

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

MASTER’S THESIS

Architecture Reconstruction
of Industrial Object-Oriented

Software

A Case Study

by
A. Wierda

Supervisors:

Dr. L.J.A.M. Somers
Ir. H.M.J.M. Dortmans

Eindhoven, August 2005

 i

Disclaimer

The writer was enabled by Océ-Technologies B.V. to perform research that partly forms the
basis for this report. Océ-Technologies B.V. does not accept responsibility for the accuracy of
the data, opinions and conclusions mentioned in this report, which are fully for the account of
the writer.

 ii

A Abstract
The architecture of a software system represents a blueprint of the system. Having an up to
date architecture description is an important prerequisite for software maintenance, which
represents a large portion of a software project’s total costs. In practice however such a
description is often not available.

This thesis focuses on reconstructing the as-built architecture of large object-oriented
systems from their source code. In literature several types of methods for this are described,
which are summarised in this thesis. After an extensive literature study this thesis describes
two case studies that apply the two most prominent automatic methods, pattern detection and
architectural clustering, to a large industrial object-oriented system called the Océ Controller.

Pattern detection methods discover recurring solutions in a system’s implementation, for
example design patterns in object-oriented source code. Usually this is done with a pattern
library. This has the disadvantage that the precise implementation of the patterns must be
known in advance. The method used in our first case study does not have this disadvantage.
It uses a mathematical technique called formal concept analysis and is applied to find
structural patterns in two subsystems of the Océ Controller. The case study shows that it is
possible to detect frequently used structural design constructs without upfront knowledge.
However, even the detection of relatively simple patterns in relatively small pieces of software
takes a lot of computing time. Since this is due to the complexity of the applied algorithms,
applying the method to large software systems like the complete Océ Controller is not
practical. They can be applied to its subsystems though, which are about five to ten percent of
its size.

Architectural clustering uses mathematical clustering to group closely related source code
elements into higher-level abstractions, usually for procedural software. In our second case
study clustering is used to group classes of an object-oriented system into subsystems. The
clustering process is based on the structural relations between the classes. More precisely,
on associations, generalizations and dependencies. The clustering is performed with a third
party tool called Bunch, which is a clustering tool for procedural software that, to our
knowledge, has not been previously applied to object-oriented software. In the case study the
clustering method has been used to reconstruct the architecture of the last two versions of the
Océ Controller. Compared to other clustering methods the results come relatively close to the
result of a manual reconstruction. However, some manual refinement is still needed.
Performance wise the clustering takes a significant amount of time, but not too much to make
it unpractical.

The clustering is based on the structural relations between the classes. To our knowledge no
work is published on the importance of the different relationship-types for the clustering result
and how best to incorporate this information in the clustering process. We experimented with
different combinations of relationships and different ways to use this information in the
clustering process. The results clearly show that dependency relations are vital to achieve
good clusterings.

To our knowledge clustering methods reported in literature are always based on information
of a single version. If multiple versions of a system have been released this leaves a lot of
information unused. In our case study we based the clustering on information from multiple
versions and compared the result to that obtained when basing the clustering on a single
version. We experimented with several combinations of versions. If the clustering was based
on relations that were present in both the reconstructed and the first version this led to a
significantly better clustering result compared to that obtained when using only information
from the reconstructed version.

 iii

B Preface
In the summer of 2004 I was discussing the possibilities for a graduation assignment with
various people at Océ. Most assignments were in the field of improving an existing system, or
determining how a system has been implemented. The latter was necessary to facilitate the
further evolution of these systems. Typically, the documentation was not up to date with the
implementation, and the systems were relatively large and complex. Since an up to date
description of a system’s essential parts is a prerequisite for successful evolution, we decided
to focus on the reconstruction of software architectures.

A software architecture represents a blueprint of a software system that describes its
fundamental organisation. Architecture reconstruction recovers lost parts of this blueprint. The
term “architecture” raises the analogy to construction architectures of, for example, buildings.
When buildings require extensions or renovations, the builders need to understand the
existing structure. For example they need to know the locations of pipes and support beams,
and the strength of foundations. Otherwise they risk damaging the existing building during
their work. Therefore the builders study the existing structure before making any changes.
Architecture reconstruction of software systems does the same of software. It recovers the
architecture of an existing software system with the aim to facilitate future changes.

During the project we focussed on the reconstruction of the architecture of large software
systems. The size of these systems places and extra burden on the reconstruction process.
In two case studies we applied two automatic architecture reconstruction techniques to a
large software system. The two techniques have in common that they reduce the amount of
information given to developers, yet preserve the essence of the architecture. Initially we
focussed on the detection of design patterns that are frequently used in the implementation.
Knowledge of these design patterns can be used to understand systems more efficiently.
After some disappointing results that were mainly due to the inherent complexity of the used
algorithms, we shifted our focus to another frequently used reconstruction technique called
architectural clustering. This technique groups the structural elements of a system into
abstract entities. This is necessary to prevent developers from being overwhelmed by the
sheer size of the system. The grouping process heuristically optimises generally accepted
design criteria, similar to what a human would do.

I want to express my gratitude to my advisor Eric Dortmans and my supervisor Lou Somers
for their support and constructive comments during the assignment. Also, I want to thank
Michel Chaudron and Teade Punter for taking place in my examination committee.
Additionally, I want to thank Rob Kersemakers and Wim Couwenberg for their constructive
comments on an early version of this document.
Despite their busy work ten designers and architects made time to participate in an
experiment in which the architecture of a small program is reconstructed. I want to thank
Jacques Bergmans, Patrick Vestjens, Marvin Brunner, Erwin van der Linden, Wim
Couwenberg, Michel de Groot, Peter Nacken, Jantinus Woering, Erik Scheppink and Eric
Dortmans for their participation.
This thesis completes my study at Eindhoven Technical University. I want to thank my family,
my friends, and my colleagues at Océ Research & Development for their help and support
during this period.

Andreas Wierda

Venlo, June 2005

 iv

C Table of contents
A Abstract ... ii
B Preface ... iii
C Table of contents.. iv
D List of abbreviations ..v
E List of figures ..vi
F List of tables .. vii
1 Introduction... 1

1.1 Context .. 1
1.2 Software characteristics .. 1
1.3 Assignment.. 2
1.4 Report structure .. 2

2 Problem background .. 4
2.1 Software maintenance .. 4
2.2 Legacy software .. 5
2.3 Reverse engineering ... 8
2.4 Software Architecture.. 11

3 Architecture Reconstruction ... 14
3.1 Typical scenarios .. 14
3.2 Architecture Reconstruction Activities... 14
3.3 Methods & tools covering all activities .. 15
3.4 Tools specific for view extraction activity .. 21
3.5 Approaches specific for architecture reconstruction activity 22

4 Pattern detection in source code.. 25
4.1 Detecting known patterns.. 25
4.2 Detecting unknown patterns with FCA.. 30

5 Case study: Pattern detection .. 42
5.1 Case study goals... 42
5.2 Pattern detection architecture ... 43
5.3 Implementation validation ... 49
5.4 Results of pattern detection case study .. 50
5.5 Conclusions of the pattern detection case study .. 56

6 Clustering-based architecture reconstruction... 57
6.1 Clustering introduction .. 57
6.2 Clustering-based architecture reconstruction ... 65
6.3 Clustering result evaluation... 73

7 Case study: Architectural clustering... 80
7.1 Case study goals... 80
7.2 Architectural-clustering architecture.. 81
7.3 Implementation validation & parameter tuning.. 99
7.4 Results of architectural-clustering case study... 105
7.5 Conclusions of the architectural-clustering case study... 112

