinked bytes can be written over the source
pixels. Since an A4 image scanned at 200 dpi has a width of
1580 pixels, 4x1580=6320 bytes of storage space are required to
store the four processed rows as bytes. This means that these
rows are still loaded in the level one cache, so shrinking them
requires a minimal processing time.

The uncomplicated loop structure required to shrink the bytes
No additional pointer this way has the advantage that no additional pointer is required;

after the four rows are shrinked, the destination pointer of the
inner loop is simply set to the next unused position in the array.
At the end of the inner loop this pointer points to the last byte of
the upper of the four processed row. By subtracting the image
width, the pointer can be reset to the beginning of the first of the
rows to shrink.

Therefore it has been chosen to use the second way discussed
of shrinking the bytes to bits. The loop performing the shrinking
operation reads eight bytes into an MMX register, shrinks them,
and writes one byte to the array.

3.7.3.4 The inner loop structure

Code example 18 shows the loop structure resulting from the
issues discussed in the previous sections in pseudocode. In the

Duplicate threshold second statement the threshold is duplicated four times. This is
necessary to enable four pixels to be calculated in parallel.

1 This is necessary because border pixels require special treatment.

© 1998 Océ-Technologies B.V. 86 Using MMX for image processing

Code example 18: Loop structure of the MMX implementation

The pseudocode in Code example 18 is quite self explaining.
Because this would add to much complexity, most of the
registers used are not mentioned.

Notice that because RowCounter is decremented four each loop
cycle, images with a height that is not a multiple of four will not
be

Bottom rows processed entirely. Since this only concerns three out of 2176
rows it has been decided to skip these rows and cut off the
bottom of the image later.

3.7.3.5 Masks

Generally, if a filter requires masks these are generated outside
the inner loop. Within the loop the registers they are stored in
cannot be used for other purposes.

The error diffusion algorithm however requires a large amount of
registers. The two masks required cannot be kept in registers,
because then there are not enough registers left. Therefore the

Generate masks are generated in the inner loop. This generally requires
two instructions per mask.

An alternative method of generating masks is loading them from
memory. Because this memory locating is frequently accessed it
will generally be loaded from the level one cache, so loading the
mask requires only one cycle. It has been chosen to generate
the mask because this reduces the memory bandwidth slightly,
but for more complicated masks it is also possible to load them
from memory.

Clear(ErrorArray)
Threshold=DuplicateThreshold()

RowCounter = Height
Do While (RowCounter > 0)

{
 ColCounter = 7 // Skip 7 pixels
 Do While (ColCounter < Width)

{
 mm0=Pack4Bytes(ColCounter)

 mm1=GetErrorFromAbove()
 mm3=GetInputPixels(mm0, mm1)

 mm2=GetNewPixels(mm1)
 mm1=GetErrors()

 Write4Bytes(mm2)
 PassErrors(mm1)

 ColCounter++
}

 ColCounter = 1 // Bytes => bits
 Do While (ColCounter < Width-1)

{
 Shrink8Bytes()
}

 RowCounter = RowCounter-4
}

© 1998 Océ-Technologies B.V. 87 Using MMX for image processing

3.7.3.6 Filter performance

After the inner loops of the error diffusion implementation have
been paired performance is compared to that of the unpaired
version. The results are shown in Table 11.

Image size Cycle times Improvement
unpaired paired

(pixels) (cycles/pixel) (cycles/pixel) (%)
290x509 115 94 18,3

1580x2176 114 94 17,5
Table 11: Performance gain by paring

Notice that the performance gain caused by paired is about
17% faster by pairing 17%, compared to 31% for the sharpen filter1. The reason the

improvement is less is that the complexity of the error diffusion
reduces the possibilities to pair statements. Contrary to the
sharpen, where a pairing rate of 100% has been reached, the
inner loops of the error diffusion algorithms could not be paired
perfectly. A pairing rate of 98% was the maximum feasible.

The performance of the paired MMX version and the C++
version of the error diffusion is shown in Table 12 for several
images.

The lower two images are A4 images scanned at 200 dpi.
Notice the small difference in performance for larger and smaller
images; this is caused by the fact the image is traversed
horizontally. This causes all images to benefit in the same
amount of the caches.

In Table 12 it can be seen that the performance of the MMX
MMX 2x faster than C++ implementation is a factor 2.2 better than the C++

implementation. Since a part of this performance gain is caused
by the fact that assembly code is slightly faster than compiled
C++ code, it can be concluded that for error diffusion
implementing the algorithm with MMX is still useful.
For more complex algorithms2 however, the performance gain
might not be worth the difficulties encountered when
implementing a filter with MMX Technology.

1 See section 3.5.3.11.
2 See section 3.7.1.4.

Image size Cycle times Improvement
C++ version MMX version

(pixels) (cycles/pixel) (cycles/pixel) (%) (factor)
87x16 193 95 50,8 2,0
63x96 190 98 48,4 1,9

127x96 199 95 52,3 2,1
255x320 202 92 54,5 2,2
290x509 203 94 53,7 2,2
1580x32 203 96 52,7 2,1

1580x2176 (1) 205 94 54,1 2,2
1580x2176 (2) 206 94 54,4 2,2

Table 12: Performance of the error diffusion

© 1998 Océ-Technologies B.V. 88 Using MMX for image processing

3.7.3.7 Categorising the processing time of the paired code

Figure 83 shows categorised processing time of the error
33% error passing diffusion algorithm1. Notice that 33%(2) of the processing time is
49% pack & unpack spent passing and receiving error values. Another 49% (3) of the

processing time is used to read, pack, unpack and write the
pixels. Just 4% of the processing time is needed to calculate the
new pixel values and the rounding errors.