8 Conclusions and future work .. 114
8.1 Conclusions... 114
8.2 Future work ... 115

Appendix 1 References ... 117
Appendix 2 Schema of fact extraction output.. 128
Appendix 3 Galicia import schema.. 129
Appendix 4 Galicia export schema.. 130
Appendix 5 Architect decompositions ... 131
Appendix 6 Clustering results for Grizzly & RIP Worker ... 134
Appendix 7 Clustering results for Océ Controller .. 136

 v

D List of abbreviations
ANSI American National Standards Institute

API Application Programming Interface

COTS Common Of The Shelf

FAMOOS Framework-based Approach for Mastering Object-Oriented Software

FAMIX FAMoos Information eXchange Model

FCA Formal Concept Analysis

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

KLOC Kilo-Lines Of Code

MDG Module Dependency Graph

RIP Raster Image Processing

RSF Rigi Standard Format

SMB Server Message Block

SNMP Simple Network Management Protocol

SQL Structured Query Language

STBC Source-Tree Based Clustering

TCP/IP Transmission Control Protocol/Internet Protocol

UML Unified Modelling Language

XML eXtensible Mark-up Language

XSLT eXtensible Stylesheet Language Transformations

 vi

E List of figures
Figure 1: Océ Controller context.. 1
Figure 2: The "4+1" view model (from [Kruchten, 1995]) .. 11
Figure 3: FAMOOS tooling (from [Ducasse, 2003]) .. 15
Figure 4: Core of the FAMIX model (from [Bär et al, 1999]) ... 16
Figure 5: Process steps for bookshelf construction... 17
Figure 6: InSight architecture views .. 20
Figure 7: Dataflow in Pat ... 25
Figure 8: Pattern detection process... 26
Figure 9: Concept lattice for sports example... 33
Figure 10: Example of a class diagram ... 34
Figure 11: Concept lattice of the pattern example... 36
Figure 12: Architectural view of the prototype ... 43
Figure 13: Example static structure ... 44
Figure 14: Galois lattice for formal context in (16)... 47
Figure 15: Validation code structure.. 49
Figure 17: Two patterns found in Grizzly... 51
Figure 18: Two patterns found in the RIP Worker ... 53
Figure 19: Example clustering ... 57
Figure 20: Hierarchical clustering example ... 61
Figure 21: Clusterings obtained with single (left) and complete (right) link strategies. 62
Figure 22: MST clustering example... 63
Figure 23: MQ calculation example... 68
Figure 24: Precision/recall example .. 74
Figure 25: MoJo Example.. 75
Figure 26: EdgeMoJo example.. 76
Figure 27: Example conversion of a hierarchical decomposition (left) into a partitioning (right)

for level 2 .. 77
Figure 28: Example of level copying.. 77
Figure 29: EdgeSim example .. 79
Figure 30: MeCl example .. 79
Figure 31: Architectural clustering based on a single (left) and multiple versions (right)....... 84
Figure 32: Conceptual view of the workbench .. 86
Figure 33: Process view of the workbench.. 87
Figure 34: Clustering workbench meta-model... 88
Figure 35: Initial unstructured view of the Océ Controller ... 96
Figure 36: View of the Océ Controller based on association relations.................................... 96
Figure 37: Views of the Océ Controller based on generalization (left) and dependency

relations (right).. 97
Figure 38: Example source-tree before (left) and after the reduction (right). 98
Figure 39: Simple-blackboard application class diagram.. 102
Figure 40: Example of a decomposition the clustering produced for version 8a 106
Figure 41: Expert decomposition of version 8a of the Océ Controller................................... 107

 vii

F List of tables
Table 1: Software characteristics .. 2
Table 2: Proportional software maintenance costs ... 4
Table 3: A characterisation of sports ... 31
Table 4: Extents and intents of the sports example .. 32
Table 5: Set of labelled class relations P .. 34
Table 6: Order three context for pattern example ... 35
Table 7: Extents and intents of the pattern example ... 36
Table 8: Extents and intents of the pattern example ... 37
Table 9: Prototype output .. 50
Table 10: Prototype output after manual filtering .. 50
Table 11: Characteristics of the order four context for Grizzly and the corresponding lattice. 50
Table 12: Example instances of pattern 678 ... 52
Table 13: Example instances of pattern 941 ... 52
Table 14: Characteristics of the order four context for the RIP Worker and the corresponding

lattice .. 52
Table 15: Example instances of pattern 2694 ... 53
Table 16: Example instances of pattern 2785 ... 54
Table 17: Test system characteristics ... 55
Table 18: Execution times (hh:mm:ss) .. 55
Table 19: Clustering workbench relation schemes.. 89
Table 20: Best five parameter-tuples for Grizzly and the RIP Worker 104
Table 21: Connectivity of classes in Grizzly and the RIP Worker ... 105
Table 22: Best five clusterings for version 7e and 8a of the Océ Controller 106
Table 23: Best five clusterings for the class-relations-intersection with version 1 108
Table 24: Best five clusterings for the class-relations-intersection with the previous version108
Table 25: Best five clusterings for the class-relations-union of version 8a and 1 109
Table 26: Best five clusterings for the class-relations-union of version 8a and 7e 109
Table 27: Test system characteristics ... 110
Table 28: Execution times for the Océ Controller (wall-clock time)....................................... 111
Table 29: Execution times of the ten-clusterings cycles (wall-clock time)............................. 111
Table 30: The fifty parameter-tuples that give the best clustering of Grizzly 134
Table 31: The fifty parameter-tuples that give the best clustering of the RIP Worker........... 135
Table 32: Clustering result for version 7e of the Océ Controller ... 136
Table 33: Clustering result for version 8a of the Océ Controller ... 136
Table 34: Clustering result for class-relations-intersection of version 7e and 1.................... 137
Table 35: Clustering result for class-relations-intersection of version 8a and 1.................... 137
Table 36: Clustering result for class-relations-intersection of version 7e and 7d.................. 137
Table 37: Clustering result for class-relations-intersection of version 8a and 7e.................. 138
Table 38: Clustering result for class-relations-union of version 8a and 1 138
Table 39: Clustering result for class-relations-union of version 8a and 7e 138

 1

1 Introduction
This chapter discusses the assignment, the system that is analyzed in the two case studies
described in this thesis, and the structure of this document.

1.1 Context
The subject system for the two case studies described in this thesis is an Océ Controller.
Such a controller consists of general-purpose hardware on which software of Océ and third
parties is running. Its main task is to control (physical) devices such as a print- and scan-
engine, and act as an intermediate between them and the customer network. This is
illustrated in Figure 1, where the blocks represent systems in the environment of the controller
and the lines some physical connection between two or more systems.

Workstation

Print
Engine

Scan
Engine

Océ
Controller

Local User
Interface

Network

Océ functionality

Figure 1: Océ Controller context

The Océ Controller handles the workflow within an Océ multi-functional device. Typical tasks
of the Océ Controller are:
• Reception of postscript files the user sent from a workstation and the conversion of these

files to a bitmap format the Print Engine accepts. In this conversion the settings specified
by the user are taken into account.

• Initialise the Scan and Print Engine for a copy-job and control the workflow during the
execution of the job.

• Provide job- and queue-management functions to the Local User Interface.
• Handling network connectivity to the network of the customer. For this task the controller

supports various protocols, including TCP/IP, SMB, FTP, HTTP and SNMP.
• Provide a remote user interface (web based).

1.2 Software characteristics
The software running on the Océ Controller has been written in multiple programming
languages, but mostly in C++ [Stroustrup, 1997]. An as-designed architecture is available,
but it is not complete and large parts of the architecture documentation are not consistent with
the implementation [Lange, 2003].

Table 1 shows the characteristics of the Océ Controller and two of its subsystems, Grizzly
and RIP Worker. Because of performance limitations it was not feasible to apply the design
pattern detection described in chapter 5 to the complete Controller. Instead, it has been
applied to these two subsystems. The Grizzly subsystem [Delnooz and Vrijnsen, 2003]
provides a framework for prototyping on the Océ Controller. The RIP Worker subsystem
[DVRIP, 2002] transforms Postscript files into printable bitmaps, taking the print-settings the
user specified into account (“ripping”).

 2

The architectural-clustering described in chapter 6 has been applied to the complete Océ
Controller. Because this process uses input from multiple versions, Table 1 gives the statistics
for the first (1) and the last (8a) version of the Océ Controller.

 Controller
(v. 1)

Controller
(v. 8a)

Grizzly RIP
Worker

Classes 1.545 2.661 234 108
Header and source files 4.378 7.549 268 334
Functions 21.711 40.449 2.037 1.857
Lines of source code (*1000) 453 932 35 37
Executable statements (*1000) 167 366 18 16

Table 1: Software characteristics

1.3 Assignment
The research questions that led to this thesis were:

1. Which methods are available for software architecture reconstruction?
2. Can these methods be used to reconstruct the architecture of the Océ Controller?
3. How good are the results?
4. How can these methods be improved?

[Kersemakers, 2005] reconstructs the architecture of the Océ Controller by detecting
instances of architectural styles and design patterns in the source code. The implemented
approach uses a pattern library that specifies the patterns searched for. The work described
in this thesis builds on this work and complements it.

The Océ Controller suffers from several of the typical legacy problems discussed in
paragraph 2.2. In discussions with developers, issues like limited understanding of the
system, obsolete documentation, unexpected dependencies and code smells are mentioned.
The size of the system implies two important requirements for the reconstruction methods:
• They must work automatic or semi-automatic, and not completely manual.
• They must be scalable enough to handle large systems like the Océ Controller.
Furthermore, the fact that multiple programming languages are used in the Océ Controller
implies the requirement that the methods must be language independent.

To answer the above questions the following research approach was used. We started with a
literature study on architecture reconstruction. From this we concluded that pattern detection
and architectural clustering seemed suitable for the recovery of the architecture of the Océ
Controller. To validate this assumption both methods have been applied to the Océ
Controller, leading to the conclusions in chapter 8.

1.4 Report structure
This report is structured as follows. After the introduction in chapter 1, chapter 2 elaborates on
the background of architecture reconstruction. Architecture reconstruction is a form of reverse
engineering that aims to describe a system in terms of higher-level abstractions beyond those
obtained from the source-code itself. Reverse engineering techniques are often applied to
legacy software, to reconstruct lost knowledge in order to ease maintenance.

Chapter 3 describes several general approaches for architecture reconstruction reported in
literature. The detection of design patterns and architectural clustering are the two most
prominent approaches for automatic architecture reconstruction.

Chapter 4 describes pattern detection methods reported in literature, after which chapter 5
describes a case study that applies this theory. It attempts to reconstruct an architectural view
of the Océ Controller by detecting frequently used design constructs in the source code.
Unlike many other methods for detecting design pattern instances in source code, the method
used in this case study does not require upfront knowledge on the expected patterns.

 3

Chapter 6 describes architectural clustering methods reported in literature. This theory is
applied in chapter 7, where a case study that uses clustering to reconstruct an architectural
view of the Océ Controller from its source code is described. Clustering techniques discover a
natural ordering of a set of elements. In the described case study, the elements are classes
and the ordering is based on the structural relations between the classes.

Finally, chapter 8 draws conclusions from the two case studies and describes future work.

This thesis comes with several appendices. Appendix 1 lists the references. The next three
appendices describe the output formats of the pattern detection prototype’s modules. This
prototype was used during the case study described in chapter 5.
Appendix 5 describes decompositions of a small sample application that are created by
experienced architects. These are the result of the experiment described in paragraph 7.3.2.
Appendix 6 and Appendix 7 describe results of the architectural clustering case study
discussed in chapter 6. The first describes the results for two subsystems of the Océ
Controller and the second for the complete Océ Controller.

 4

2 Problem background
This chapter discusses the role of architecture reconstruction in the software lifecycle. In this
context subjects like software maintenance, legacy software, reverse engineering and
software architecture are discussed.

2.1 Software maintenance
This paragraph discusses software maintenance, its costs, problems, and its role in the
software lifecycle.

2.1.1 Software maintenance in the software lifecycle
Throughout the software lifecycle several processes can be distinguished. In the primary
process1 of the software lifecycle [ISO 12207] distinguishes among others the following sub-
processes:
1. Development
2. Operation
3. Maintenance

Regardless of the precise lifecycle model that is used, maintenance is an integral part of the
software lifecycle. Both in scientific and software engineering literature there is consensus
that maintenance accounts for a large portion of the total costs of a software project. Based
on case studies and research in industrial projects it is estimated that 50-90% of the total
software costs is spent on maintenance. Table 2 lists the results of several studies on this
subject. References marked with * are cited by [Koskinen, 2004]. Although definition
differences make the figures hard to compare, it is clear that software maintenance costs
represent a very large part of the total software costs.

[Erlikh, 2000] software costs for system maintenance and
evolution / total software costs

85-90%

[Chikovsky and Cross, 1990] software maintenance costs / total life-cycle
costs

50-90%

[Moad, 1990]* software costs for system maintenance and
evolution / total software costs

>90%

[McKee, 1984] software maintenance effort / total available
software engineering effort.

65-75%

[Horowitz and Munson, 1984] software maintenance costs / total life-cycle
costs

72%

[Lientz and Swanson, 1981]* staff time spent on maintenance / total time >50%
[Nosek and Palvia, 1980] software costs for system maintenance and

evolution / total software costs
60-80%

[Sommerville, 2004] software maintenance costs / total software
engineering effort for long-lived systems

75-80%

[Zelkowitz et al, 1979]* maintenance costs / total software costs 67%

Table 2: Proportional software maintenance costs

2.1.2 Definition
Software maintenance not only comprises of correcting faults, but also of performing
adaptations to keep the software fit for use. The IEEE definition of software maintenance is
"the process of modifying a software system or component after delivery to correct faults,
improve performance or other attributes, or adapt to a changed environment" [IEEE 610].

1 Besides the primary process [ISO/IEC 12207] also distinguishes supporting and
organizational processes.

 5

In software maintenance literature three types of software maintenance are commonly
distinguished [Lientz and Swanson, 1981], [Swanson and Chapin, 1995]:
• Corrective maintenance is concerned with fixing reported errors in the software.

Empirical studies show that this accounts for 17% of the maintenance costs2.
• Adaptive maintenance is concerned with adapting the software to changes in the

operating environment (e.g. platform and operating system changes). Such changes can
violate assumptions embedded in the design of the software, leading to unexpected
behaviour. According to Lehman's law of continuing change these type of adaptations are
unavoidable for software in real world applications: “an E-Type3 program that is used
must be continually adapted else it becomes progressively less satisfactory” [Lehman,
1996]. Adaptive maintenance accounts for 18% of the total maintenance costs2.

• Perfective maintenance is concerned with implementing new functional or non-
functional requirements. This accounts for 65% of the maintenance effort2. Lehman's law
of continuing growth states that "the functional content of a program must be continually
increased to maintain user satisfaction over its lifetime" [Lehman, 1996]. [Turski, 1981]
pointed out that this is in fact an abuse of the term maintenance: the addition of a new
wing to a building is never called maintenance of that building. Therefore the term
evolution is actually more appropriate [Koschke, 2000].