Figure 84 shows the processing time categorised according to
the instruction type. Notice that 26% of the processing time is
required for logical and shift operations. These operations are
needed for the packing and unpacking of the pixels. Since the
extension from packed bytes to packed words is performed
automatically when manually packing the pixels, no conversion
instructions are used.

1 For more information on how the processing time is determined see section 3.4.4.8.
2 26%+7%
3 26%+23%

Read & pack
pixels
26%

Receive error
7%

Calc. pixel & error
4%

Unpack & w rite
23%

Pass error
26%

Overhead
4%

Shrink bytes
10%

Figure 83: Categorised processing time of the error diffusion

© 1998 Océ-Technologies B.V. 89 Using MMX for image processing

3.8 Bits to Bytes conversion

3.8.1 The algorithm

The images created by the error diffusion algorithm discussed in
section 3.7 contains pixels which are represented by a single bit.
These images can be sent to a print engine, but the image

Viewing application viewing application used to view the processed images cannot
read such images. In order to be able to view the images on a
PC the pixels represented with bits have to be represented by
bytes.

A pixel with the bitvalue ‘1’ has to be converted to a byte ‘255’. A
bit ‘0’ has to be converted to a byte ‘0’. Thus the one bit has to
be duplicated to all the bits of the byte.

3.8.2 The implementation

The algorithm described in section 3.8 is implemented with MMX
Technology. It has been chosen not to implement two versions
because this algorithm is not part of a processing path
implemented in the image processing path of a digital copier.

MMX version only It was chosen to implement the algorithm with MMX for two
reasons:
1. The code shrinking the bytes to bits in the error diffusion

algorithm can be adjusted to extend bits to bytes.
2. An MMX implementation reads one byte (= eight bits), and

can extend it to one quadword (=eight bytes).

Besides this, an MMX implementation can process eight pixels in
parallel. A C++ implementation can process four1 pixels in

1 By using 32 bits arithmetic.

Arithmetic
18%

Comparison
2%

Conversion
0%

Logical
9%

Shift
17%

Move
54%

Figure 84: Processing time per instruction type

© 1998 Océ-Technologies B.V. 90 Using MMX for image processing

parallel. Thus the MMX implementation can reach twice the
speed of a C++ version.

The image array is traversed by one loop. which processes the
entire array. Each loop cycle one byte is read from the array into

‘Shift’ and ‘Or’ an MMX register. The bits in the byte are shifted and or-ed in
such a way that each bit is duplicated to one byte. Duplicating
the bits could be done more efficient with the shift right, which
duplicates the most significant bit. Unfortunately this operation
cannot be performed on packed bytes.

Since the extension from bitwise represented pixels to bytes is
not part of a processing path implemented in a copier, and its
implementation is fairly straightforward, its implementation is not
discussed any further.

3.9 Removing borders

3.9.1 The algorithm

In section 3.3 the implementation of the function which adds a
borders to the image is discussed.

No extra logic In a digital copier (or printer) no logic is needed to remove the
borders. The entire image is sent to the print engine, but some of
the wires are not connected. Since the test images processed by
the demo program should have the same size1 as the original
images, the added borders have to be removed by an additional
algorithm.

3.9.2 The implementation

Since only the MMX version of the processing path adds borders
to the images, it is obvious that the function that removes the

MMX version only borders is also implemented with MMX. Besides this, the
function that adds the borders is also implemented with MMX.

The implementation of the border removing function is almost
identical to that of the border adding function. The only
difference is that now some pixels are not copied from the
source array. With the methods described in the previous
sections, this algorithm can easily be implemented. Since the
implementation is quite uncomplicated it is further not discussed
here.

3.10 The total print processing path

3.10.1 ‘Warming up’ effects

When a sequence of algorithms is executed, the first algorithm
Caches will ‘warm up’ the caches. This means that data required by the

other algorithms is loaded into the caches by the first.

Because of its limited size, the level one cache will not be
‘warmed up’, but the level two cache will. For large images, such
as the scanned A4 image, this will have little effect because
these images cannot be stored in the level two cache. When

1 To enable a pixel-wise comparison between unprocessed and the processed image.

© 1998 Océ-Technologies B.V. 91 Using MMX for image processing

processing small images however the image will be loaded into
the level two cache during the entire processing path. This is one
of the reasons small images are sometimes processed much
faster than large images.

In the implemented processing path the ‘warming up’ will
primarily be done by the RGB color plane separation. Because
both the C++ version of the processing path and the MMX
version benefit

Influences C++ and MMX in the same way from the ‘warming up’, it has little influence on
the performance comparison between the C++ and the MMX
versions. Similar, all the algorithms in the path benefit in the
same way, so the performance comparison between the various
algorithms is not influenced.

3.10.2 Algorithm performance

Figure 85 shows the performance of the C++ and the MMX
200 dpi A4 versions of the implemented algorithms. The chart shows the

number of pixels of the 200 dpi A41 image processed per second
166 MHz on a 166 MHz CPU.