[Baldo, 1995] identifies two other types of software maintenance; preventive and structural
maintenance. Preventive maintenance is concerned with activities that prolong the
effectiveness and reliability of the system. Structural maintenance is the modification of
software with the aim to improve its future maintainability.

2.1.3 Program understanding during maintenance
From the above it is clear that software maintenance is an important part of the software
lifecycle. The constant need for changes identified by Lehman's law of continuing change
leads to continuous modification of a program throughout its lifetime. During this process the
interactions and dependencies between system elements increase in an unstructured way,
increasing the system entropy4. Lehman's law of increasing complexity states that “a
program's complexity increases as it evolves, unless work is done to maintain or reduce it… If
this growth in complexity is not constrained the program will take progressively more effort to
maintain” [Lehman, 1996].

Developers performing maintenance usually start by understanding the problem and the
concerned parts of the software. The gradual deterioration of the software’s internal structure
Lehman identified makes this increasingly difficult. The reason for this is that it becomes more
and more difficult to understand the structure of a program. [Fjeldstadt and Hamlen, 1984]
showed that maintenance programmers performing adaptive or perfective maintenance spend
47% of their time studying the program source code and the associated documentation.
When performing corrective maintenance this increases to 62%. This means that a reduction
of the effort needed to understand the internal structure of software directly affects the total
costs of the project.

2.2 Legacy software
This paragraph discusses a specific type of software called “legacy software”. This is old
software that is still used and maintained. The “legacy” aspect makes understanding and
maintaining it more difficult than with non-legacy software.

2.2.1 Definition
Webster's Dictionary defines legacy as "anything handed down, or as from, an ancestor". In
the context of software, legacy software refers to a piece of inherited software. In practice
only valuable software is inherited, so legacy software refers to valuable software that has
been inherited [Demeyer et al, 2004].

2 [Sommerville, 2004].
3 An E-Type program denotes software that solves problems in the real world.
4 A system’s entropy is the amount of disorder in it.

 6

2.2.2 Legacy problems
The mere fact that a piece of software is classified as legacy does not necessarily imply
problems with it. The difficulties emerge when the software can no longer be maintained.
However, in literature the term legacy software frequently implies the presence of
maintenance difficulties.

[Demeyer et al, 2004] describe symptoms that indicate maintenance difficulties, now or in the
near future:
• Obsolete or no documentation. The absence of up to date documentation is a clear

warning sign that maintenance difficulties will arise. When systems have undergone many
changes the documentation often no longer reflects the actual implementation.

• Missing unit- and system-tests. If unit- and system-tests are not available further
evolution of the system is very risky because it is not possible to determine if changes
broke existing functionality.

• Limited understanding of the system. This can concern the overall structure of the
system or important implementation details. Both can seriously hinder system evolution.
Reasons for a limited understanding of the system can be the departure of the original
developers or users, or simply because important details have been forgotten. In
combination with a lack of up to date documentation and missing tests, this can lead to a
rapid decline of the system's quality when it evolves.

• Too much time needed to make simple changes. If simple changes require
disproportional development effort, complex changes are likely to be unfeasible. This
means the system can no longer evolve to keep up with customer demands.

• Unexpected dependencies. When a change is made, for instance to fix a bug, the
software breaks in unexpected places. If this happens frequently the architecture might
not be able to accommodate future needs. This is a clear warning that the structure of the
system is not fully understood.

• Too long before changes are available in the field. The process of adapting the
system to changing needs stalls somewhere. It might be that it takes too long to decide
which changes will be made, their implementation takes too long, or transferring them to
operational use takes too long.

• Big build times. If build times grow more than the system size this indicates that the
internal complexity of the system has increased to a level where compiler tools can no
longer do their work efficiently. This indicates that the architecture of the system has
deteriorated.

• Difficulties separating products. This can happen in situations where different clients or
products use a system. Difficulties separating releases from each other indicate that the
architecture is not able to accommodate these changes anymore.

• Duplicate code. Duplicate code is created routinely when developers need nearly
identical code in multiple places and there is no time for a structural solution. If the
common parts of duplicate code are not refactored into suitable abstractions the
duplicated code remains in place. Then changes to the system lead to the same code
being updated in multiple places, quickly increasing the effort needed for maintenance.

• Code smells. Duplicated code is an example of a code smell. Other examples are long
method bodies, big classes, long parameter lists et cetera. Code smells can indicate that
a system has been expanded repeatedly without adjusting its internal structure.

Note that it is not so much the absolute age of software that makes it legacy software.
Instead, the amount of changes to the software and its environment since the software was
created are the determining factors [Demeyer et al, 2004]. Examples of such changes are
new development methods, design paradigm shifts and project staffing changes. Legacy
software is software that has undergone many of these changes without being refactored
properly.

 7

2.2.3 Rebuilding legacy software from scratch
One might argue that legacy problems can simply be solved by throwing the software away
and rebuilding it from scratch. [Ducasse, 2003] and [Finnigan et al, 1997] mention several
reasons why this is not possible:
• Size: Legacy systems are often very large and implement a lot of functionality. Much of

the knowledge that drove their evolution has been lost and it is often impossible to
overview the complete system.

• Mature: Customers using the software are generally quite satisfied with it until they need
a new feature. However, they do not want to pay for a complete re-development.

• Value: Legacy systems constitute a significant asset for their owners and are often an
important source of income.

These factors, and the risks of failure associated with every new project, cause organisations
to prolong the life of legacy software. Taking this one step further; in some domains of
industry increasing functional demands and decreasing time-to-market make it impossible to
develop each new product from scratch. According to [Krikhaar et al, 1999] this is already the
case in the domain of high-volume electronics.

2.2.4 Object-oriented legacy software
Originally the term legacy software was used for programs written in languages like
assembler, Cobol or Fortran. However legacy problems are not constrained to specific types
of languages. Changing environments and requirements also affect object-oriented software.
[Ducasse, 2003] mentions several projects where object-oriented legacy systems are
reengineered. It turns out that legacy software even exists in relatively young programming
languages such as Java [Java, 2005].

[Macl and Havanas, 1990] and [Kiran et al, 1997] both describe empirical studies comparing
the maintenance effort for object-oriented software with that of traditional procedural software.
They both conclude that for equivalent changes software maintenance in object-oriented
software takes less effort than in traditional procedural software. However, this has had an
interesting side effect. Based on an empirical study described in [Dekleva, 1992], [Grass,
1998] states that modern development methods lead to:
1. more reliable software,
2. less frequent software repair and
3. more total maintenance time.
These statements are not contradictionary, neither with themselves nor with the conclusions
of [Macl and Havanas, 1990] and [Kiran et al, 1997]. Because modern methods make
software better maintainable and easier to enhance, software is changed more often [Grass,
1998]. Following the classification described in paragraph 2.1, object-orientation has led to a
reduction of corrective maintenance costs and an increase in adaptive and perfective
maintenance costs.

This increasing rate of change causes object-oriented software to become legacy much
sooner than non-object-oriented software. [Demeyer et al, 2004] states that “it is not the age
that turns a piece of software into a legacy system, but the rate at which it has been
developed and adapted without having been reengineered”. [Casais, 1998] pointed out that
reengineering is actually an essential element of iterative development processes.

Besides the problems normally encountered with legacy software, inheritance and
polymorphism cause new problems [Wilde and Huiit, 1992]:
• Many traditional maintenance tools depend on dependency tracing. Polymorphism and

dynamic binding makes this much more difficult, especially in dynamically typed
languages.

• The use of inheritance and incremental class definitions, together with the dynamic nature
of "self" and "this", make understanding classes more difficult. The reason for this is that
the ancestors of a class much also be examined when trying to trace which method will
be executed.

 8

• Object-oriented programming styles promote the use of many relatively small classes.
This leads to domain models and functionality being spread over different classes,
making it difficult to locate their implementation.

• Understanding the high level structure of object-oriented systems is more difficult. In non-
object-oriented systems the calling hierarchy is often used as a starting point, but in
object-oriented systems this has several disadvantages. First, dynamic binding makes it
difficult to compute. Second, there may not be a real "main" method, so it is unclear
where to start [Lanza, 2003a]. Third, in such a call graph the grouping of methods into
objects is lost, which is usually an important design property.

By the end of the 1990's early industrial adopters of object-orientation were already facing
problems with the evolution of some large object-oriented systems [Casais, 1998]. Besides
the difficulties inherent to the nature of object-oriented software, misuse and abuse of object-
oriented features are common problems too. Some examples are [Ducasse, 2003]:
• Misuse of inheritance: the use of inheritance to achieve composition, or simply code

reuse, instead of for defining abstractions. In his “Is-a” rule for inheritance [Meyer, 1998]
states that a class B may only inherit from a class A if an argument can be made that
every instance of B can also be viewed as an instance of A. If two classes are related by
a “has-a” relation a client-server coupling must be used. In many cases where inheritance
is applicable, a client-server coupling could also be used. In such cases inheritance must
only be used if polymorphism is used also.

• Missing inheritance: duplicated code and case statements where inheritance and
dynamic binding would be more appropriate.

• Misplaced operations: this can be caused by unexploited cohesion, or simply because
operations are placed in the wrong class.

• Violation of encapsulation: explicit typecasts, C++ friend classes.
• Class abuse: lack of inner-class cohesion and the use of classes as namespaces.

2.3 Reverse engineering
Architecture reconstruction is a form of reverse engineering. This paragraph defines reverse
engineering and discusses several important types of reverse engineering, including
architecture reconstruction. Finally, several reverse engineering methods are introduced.

2.3.1 Definition
[Chikovsky and Cross, 1990] define reverse engineering as "the process of analyzing a
subject system to identify the system's components and their interrelationships and create
representations of the system in another form or at a higher level of abstraction". Reverse
engineering does not involve changing a system or producing new systems based on existing
systems, but is concerned with understanding a system.

The counterpart of reverse engineering is forward engineering. Forward engineering is "the
traditional process of moving from high-level abstractions and logical, implementation-
independent designs to the physical implementation of a system" [Chikovsky and Cross,
1990].

2.3.2 Reverse engineering goals
The main goal of reverse engineering is to increase the understanding of a system.
Biggerstaff considers program understanding "a common, sometimes hidden part of many
activities scattered throughout the software lifecycle". Any developer working on software that
is new to him or her spends a lot of time trying to understand it. According to [Fjeldstadt and
Hamlen, 1984] a maintenance programmer performing adaptive or perfective maintenance
spends 47% studying the source code and the documentation. When performing corrective
maintenance this increases to 62%.

2.3.3 Reverse engineering types
Redocumentation and design recovery are two widely known subareas of reverse engineering
that both produce artefacts that help to understand a system. They can be distinguished by
the abstraction level of their results and the used knowledge sources.

 9

Redocumentation usually uses source code as input and produces equivalent representations
of it within the same relative abstraction level. The results are often considered alternative
views of the software.

Design recovery combines different knowledge sources to produce abstractions of a subject
system [Biggerstaff, 1989]. The goal is to "obtain meaningful higher-level abstractions beyond
those obtained directly from the source code itself” [Chikovsky and Cross, 1990].

[Mansurov and Campara, 2003] draw the analogy with archaeology. They use the term
architecture excavation to refer to design recovery. [Koschke, 2000] prefers the term
architecture recovery to refer to this process because it is considered more general.

[Kazman et al, 2001] use the term architecture reconstruction to refer to the process of
extracting the as-built architecture of an existing system. Since this clearly involves obtaining
higher-level abstractions than those defined in the source code, the difference, if any, with
design recovery has to be defined. [Buschmann et al, 1999] distinguish architecture and
design based on abstraction level and scope. An architecture uses higher-level abstractions
than a design and describes a complete system, whereas a design describes the interior of
specific subsystems of the architecture. Note that this does not define a precise boundary
between architecture and design.

Considering the above definitions we will use the term design recovery for methods that can
be used to reconstruct designs, but not architectures. Such methods construct abstractions at
a higher level than that obtained directly from the source code, but do not reach the
abstraction level used in the architecture. Architecture reconstruction will refer to methods that
reconstruct architectures, producing elements of the associated abstraction level.

2.3.4 Reverse engineering approaches
There are many reverse engineering tools and techniques. They use a variety of information
sources, including the ones below [Demeyer et al, 2004]:
• Existing documentation, including manuals.
• Source code and its directory structure.
• Test runs of the software and execution traces.
• Interviews with users and developers.
• Test cases.
• Version history information.

In practice, source code is the most important information source for reverse engineering
[Trevors and Godfrey, 2002], [Buckley, 1989]. The latter publication identifies two reasons for
this:
• Design documentation does not match the implementation. This gets worse as the

system evolves because its structure deteriorates.
• Design documentation is not designed for maintenance but for forward engineering.

[Nelson, 1996] classified reverse engineering techniques into three distinct approaches,
based on the type of input they use. This classification distinguishes methods based directly
on the source code, methods based on an abstract graph representation of the source code
and methods based on executions:
• Textual, lexical and syntactic analysis methods are based directly on the source code.

This includes producing cross-reference listings, abstract syntax trees and control flow
graphs.

• Graph-based methods are based on an abstract graph that represents the source code.
Methods such as control- and data flow-analysis, and program dependence charts
produce graphs considering the source code from a certain perspective. Slicing methods
extract the part of the source code that affects a certain variable at a certain point in the
source code. Pattern recognition methods search for recurring programming patterns.
Clustering methods impose a new ordering on the software by partitioning the program
graph into disjoint parts while optimising design trade-offs.

 10

• Execution and testing methods are based on information obtained from full, partial or
simulated executions. This includes profiling methods for analysing the performance, and
testing methods for estimating the degree of correctness5 of the software. Abstract
interpretation is a method that performs static testing by simulating the software’s
dynamic behaviour. Finally, partial analysis can be used to isolate parts of the software
for analysis purposes.

This thesis describes two case studies that use graph-based reverse engineering methods.
The first is based on detecting recurring design patterns. The second uses clustering
techniques to find suitable system decompositions. According to [Sartipi and Kontogiannis,
2003] these two approaches are the most prominent methods for semi-automatic architecture
reconstruction.

Pattern-based techniques are used to find common structures or solutions in the architecture
of software systems. When considering the program as an abstract graph this amounts to
finding frequently occurring subgraphs. This can be done by matching a library of known
patterns with the program graph, or with algorithms that find frequently occurring subgraphs
without a priori knowledge. In both cases the end result is a list of frequently used constructs,
each with a list of instances. This result can be used to understand the system faster by
abstracting common constructs.

Clustering-based techniques impose an ordering on the system by grouping closely related
program entities into subsystems. The algorithms usually start with an abstract graph
representing the structure of the program, for example with the nodes representing classes
and the edges inter-class relationships. Some similarity measure is then used to find groups
of similar or closely related classes, which are grouped into subsystems. This is repeated until
an optimal decomposition is found. The end result can be browsed top-down, helping to
understand the complete program.