Performance For kernel operations, such as the smooth and sharpen, as well
as for the RGB to CMYK conversion the MMX version is a factor
four to five faster than the C++ version. For more complex
algorithms, such as the error diffusion, the performance of the
MMX version is a factor two of that of the C++ version.

1 1580x2176 = 3,438,080 pixels

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Smooth Sharpen RGB to CMYK Error diffusion

pixels/second
(x1000)

C++

MMX

Figure 85: C++ vs. MMX for 200 dpi A4 (1580x2176) (166 MHz)

© 1998 Océ-Technologies B.V. 92 Using MMX for image processing

3.10.3 Improvements of the processing path

Tiling

In Table 5 and Table 8 it can be seen that the kernel operations
Small images process small images about 50% faster than large ones. By

splitting large images into a number of small, overlapping tiles
(see section 3.7.3.1) the performance of these algorithms can be
improved.

Additionally, all algorithms can be applied to the tile before the
next tile is processed. This way the tile can be loaded from the
cache instead of the slow main memory.

Merging algorithms

Since reading and writing the pixels costs a considerable amount
of the processing time, it might be interesting to merge a number
of algorithms into one, slightly more complex algorithm.

This is especially interesting for algorithms which are executed
right after each other. The RGB color plane separation and the
smooth operation for example can quite easily be merged into
one algorithm. This algorithm first reads a block of 3x3 color
pixels (=3x3x3 bytes). Then it separates the three color planes
and applies the smoothing kernel 1.

Planes parallel

The performance of the halftoning algorithm is limited heavily by
Manual packing the manual packing of the pixels. The algorithm now processes

four pixels of one color plane simultaneously. An alternative way
of processing four data elements in parallel is to process one
pixel of each color plane simultaneously. Since the RGB to
CMYK conversion also has to unpack the pixels manually, this
will result in a performance gain for both the color conversion
and the error diffusion.

In Figure 56 it can be seen that eight percent of the processing
time of the RGB to CMYK conversion is required to unpack and
write the pixels. Figure 83 shows that 26% of the processing
time of the error diffusion is needed to read and pack the pixels.
By writing the four color planes to one array the processing time
required for these two parts of the code can be reduced
drastically. In fact this time can be reduced almost to zero.

White detection

In section 3.6.3.10 it can be seen that most of the time needed
for the RGB to CMYK conversion is used to interpolate the
CMYK value. By detecting if a white pixels is processed the
performance

RGB to CMYK of the RGB to CMYK conversion can be improved. The actual
improvement heavily depends on the image processed. When
processing an entirely white image the time necessary to
process the image can be reduced to one-fourth of the time

1 Obviously the algorithm can be optimised by buffering eight of the separated pixels. This way
only one color pixels has to be separated per smoothed pixel.

© 1998 Océ-Technologies B.V. 93 Using MMX for image processing

currently needed. For images containing no white pixels the
processing time will increase slightly.

Adding borders

Scan path Finally, when using only the scanning section of the processing
path, the performance can be slightly improved by adding less
borders to the image.

On page 81 it can be read that the error diffusion algorithm
requires additional borders to be added to the source image.
This increases the image size of a 200 dpi A4 image with about
0.9%. Since the smooth and sharpen algorithms do not require
this additional border their performance can be increased a little
bit.

© 1998 Océ-Technologies B.V. 94 Using MMX for image processing

© 1998 Océ-Technologies B.V. 95 Using MMX for image processing

4 Architecture developments

4.1 The IA32 architecture

The IA321 architecture is commonly used in PC’s. IA32
processors with MMX are for example:
• Intel Pentium with MMX
• Intel Pentium Pro
• Intel Pentium II with MMX
• AMD K6
• Cyrix 6x86MX
• IDT Winchip C6

In the next sections these processors will shortly be discussed,
focusing on their possibilities for image processing. The Pentium
with MMX is discussed in section 2.4.

4.1.1 Intel Pentium Pro

The Pentium Pro was intended to be the successor of the
Pentium. The major improvements were:
1. Dynamic execution.
2. Improved superscalar architecture.
3. On-chip level two cache.

Dynamic execution

Dynamic execution is a technique where, instead of executing
instructions in the sequence the programmer wrote them, the
CPU determines the order in which they are executed. This way
more units can be used simultaneously. On the Pentium the
programmer had to re-order the statements; now the CPU re-
orders them automatically2.

Micro instructions The processor does not execute assembly instructions but micro
instructions. An assembly instruction written by the programmer
(or the compiler) is broken down into a number of micro
instructions. At a certain moment the processor might execute
for example the light gray instructions shown in Figure 86 (the
dark gray instruction have been executed previously). Instruction
4a could be executed before the previous instructions were
finished (it does not use results produced by them).

Assembly instr: 1 2 3 4

Micro instr: 1a 1b 1c 1d 2a 3a 3b 4a 4b 4c

Figure 86: Dynamic execution sequence

Dynamic execution particularly improves the performance of
Unoptimised code unoptimised code. But also the combination of the superscalar

architecture and dynamic execution has possibilities to improve
performance. On the Pentium, two pairing instructions both have
to be finished before the next pair is started. If one instruction of

1 IA32 is an acronym for Intel Architecture with 32-bit opcodes.
2 This way of re-ordering the instructions is also known as out-of-order execution.

© 1998 Océ-Technologies B.V. 96 Using MMX for image processing

the pair takes much more time than the other this results in a low
CPU utilisation. In these situations dynamic execution allows one
instruction of the next pair the be started. This way, while one
pixel is calculated, the data required for the next can be read
from the memory.