In the context of architecture recovery, pattern detection and clustering are two
complementary approaches; the first finds common abstractions embedded in the system, but
in practice never covers all entities in the system [Quilici, 1995]. The second classifies all
entities in the system, but imposes a new ordering instead of some hidden ordering.

2.3.5 Software transformations
As stated, reverse engineering does not involve changing the software. Restructuring,
reengineering and refactoring on the other hand do. [Chikovsky and Cross, 1990] define
reengineering as "the examination and alteration of a subject system to reconstitute it in a
new form and the subsequent implementation of the new form". This generally involves some
form of reverse engineering, followed by forward engineering to implement the desired
changes. This may also include implementing new requirements (perfective maintenance).

Restructuring improves the internal structure of the software, but does not involve
implementing new requirements. According to Chikovsky and Cross, restructuring is "the
transformation from one representation form to another at the same relative abstraction level,
while preserving the subject system's external behaviour (functionality and semantics)".
Examples of restructuring are source code translations (e.g. to remove “goto” statements) but
also design changes.

Restructuring refers to general source code translations. Restructuring in an object-oriented
context is called refactoring [Demeyer et al, 2004]. [Fowler et al, 1999] define refactoring as
“the process of changing a software system in such a way that it does not alter the external
behaviour of the code yet improves its internal structure”.

5 Testing can never prove the correctness of a program, but it can be used to estimate the
number of remaining errors. An example is described in [Ehrlich et al, 1990].

 11

2.4 Software Architecture
Architecture reconstruction recovers an architecture from source code. This paragraph
defines software architecture in general and methods to specify software architectures.
Further, frequently used architectural blueprints called architectural styles are discussed.

2.4.1 Definition
As stated before, architecture reconstruction reconstructs the architecture of an existing
system. Before discussing this in more detail it is important to understand what an
architecture is. There is no generally accepted definition of software architecture, but there is
no shortage of definitions either. [SEI, 2003] presents a set of definitions, of which some of
the more popular ones are presented in this paragraph.

[IEEE 1471] defines architecture as “the fundamental organization of a system embodied by
its components, their relationships to each other and to the environment and the principles
guiding its design and evolution”. This definition captures the underlying elements of many
definitions for the term architecture. The most important element is the need to understand
and control the elements of the system that “capture the system’s utility, cost and risk” [IEEE
1471]. Another important element are the design principles on which the system is based.

[Booch et al, 1999] define architecture as “the set of significant decisions about:
• The organization of a software system.
• The selection of the structural elements and their interfaces by which the system is

composed.
• Their behavior, as specified in the collaborations among those elements.
• The composition of these structural and behavioral elements into progressively larger

subsystems.
• The architectural style that guides this organization: the static and dynamic elements and

their interfaces, their collaborations, and their composition”.

[Bass et al, 2003] define the software architecture of a program or computing system as “the
structure or structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them”. "Externally visible" refers to
the assumptions that can be made about the elements of the system. Examples of these are
the provided services, performance, fault handling and resource usage. The definition
explicitly mentions multiple structures. This indicates multiple views of the same system can
exist that collectively form the architecture.

2.4.2 Architectural views
A software architecture serves many different stakeholders, each having different needs. For
example system engineers, end-users, programmers and integrators all need different
information.

Integrators
Performance
Scalability

Logical View Development
View

Physical ViewProcess View

Scenarios

End-user
Functionality

Programmers
Software Management

System engineers
Topology

Communications

Figure 2: The "4+1" view model (from [Kruchten, 1995])

 12

To prevent architectures from becoming large, cluttered diagrams with obscure boxes and
lines [Kruchten, 1995] proposed the use of multiple views to describe architectures of
software intensive systems. In Kruchten’s 4+1 model the five views illustrated in Figure 2 are
distinguished:
• The logical view primarily supports the functional requirements of the end-user. In this

view the system is decomposed into a set of key abstractions that are taken from the
problem domain. In case of an object-oriented architecture these are usually modeled as
classes and objects, and exploit the principles of abstraction, encapsulation and
inheritance. Besides modeling the functional requirements, this view also serves to
identify common design elements and mechanisms.

• The process view describes the concurrency and synchronization aspects of the
architecture, taking non-functional requirements concerning for example concurrency,
performance, and availability into account. This view also describes how the elements of
the logical view map to the process architecture, possibly at several abstraction levels.

• The development view guides the development process. It describes the mapping of the
elements of the logical view to the software development environment. The software is
packaged in small chunks -libraries or subsystems- that are organized in a hierarchical
structure. Besides this hierarchical relationship the chunks are related by import and
export relationships.

• The physical view describes how the elements of the logical, process and development
views are mapped to the hardware. This mapping is mainly determined by non-functional
requirements such as availability, reliability, performance and scalability.

The scenarios represent the “+1” in “4+1”. This view describes the most important functional
scenarios to demonstrate how the other four views work together. Like the logical view, the
scenarios are an abstraction of the functional requirements. This view is redundant with
respect to the other views. During the architecture construction process it serves as a driver
to discover the architectural elements in the other views. When the architecture is completed
it is used for validation and illustration.

The “4+1” view model is part of the Unified Modelling Language (UML, [Booch et al, 1999]).
[Hofmeister et al, 1999] describe an alternative model that provides better support for
modelling dynamic aspects of the architecture. For more information on this model the
interested reader is referred to [Hofmeister et al, 1999].

2.4.3 Architectural styles and design patterns
An architecture is usually based on knowledge and experience of the architects that
constructed it. Patterns provide proven solutions to recurring design problems in a specific
context. [Alexander, 1979] first described common problem/solution pairs in urban
architecture. [Gamma et al, 1995] extend this idea to object-oriented software development.
They describe a set of 23 design patterns in a common format. This format describes the
design problem, its context, appropriate terminology, one or more solutions, and their
properties.
In practice the specific abstractions of data, function and interconnections introduced by the
patterns serve as abstractions of common coding constructs [Beck et al, 1996].

Design patterns are believed to be beneficial in several ways [Beck et al, 1996], [Gamma et
al, 1995]:
• A common design terminology improves communication.
• The use of best practices can be promoted.
• The essence of a design can be documented in a compact form.
Knowledge transfer is the unifying element in all three points. Empirical evidence shows that
developers indeed use design patterns to ease communication [Hahsler, 2003]. Considering
the fact that program understanding is one of the most time consuming activities of software
maintenance, knowledge about applied design patterns can be useful for software
maintenance.

 13

Controlled experiments with both inexperienced [Prechtelt et al, 2002] and experienced
[Prechtelt et al, 2001] software developers support the hypothesis that awareness of applied
design patterns reduces:
• The time needed for software maintenance.
• The number of errors introduced during maintenance.

Because design patterns specify design constructs at a higher abstraction level than just
single classes and instances, they are useful for documenting software designs [Gamma et
al, 1995]. Furthermore, the choice of a specific design pattern captures the rationale behind
the design and the tradeoffs that were made [Keller et al, 1999].

[Buschmann et al, 1999] classifies patterns in three categories:
• Architectural patterns express fundamental system organisation schemes for software

systems. They specify the system-wide structural properties of an application and affect
the architecture of subsystems. Architectural patterns are also called architectural styles.
[Buschmann et al, 1999] describe several architectural styles, including layers, pipes and
filters, blackboard, brokers and model-view-controller.

• Design patterns provide a scheme for refining the subsystems of a software system, or
relationships between them. Design patterns are medium scale patterns that influence the
structure of a particular subsystem, but not of the complete system.
[Buschmann et al, 1999] describe several design patterns, including proxy, client-
dispatcher-server and publisher-subscriber.

• Idioms are low-level, programming language specific patterns that describe how to
implement particular aspects of components or component-relationships using the
features of a given language.

 14

3 Architecture Reconstruction
This chapter discusses several architecture reconstruction methods and tools, starting with an
overview of their general properties. The selection is not exhaustive, but enumerates a
representative set of methods and tools. It is based on [O’Brien et al, 2002], [Deursen, 2001],
[Hassan and Holt, 2004], [Sim and Koschke, 2001] and [Bassil and Keller, 2001].

3.1 Typical scenarios
In an architecture reconstruction process (parts of) the architecture of an implemented system
are recovered. This architecture is called the as-built architecture. In this process a model is
extracted from the source code, after which the extracted entities are used to define higher-
level abstractions. Architecture reconstruction is typically performed because uncertainty
exists about the architecture of an existing system.

[O’Brien et at, 2002] describe some typical reconstruction scenarios encountered in practice:
• View set covers the identification of a set of architectural views that sufficiently describe a

system.
• Enforced architecture covers the problem of consistency between the as-designed and

the as-built architecture of a system.
• Quality-attribute changes covers the question of how changes to quality-attribute

requirements affect a system. Usually it is determined how architectural patterns are used
to satisfy the quality requirements and the impact of changes.

• Common and variable artefacts covers techniques and models for analysing the
products in a domain with respect to their commonalities and differences. The aim is to
find common parts in product-line systems to reduce costs.

• Binary components addresses the need for architecture reconstruction of systems that
include COTS (binary) components. In this case only the external interfaces of the
components are available (black box).

• Mixed language addresses the need for reconstruction methods that can analyse
systems written in multiple languages or language types.

The two case studies described in this thesis are examples of the view-set, enforced
architecture and mixed language scenarios.

3.2 Architecture Reconstruction Activities
[Bass et al, 2003] identify four architecture reconstruction activities; information extraction,
database construction, view fusion and reconstruction. For generality we combine the first
two, because many approaches do not distinguish a separate database construction activity.
Furthermore, we add an additional architecture analysis activity that uses the result of the
reconstruction because it sets the requirements for the preceding activities. This leads to the
following four activities that can generally be distinguished in architecture reconstruction
approaches:
I. View extraction. This activity comprises of analysing implementation artefacts such as

source code and documentation, and extracting facts from them. In this context a fact is
some piece of information about the as-built architecture that helps to understand the
architecture [Ferenc et al, 2004]. Examples of facts are relations between classes (e.g.
inheritance or association), information about classes (e.g. attribute and method lists),
metrics (e.g. about size) and call traces.

II. View fusion. During this activity the extracted views are reconciled, augmented and
connections are established between the elements. The aim is to improve accuracy and
completeness of the view. Ideally, in the view extraction phase several complementary
extractors are used, whose results are combined in the view fusion phase.

III. Architecture reconstruction6. The third activity creates architectural abstractions based
on the fused view that collectively describe the as-built architecture. This can be done
manually, possibly with tool support, or automatically. Because the reconciled views only

6 Where the possibility of confusion exists we shall refer to the architecture reconstruction
process and the architecture reconstruction activity.

 15

represent the results of decisions that led to the implemented architecture, information
must be added as the reconstruction proceeds. In practice human knowledge plays an
important role in this process [Bass et all, 2003]. In the latter publication two sub-activities
of the architecture reconstruction activity are identified; visualisation & interaction and
pattern definition & recognition. The first provides mechanisms for interactive view
visualisation, exploration and manipulation. The second reconstructs the architecture by
detecting the code manifestations of common architectural- and design-constructs.

IV. Architecture analysis. During this activity the qualities of the architecture are analysed,
for example to determine the conformance of the as-built architecture to the as-designed
architecture, determine its scalability, or to search for reusable components. Depending
on the goal, different tools may be used, varying from architecture browsers to metric
extractors. Because architecture analysis is beyond the scope of this thesis it will not be
discussed here further. For details the reader is referred to [Bass et all, 2003].

Some reverse engineering approaches implement all four of the above activities, but others
only implement specific ones. In the remainder of this chapter approaches and tools for the
architecture reconstruction process are described, starting with methods that address all four
activities and followed by methods that are specialised in one specific activity.

The two case studies described in this thesis apply specific approaches to the architecture
reconstruction activity. The first case study automatically detects frequently used design
constructs in source code. The second automatically combines source elements into higher-
level abstractions. Both implement view extraction and view fusion.

3.3 Methods & tools covering all activities
This paragraph discusses reconstruction methods and tools that cover the complete
architecture reconstruction process. These methods and tools cover all four of the previously
discussed architecture reconstruction activities. Subsequent paragraphs discuss methods and
tools that focus on specific activities.

3.3.1 FAMOOS
FAMOOS is an acronym for Framework-based Approach for Mastering Object-Oriented
Software and refers to ESPRIT project 21975. The goal of the FAMOOS project was to
support the evolution of the first generation of object-oriented software with state of the art
methods and tools. This is accomplished by developing a set of tools and working methods
for object-oriented reengineering [Bär et al, 1999]. The developed tools are based on a
common, language independent framework called Moose. Moose consists of a repository to
store models for describing software systems, and facilitates access to this data.

Supremo

Duploc

GaudiCodeCrawler

Soul

Euler

Moose ExplorerMoose Finder

Refactoring Engine

Moose

Refactoring
Browser

Figure 3: FAMOOS tooling (from [Ducasse, 2003])

 16

Figure 3 shows Moose and the tooling built on top of it. The boxes represent the tools and the
lines dependencies between them. The four tools that collectively form Moose are enclosed in
the square labelled “Moose”.
• Moose Finder offers a query interface on the stored models.
• Moose Explorer is an application that can be used to browse through the stored models

and analyse them in order to discover possible improvements.
• Euler is a module that computes metrics.
• The Refactoring Engine and Refactoring Browser implement language independent

refactorings. These can be seen as transformations of a system’s implementation into a
new form.

• CodeCrawler is a tool for system understanding that uses polymetric views to visualise
the structure of a program [Gîrba and Lanza, 2004]. Polymetric views are based on
graphs in which the nodes represent classes and the edges inter-class relationships. The
node size, position and colour can be used to show up to five node characteristics. Edge
width and colour can show up to two edge characteristics. The user can configure which
specific characteristics are shown. Examples are the inheritance hierarchy combined with
metrics like number of methods and number of different versions.

• Gaudi supports program understanding by incorporating dynamic information in the form
of method invocations into Moose. The combination of static and dynamic information
allows the creation of multiple views of an architecture.

• Duploc and Supremo implement functionality to identify and analyse duplicate code.
• Soul [Wuyts, 1998] implements a hybrid logic programming language in which constraints

and rules about architectures can be expressed. It uses a language similar to Prolog
[Fabry and Mens, 2003]. The rules and constraints can be used to check, enforce or
browse architectural styles and constraints, as well as programming conventions.
[Arévalo and Mens, 2002] used Soul to apply formal concept analysis to gain insight in
the coupling of classes in an inheritance hierarchy. For more details on this the reader is
referred to paragraph 4.1.8.

Moose uses external parsers, including Sniff+ and a Smalltalk parser. Furthermore, XMI and
CDIF files can be imported from other extractors. Internally FAMOOS uses the FAMIX format
(FAMoos Information eXchange Model) to store this information. Figure 4 shows the core of
the FAMIX model in UML notation [Booch et al, 1999]. It consists of the main object-oriented
entities, namely class, inheritance, method and attribute. Two types of relations between
methods are expressed, namely invocation and accesses. An invocation represents one
method calling another one, and access represents a method accessing an attribute of a
class. [Demeyer et al, 1998] gives a complete description of FAMIX.