Branch penalty A major disadvantage of dynamic processors is the high penalty
for mispredicted branches (10-20 cycles). To help avoid
branches conditional move instructions are available.

Improved superscalar architecture

The Pentium can execute two instructions per cycle. The
Pentium Pro can execute up to three micro operations 1 per
cycle. Besides this, more units have been added to allow more
types of operations to be executed in parallel. A memory read
now can be paired with a memory write.

On-chip level two cache

On the Pentium Pro’s predecessors the level one cache was
placed on the same chip as the processor core. The level two
cache was placed in separate chips on the motherboard, causing
the level two cache to run at a much lower speed than the
processor.

On the Pentium Pro however, a level two cache of 256 or 512
KB is integrated in the CPU, running at the same clock speed as
the CPU. This increased the performance significantly because
by reducing the distance between the level one level two cache
the access time of the level two cache could be reduced.

Placing the level two cache on the same chip as the CPU
caused the chip size of the Pentium Pro to be much larger than
that of the

Drop-out rate Pentium. Because of the increased chip size the drop out rates
during the chip’s production reached an all time high. This
caused the production costs of the Pentium Pro to be the highest
of all Intel chips. For this reason, Intel stopped producing the
Pentium Pro in the mid of 1998.

4.1.2 Intel Pentium II

Soon after the introduction of the Pentium Pro its high
production costs forced Intel to re-design the chip. This resulted
in the Pentium II. One of the differences between the Pentium II
and

Level two cache the Pentium Pro is that on the Pentium II the level two cache is
no longer placed on the same chip as the processor 2. The level
two cache now runs at half of the CPU speed.

Additionally MMX Technology was added, and the clock rates
were increased further. The Pentium II currently is available at
clock speeds ranging from 233 to 400 MHz. Intel plans to crank
up the clock speed to 500 MHz.

1 Generally an assembly instruction is decoded to one micro instruction. Instructions that use
complex addressing modes (MOV EAX, [EPB+32] for example) and Add-With-Carry instructions are
decoded into two, pop’s into three and push- es into four micro instructions.
2 The level two cache’s chips are placed into the same package as the processor.

© 1998 Océ-Technologies B.V. 97 Using MMX for image processing

Intel also plans to increase the level two cache size to up to two
‘Xeon’ MB (code name ‘Xeon’). Although this processor (to be released

in June 1998) will be quite expensive, this could be an
interesting processor for image processing. By splitting the
image in half, one color plane1 can be loaded into the level two
cache during the entire processing path, reducing the time
required to read and write the pixels.

In the next two paragraphs two recently introduced
improvements of the Pentium II will be discussed; the 100 MHz
system bus and MMX2.

100 MHz systembus

The systembus is the main data highway in a personal computer
system. On early Pentium II’s this bus ran at speeds of 50, 66,
75 or 83 MHz, depending on the installed CPU. Currently Intel is
introducing Pentium II’s which support a bus speed of 100 MHz.
Since the systembus traditionally is one of the main bottlenecks
in high performance PC’s, it is expected that the performance
will improve significantly. The 100 MHz is not only supported by
Intel, but also by companies that build Intel clones, such as
AMD, Cyrix and IDT.

In 1999 Intel plans the introduction of a 200 MHz system bus.
This will further improve the overall performance of PC’s.

MMX2(2)

By the end 1998 a new version of the Intel Pentium II called
‘Katmai’ ‘Katmai’ will be available. This CPU not will only run at higher

clock speeds than its predecessors, but will also contain the new
MMX2 instruction set.

Although Intel has not yet published the MMX2 instruction set,
the

Floating point primary improvement seems to be the addition of floating point
MMX instructions, which operate on eight separate registers. The
author of [13] suggests that Intel can make the eight new
registers 40 bytes (240 bits) large. Since Intel floating point units
typically operate on 80 bit values this would enable four 80 bit
values or eight 40 bit values to be processed in parallel.

Integer Besides this MMX2 contains some new integer instructions:
• Packed shuffle.
• Insert/extract word.
• Packed average on bytes & words.
• Packed unsigned multiply on words (MMX multiplies signed).
• Masking.
• Minimum and maximum operations on bytes & words.
• A prefetch instruction.

Especially the prefetch instruction will be very useful for image
processing. The insert and extract word instructions are also
useful, especially for manual packing of pixels. Minimum and

1 One color plane = 1580x2176 pixels = 3,438,080 B = 3.28 MB.
2 Source: “Windows Source Home Page” [13]. The instruction set was retrieved by Clive Turvey.
He disassembled a demo program that was placed accidentally on an Intel home page. Intel has
not confirmed this, so this paragraph should be considered provisional.

http://www.tbcnet.com/~clive/
http://www.tbcnet.com/~clive/

© 1998 Océ-Technologies B.V. 98 Using MMX for image processing

maximum operations can be used for color stretch and edge
detection algorithms.

With the introduction of MMX2 Intel also will improve the
developer environment for MMX. Currently MMX instructions
can only be used in in-line assembly. For MMX2 Intel plans to
release a compiler plug-in that allows the usage of MMX in
standard C++ code.

4.1.3 AMD

AMD is the main competitor of Intel. Before the introduction of
the

K6 high speed Pentium II versions, the AMD K6 processors out-
performed the Intel processors. This was primarily caused by
AMD’s more elegant processor design. The later versions of the
Pentium II used Intel’s more advanced chip technology to reach
higher clock speeds. This way Intel re-gained its position at the
top of the market. AMD now targets at the lower end of the
market by pricing its CPU’s 25% below the equivalent Intel CPU.

The K6 has a level one cache of 64 KB. This is twice the size of
that of the Pentium II. However, since this is by far too small to
store scanned images it is expected that this will not have a lot
of influence on the image processing performance.

AMD’s more advanced processor design resulted in low
execution latencies and no decode pairing restrictions. The
penalty for misaligned data is only one cycle, compared to three
cycles on Pentium (II/Pro) processors.

K6-2: MMX3D AMD’s K6-2(1) incorporates MMX3D. MMX3D is not only
supported by AMD, but also by Cyrix, IDT and Microsoft. The
main difference between MMX and MMX3D is that MMX3D
incorporates SIMD floating point instructions, similar to MMX2.
Except a prefetch and FEMMS (Fast Entry/Exit MMX State)
instruction MMX3D does not have the improved MMX
instructions MMX2 has.

Compatibility It is important to realise that although they have some
instructions in common, MMX3D and MMX2 are not compatible.

In the second half of 1998 AMD plans to introduce the K6 3D+.
In this processor the level two cache will be placed on the same
chip the CPU is placed on to allow the cache to run at the same
speed as the CPU does. Unlike the Pentium II, the conventional
level two cache on the motherboard is used as a level three
cache, similar to Digital’s Alpha. The K6 3D+ will be introduced
at a clock speed of 350 MHz, after which it will quickly move to
400 MHz and more.

4.1.4 Cyrix

Another important competitor of Intel is Cyrix. Cyrix operates
primarily on the low-cost side of the market where it managed to
capture a stable market share.

1 The K6-2 was launched in the first half of 1998 as the successor of the K6. The K6-2 is also
known as K6-3D. MMX3D is also known as 3Dnow.

© 1998 Océ-Technologies B.V. 99 Using MMX for image processing

6x86MX The 6x86MX is Cyrix’ latest CPU. It is a non-superscalar,
pipelined architecture that contains several advanced features,
such as branch prediction and speculative execution.
On 16 bit programs like Windows 95 the 6x86MX slightly
outperforms AMD’s K6 and the Pentium with MMX. On 32 bit
programs like Windows NT however, the performance is

M2 mediocre. A more advanced version of the 6x86MX is the M2.
This basically is a superscalar 6x86MX with two separate
pipelines.

Similar to AMD, Cyrix CPU’s are quite well designed, but cannot
keep up with the high-end Intel CPU’s. This is, among others,
caused by the low clock speeds Cyrix CPU’s run on.

The MMX Technology of the 6x86MX and M2 is fully compatible
with Intel’s. Performance tests show that its MMX performance is
the lowest of all MMX CPU’s available. Besides all the MMX
instructions, the 6x86MX also contains some extended MMX
instructions, some of which are useful for image processing:
• Packed magnitude (= absolute value compare).
• Packed conditional move (bytes).
• Packed Average (bytes).

Especially the conditional move and the packed magnitude
functions can be very useful for image processing. The first has
numerous applications, the latter can for example be used for
edge detection algorithms.

Cyrix has announced an improved version of MMX called
MMXFP to be incorporated in the ‘Cayenne’, which is to be
released in the second half of 1998. Cyrix agreed with AMD that
MMXFP will be identical to MMX3D.

4.1.5 IDT

IDT is a relatively unknown CPU producer. In the first half of
1998

Winchip C6 IDT announced its Winchip C6 CPU, which is claimed to have
about the same performance as the Pentium MMX for integer
operations. On floating point and MMX code however the C6 is
slower than the Pentium.

The C6 does not incorporate the advanced features the Pentium
II, K6-2 or the 6x86MX do; it simply is a classic but straight
forward CPU with a large level one cache. The C6 has about the
same price tag the 6x86MX has.

The successor of the C6, the C6+ will incorporate AMD’s
MMX3D extensions. The release date of the C6+ is not yet
published.

4.2 The PowerPC architecture

The PowerPC processors are designed by Motorola. They are
Mackintosh used for various applications, including Power Mackintosh

computers and embedded control applications. PowerPC CPU’s
are currently produced by two vendors; Motorola and Samsung.

The latest improvement of the PowerPC architecture is the
AltiVec addition of a vector processing SIMD technology called AltiVec.

© 1998 Océ-Technologies B.V. 100 Using MMX for image processing

AltiVec instructions operate on 128 bits 1 wide registers called
Vector Register File (VRF). The AltiVec programming model
incorporates 32 vector registers which can be used in the
following configurations 2:
• 16 bytes (8 bit)
• 8 halfwords (16 bit)
• 4 words (32 bit)
• 1 quadword (128 bit)

A total of 162 new instructions are available to process these
data elements in parallel.

The AltiVec programming model incorporates all of the MMX
instructions. Additionally some other instructions are available,
some of which are very useful for image processing:
• Sum across
• Multiply
• Multiply-sum (multiply and add to other register)
• Average
• Maximum
• Minimum
• Logical NOR
• Rotate instructions
• Splat (duplicate one element through register)
• Permute (Shuffle elements)
• Select element
• Prefetch data stream
• Various floating point arithmetic

Prefetch The prefetch instruction can prefetch up to four data stre ams.
First the stream is initialised by selecting a memory area to be
loaded. The prefetcher then automatically loads these locations
into the level one cache. In chapter 3 it can be read that memory
accesses are a significant bottleneck. By using a prefetch
instruction these delays can be avoided.

Splat Another useful instruction for image processing is the splat
instruction; this instruction duplicates one byte or halfword
through an entire register. The splat instruction also operates on
immediate values.

Permute The permute instruction allows any byte in a register to be
moved to another position. This can for example be used to re-
order values in one cycle.

All AltiVec instructions support both saturation and overflow
arithmetic. Overflow arithmetic is generally used, but for image
processing saturation arithmetic is very useful.

Intel architecture CPU’s use the little-endian byte numbering
scheme to store multi-byte data in the memory3. Motorola CPU’s
traditionally use the big-endian scheme, where the bytes are
stored reverse ordered. The AltiVec architecture however also
supports the little endian scheme.

1 MMX registers are 64 bit wide.
2 Notice that the names of the data types are not the same as the names Intel uses.
3 See page 19.

© 1998 Océ-Technologies B.V. 101 Using MMX for image processing

Misaligned access A weak point of the AltiVec architecture are the way misaligned
memory accesses1 are handled. If a quadword is read from
memory for example the effective address is calculated by
making the four least significant bits zero. If the access was
misaligned this results in a memory read of the wrong data. A
memory read on address 0x02F03 for example (Figure 87)
should read the grayed data. Instead, the squared bytes are
read.

AltiVec technology provides special instructions to merge
misaligned datablocks. On Pentium (II/Pro) CPU’s misaligned
memory accesses cause a penalty of three cycles. An AltiVec
CPU can merge two datablocks retrieve the misaligned
datablock in the same number of cycles too.

1 On AltiVec CPU’s misaligned memory accesses are accesses that are not aligned to the natural
boundary of a data element. For example a halfword must be aligned on a two byte boundary.
See section 2.4.4 for more information on alignment on the Pentium CPU.

1 quadword=128 bits

0x02F1F
0x02F0F
0x02F00

Figure 87: Misaligned read on AltiVec

© 1998 Océ-Technologies B.V. 102 Using MMX for image processing

© 1998 Océ-Technologies B.V. 103 Using MMX for image processing

5 Evaluation & conclusion

5.1 Implementation issues

When implementing image processing algorithms with MMX
Technology a number of issues have to be taken in account.
These issues can be devided into three categories:
1. Architecture related
2. Algorithm related
3. Developing environment related

Architecture related issues

The Pentium MMX architecture has some limitations that
influence the way image processing algorithms are
implemented.

Memory accesses First of all, memory accesses (to load pixels for example) take a
relatively high amount of CPU clock cycles. This is caused by
the fact that memory chips do not reach the high clock speeds
the CPU does. Although cache memories improve the memory
bandwidth, scanned images cannot be entirely stored in them.
Therefore an algorithm has to be implemented in such a way
that the memory bandwidth is used optimally (caches).

Future processors, such as the Intel Pentium II ‘Katmai’, AMD
K6-2, and Motorola AltiVec, incorporate instructions that allow
prefetching of pixels by special processing units.

Instructionset Second, the Pentium with MMX lacks some instructions required
for image processing, such as:
• Masking
• Shuffle or permutate
• Insert- and extract word
• Minimum/maximum/average operations

To perform such operations a number of instructions are
required, causing a performance reduction.

Intel’s successor of MMX (MMX2) is expected to add some of
these missing instructions, but not all. An insert/extract word
instruction for example is not available. AMD’s successor of
MMX (MMX3D or 3Dnow!) focuses on SIMD floating point
operations and adds no new SIMD integer instructions to MMX.
The Motorola AltiVec instructionset contains all of the
instructions required for image processing. Not only minimum,
maximum and average instructions, but also insert/extract word
and shuffle instructions are available.

Data types Third, many MMX instructions do not operate on the eight bit
data scanned images typically consist of. For most algorithms
this is no real limitation because they require the data to be
extended to larger data types anyway, but for some algorithms
(color stretch for example), this limits the number of pixels to be
processed in parallel to four, instead of eight.

Both Intel’s MMX2 and AMD’s MMX3D are not expected to
increase the number of data elements that can be processed in
parallel. For as far a the support of eight bit data is concerned:

© 1998 Océ-Technologies B.V. 104 Using MMX for image processing

although MMX2 adds some integer SIMD instructions the
support of eight bit data has not been improved.
AltiVec CPU’s process twice the amount of data elements MMX
CPU’s do (128 bit registers vs. 64). This means that 16 bytes or
eight words1 can be processed in parallel. Additionally, some of
the more advanced AltiVec instructions, multiply-and-add for
example, internally extend the data to prevent rounding errors.
All AltiVec instructions operate on 8- and 16 bit data.

Immediate operands Fourth, most of the MMX instructions do not accept immediate
operands (constants). Multiply instructions for example cannot
multiply a value with a constant directly, so the constant has to
be loaded from memory into a register first (the move instruction
does not accept immediate operands either). None of the MMX
successors is expected to accept immediate operands.

Registers Fifth, Intel architecture CPU’s do not have enough registers
available to implement complex image processing algorithms
without storing register temporarily in the memory. Because of
the relatively low memory bandwidth this causes the
performance to decrease. Additionally the small number of
registers limits the possibilities to store immediate values in
registers during the entire processing loop.

Both Intel’s and AMD’s MMX successors are not expected to
contain more registers than MMX does. AltiVec CPU’s have 32
registers, which is a considerable improvement over the eight
MMX registers.

Image width Finally, a lot of image processing algorithms require special
treatment of border pixels. Since SIMD CPU’s process a fixed
number of pixels in parallel, the image width has to be a multiple
of the number of pixels processed in parallel. To process all
types of images a border has to be added to some images in
order to extend the image width. In a digital copier this is not
necessary because the scanner can be configured to scan the
optimal image width.

Algorithm related issues

Some of the image processing algorithms (lookup table and
error diffusion for example) heavily limit the possibilities for
parallel

Collect pixels processing. These limitations force the programmer to collect
the pixels to process with a number of instructions to allow
parallel processing. This occurs with error diffusion for example.

Lookup operations can by definition not be performed in parallel,
unless a special lookup table is created. Since such a lookup
table’s size will be increased exponentially this is generally not
possible for image processing.
These algorithm limitations, coupled to the described limitations
of the MMX instructionset, cause the performance increasement
to be reduced significantly.

MMX2 and AltiVec contain insert- and extract word instructions
that improve the possibilities to collect pixels. It is therefore

1 For simplicity’s sake the Intel naming is used. Motorola calls 16 bit values half words and 32 bit
values words. When speaking of words Intel means a 16 bit quantity.

© 1998 Océ-Technologies B.V. 105 Using MMX for image processing

expected that they will perform better on algorithms with poor
parallelability.

Developing environment related issues

Currently MMX Technology can only be used in in-line assembly.
This increases the time needed to implement an algorithm
considerably, as well as the chance of program ‘bugs’.

VTune Besides this, only one development tool is available; VTune.
VTune monitors an executing program and shows the time
necessary for each statement. Additionally VTune indicates the
cause of some execution delays. Unfortunately the current
version of VTune (2.5) contains many ‘bugs’, making its usage
very unpleasant.

Intel has announced that with MMX2 a much improved version
of VTune will be released. Especially the possibilities to analyse
C++ code will be improved. Additionally Intel has recently
released a compiler plug-in that allows the usage of MMX(2) in
standard, C++ like statements. This is expected to decrease the
time needed to implement an image processing algorithm
considerably.

5.2 Performance

For kernel operations (smooth, sharpen), as well as for the RGB
to CMYK conversion the MMX implementation is a factor four to
five faster than the C++ version. For more complex algorithms,
such as error diffusion, this is a factor two.

Most of the performance gain is reached by processing multiple
Elements parallel (generally four) data elements in parallel. Additionally MMX

implementations benefit from the fact that they have to be
written

Assembly in in-line assembly, which improves the performance slightly.
Finally, some of the MMX processor units are faster than their
conventional equivalents, from which especially the RGB to
CMYK conversion benefits (multiply unit). However, in future
(Pentium II) CPU’s these units will also be improved, thus
eliminating MMX’s advantage.

A lot of (potential) performance is lost when a certain algorithm
Collecting pixels requires the pixels to be collected manually, instead of reading

them as one sequential stream from memory. A similar problem
occurs when the format of the data elements to be processed is
not the same as the format in which the other input of the
algorithm is received. This occurs for example with the
interpolation1, where the weight of each of the angular points has
to be re-ordered before the multiplication with the angular point
can be performed.
The successors of MMX will contain insert- and extract word
instructions that help to avoid or relieve these problems.

Generally it can be said that, although the MMX instructionset
lacks a number of specific image processing instructions, the

Linear improvement performance increases2 almost linear with the number of
elements processed in parallel, provided that no manual

1 Part of the RGB to CMYK conversion.
2 Compared to a C++ implementation.

© 1998 Océ-Technologies B.V. 106 Using MMX for image processing

collecting or re-ordering is required. For the algorithms 1 where
this is required the performance gain is about half of the number
of elements processed in parallel. It is expected that for
algorithms with more complex calculations the gain will be
slightly more2.

An important remark to be made is that the number of pixels
processed in parallel is limited by the data type of intermediate
results (words instead of bytes). Extending data temporarily is
often done in image processing algorithms to avoid large
rounding errors. Besides this, sometimes data has to be
extended because MMX instruction operate on certain data types
only.
Generally the 8 bit pixels have to be extended to 16 bits. All
MMX instructions operate on 16 bit values. MMX can process
four 16 bit data elements in parallel (eight 8-bit values).

The performance gain actually reached (max. factor five) is less
Intel than the gain Intel predicted (factor six). This is primarily caused

by the fact that Intel processes small images only. These images
can be stored entirely in the fast level one cache memory.
Another reason Intel’s prediction of the performance gain is too
optimistic is that Intel only implements algorithms with an
excellent parallelability and the possibility to process eight pixels
in parallel, instead of four.

5.3 Recommendations

Currently MMX’s main limitations are the instructionset, the
memory bandwidth and the lack of registers. Alternatives of
MMX contain both an improved instructionset and have ways to
improve the memory bandwidth. For image processing the Intel

MMX2 Pentium II ‘Katmai’ with MMX2 and especially the Motorola
AltiVec PowerPC with AltiVec are the most promising CPU’s. The latter

has the potential to reach twice the speed MMX2 does because
the AltiVec registers can contain twice the amount of pixels an
MMX(2) register can. Additionally the AltiVec has four times the
number of registers MMX(2) has. Therefore further research on
MMX2 and especially AltiVec is recommended.

Another limitation of image processing on a PC lies in the fact
that

Windows NT Windows NT was not designed for (semi-) real-time applications.
Due to Windows NT’s multitasking system an application’s
performance can fluctuate considerably. This can be improved
by shutting down large parts of the operating system, but
generally such a solution cannot be used (because the PC also
performs other tasks for example). Therefore further research on
how to reach a constant application performance on a Windows
NT platform is recommended.

1 For error diffusion and the color conversion. Only for error diffusion this was actually measured.
Test indicate that when the C++ version of the color conversion uses a one-cycle multiplier the
performance gain of the MMX version is about a factor two.
2 Because the amount of processing time required for pixel-collection is relatively low compared
to the time needed to process the collected pixels.

© 1998 Océ-Technologies B.V. 107 Using MMX for image processing

6 Literature

1. Rutten, R, An introduction to MMX, Océ internal report, 1997

2. Intel MMX Technology at a Glance, Intel Corporation, 1997,
Order number 243100-003

3. Intel Architecture Technology Overview, Intel Corporation,
1997, Order number 243081

4. Intel Architecture MMX Technology Developer’s Manual ,
Intel Corporation, 1997, Order number 243013

5. Pentium Processor Family Developers Manual , Intel
Corporation, 1997, Order number 241428-05

6. Intel Architecture MMX Technology Programmer’s
Reference Manual, Intel Corporation, 1997, Order number
243007

7. Pentium and Pentium Pro Processors and Related Products ,
Intel Corporation, 1997, Order number 241732-004, ISBN 1-
55512-265-5

8. Intel Architecture Optimization Manual, Intel Corporation,
1997, Order number 242816-003

9. Schmit, M. L., Pentium Processor Optimization Tools,
AP Professional, 1995, ISBN 0-12-627230-1

10. Rosendahl, J. J. A, Implementing image processing
algorithms on SIMD architectures, Océ internal report, 1998

11. Fog, A, How to optimize for the Pentium Processor, 1998,
http://www.announce.com/agner/assem/

12. AltiVec Technology Programming Environments Manual,
Motorola Inc., 1998, http://www.motorola.com/AltiVec/

13. Turvey, C, Windows Source Home Page, V
Communications, 1998, http://www.tbcnet.com/~clive/

14. AMD-3D Technology Manual , Advanced Micro Devices Inc.,
1998, Publication number 21928.

15. IDT Winchip C6 Processor data book , 1997, Centaur
technology Inc., http://www.winchip.com

http://www.announce.com/agner/assem/
http://www.mot.com/SPS/PowerPC/AltiVec/facts.html
http://www.tbcnet.com/~clive/
http://www.winchip.com
http://www.amd.com/products/cpg/cpg.html
http://developer.intel.com/drg/mmx/manuals/
http://developer.intel.com/drg/mmx/manuals/
http://developer.intel.com/drg/mmx/manuals/
http://developer.intel.com/
http://developer.intel.com/
http://developer.intel.com/

© 1998 Océ-Technologies B.V. 108 Using MMX for image processing

© 1998 Océ-Technologies B.V. 109 Using MMX for image processing

Appendix A: MMX instruction set summary

Category Mnemonic Data type Description
Arithmetic PADD

PADDS
PADDUS
PSUB
PSUBS
PSUBUS
PMULH
PMULL
PMADD

B,W,D
B,W
B,W
B,W,D
B,W
B,W
W
W
WD

Add with wrap-around on [byte, word, doubleword]
Add signed with saturation on [byte, word]
Add unsigned with saturation in [byte, word]
Subtraction with wrap-around on [byte, word, doubleword]
Subtract signed with saturation in [byte, word]
Subtract unsigned with saturation on [byte, word]
Packed multiply high on words
Packed multiply low on words
Packed multiply on words and add resulting pairs

Comparison PCMPEQ
PCMPGT

B,W,D
B,W,D

Packed compare for equality [byte, word, doubleword]
Packed compare greater than [byte, word, doubleword]

Conversion PACKUS
PACKSS

PUNPCKH
PUNPCKL

WB
WB,DW

BW,WD,DQ
BW,WD,DQ

Pack words into bytes (unsigned with saturation)
Pack [words into bytes, bytes into words] (signed with
saturation)
Unpack (interleave) high-order [bytes, words, doublewords]
Unpack (interleave) low-order [bytes, words, doublewords]

Logical PAND
PANDN
POR
PXOR

Q
Q
Q
Q

Bitwise AND
Bitwise AND NOT
Bitwise OR
Bitwise XOR

Shift PSLL

PSRL

PSRA

W,D,Q

W,D,Q

W, D

Packed shift left logical [word, doubleword, quadword] by
amount specified in MMX register or immediate value
Packed shift right logical [word, doubleword, quadword] by
amount specified in MMX register or immediate value.
Packed shift right arithmetic [word, doubleword, quadword] by
amount specified in MMX register or immediate value

Data transfer MOV D,Q Move [doubleword, quadword] to MMX register or from MMX
register

FP & MMX
State

EMMS Empty MMX state

B = Byte
W = Word
D = Doubleword
Q = Quadword

	Untitled