Class

Attribute

AccessInvocation

InheritanceDefinition

Method

superclass

subclass

belongsToClass

accessesaccessedIn

invokedBy

candidates

Figure 4: Core of the FAMIX model (from [Bär et al, 1999])

 17

3.3.2 Portable Bookshelf
[Finnigan et al, 1997] introduces the concept of a "Software Bookshelf". A Software Bookshelf
is a web-based system that provides easy access to large information bases that describes
software systems. Distinguishing characteristics of a software bookshelf are:
• The combination of multiple, heterogeneous information sources in one hierarchically

structured repository. Tools produce the raw information, which is then combined by a
human librarian. Besides information extracted from source code, this includes expert
knowledge and documentation like test cases, performance analysis, future plans and
historical information.

• A web-based user interface that provides easy to use access with an off-the-shelf web-
browser.

• An open architecture that allows integration of other reverse engineering tools. Standard,
platform independent tools ensure easy integration and portability.

The Portable Bookshelf (PBS) [PBS, 2005] is a toolkit for generating a software bookshelf that
implements all four activities of the architecture reconstruction process. Figure 5 shows the
information flow when PBS is used to generate a bookshelf [Holt, 1997]. Fact extractors are
used to extract facts from source code and export them in Rigi Standard Format (RSF). [Holt,
1997] mentions fact extractors for C, C++, Pascal and PLIX (an IBM internal language), but
the generality of RSF allows easy integration of other extractors. Next, the Grok fact
manipulator is used to combine the extracted facts with subsystem containment information
obtained from interviews with the developers. This produces a hierarchical structure following
the subsystem containment hierarchy. After the integration of the system facts automatic
layout tooling is used to generate the web pages that will be shown to the user (the
"shelves").

Containment
structure

Fact extraction

Source
code

Fact
manipulation

Automatic
layout

Subsystem pages
("shelves")

Figure 5: Process steps for bookshelf construction

PBS has been used in several case studies. [Bowman et al, 1999] describe the generation of
a bookshelf for the Linux kernel. [Godfrey and Lee, 2000] describe the integration of the
Acacia C and C++ fact extractors (see paragraph 3.4.2) in PBS, and its application to
reconstruct the architecture of the Mozilla web browser and the VIM text editor.

[Hassan, 2002] describes an extension to PBS that supports web applications. The variety of
languages often found in web applications is handled by having individual fact extractors for
each language. The results of the individual extractors are combined with scripts. The
combined fact information is stored in a domain model for web applications and presented to
the user.

 18

[Ivkovic and Godfrey, 2002] describe a case study where PBS is combined with the Focus
method to recover the architecture of systems that use middleware technology. The
combination is called Dynamo-1. Focus [Ding and Medvidovic, 2001] does not recover the
complete architecture, but only the parts affected by system evolution. The approach
combines static, code based recovery techniques with analysis of key use cases. The static
analysis starts with extracting a source model, and packaging related classes in components.
Next, an appropriate architectural style is chosen, to which the components are subsequently
mapped. The use case analysis starts with important end-user functions and analyses the
interaction between the architectural components during the use cases.

3.3.3 Rigi
Rigi [Rigi, 2004] supports all four activities of the architecture reconstruction process. It is
developed to "effectively represent and manipulate the building blocks of a software system
and their myriad dependencies" [Müller and Klashinsky, 1988]. This is achieved by a graph-
based visualisation that supports abstraction mechanisms such as aggregation and
generalisation. These mechanisms allow users to group elements and browse through the
resulting structure. The grouping process is described in more detail in paragraph 6.2.2.
Users can filter on arc- and node-types to display subsets of the system structure. The
various operations can be automated with the Rigi Command Language.

The storage format for Rigi graphs is called Rigi Standard Format (RSF) [Wong, 1998]. Rigi
contains parsers for C, C++ and COBOL that export extracted facts to this format. The RSF
format is relatively well documented. Coupled with its extensibility, this led to widespread use
of Rigi in reverse engineering case studies [Lanza, 2003b]. Dali and Riva for example use
Rigi for visualisation, as is described in paragraph 3.3.4 and 3.3.5.

3.3.4 Riva
[Riva, 2000] describes an approach that maps the implementation artefacts to the as-
designed architecture. The approach identifies six phases:
1. Definition of architectural concepts: in the first phase the architectural building blocks

the system is composed of are determined. This can be based on the as-design
architecture but also on other sources.

2. Extraction of the source code model: in the second phase the source code is analysed
to produce a model of the source code. This may result in new architectural building
blocks.

3. Abstraction: in the third phase the source model is mapped to the architectural building
blocks found in the first phase.

4. Improvement of architecture documents: in the fourth phase the system’s architecture
is documented and its understanding is improved.

5. Analysis of extracted architecture: in the fifth phase an improvement plan for the
architecture is produced.

6. Architectural reorganisation of source code: in the last phase the system is changed
according to the improvement plan.

The implementation [Riva, 2000] reports uses Perl scripts to analyse C source files. The
extracted information is written to RSF-files, after which Rigi is used to visualise the
architecture and create abstractions.

3.3.5 Dali
Dali [Dali, 2005] is an architecture reconstruction framework in the form of a workbench that
supports all four activities of the architecture reconstruction process. A workbench provides a
lightweight framework in which other tools can easily be integrated [Bass et al, 2003]. This
way support for new programming languages or visualisations can be added without affecting
the existing tools or data.

 19

Architecture reconstruction with the Dali framework comprises of four activities [Bass et al,
2003], which roughly match with the four activities identified in chapter 3:
• Information extraction is concerned with extracting information, mainly from source

code or system traces. Dali uses a number of extraction tools, including parsers, abstract
syntax tree analysers, lexical analysers, profilers and code instrumentation tools.

• Database population involves converting the extracted information into a standard form.
Together with the information extraction activity this implements view extraction. Dali uses
the PostgreSQL relational database for fact storage. Usually the extraction tools produce
RSF-files, which are converted into SQL commands with Perl scripts.

• View fusion implements the corresponding architecture reconstruction activity. During
this activity the facts the various extractors produced are combined to produce a coherent
view of the architecture. View fusion is performed with SQL queries, producing a single
view at an abstraction level just above that of the source code.

• Reconstruction is the activity where architectural abstractions are created on top of the
fused view. During this activity the actual architecture is reconstructed and analysed. Dali
uses Rigi for visualisation, which offers visual grouping and manipulation possibilities.

[Guo et al, 1999] describes the Architecture Reconstruction Method (ARM). ARM is a semi-
automatic architecture recovery method that can be applied to systems that were developed
using design patterns. [Guo et al, 1999] use the Dali workbench to perform the actual
architectural recovery.
The ARM consists of four phases:
1. Developing a concrete pattern recognition plan for a set of design patterns. These

plans are based on abstract descriptions of the patterns, which are translated into SQL
queries. Design documentation and other knowledge about the system are used as
starting points for this phase.

2. Extraction of a source model consists of extracting structural information from the
source code and grouping elements into higher-level abstractions. The latter is necessary
in cases where the patterns searched for are specified at a higher abstraction level than
the information extracted from the source code.

3. Detecting and evaluating pattern instances is an automatic phase in which the pattern
recognition plans are evaluated against the source model.

4. Reconstructing and analysing the architecture is the final phase. In this phase an
analyst uses a visualisation tool such as Rigi to determine conformance of the as-built
architecture to the as-designed architecture with respect to the documented design
patterns. The instances of design pattern are used as indicators to form a judgment about
the compliance of these two architectures.

3.3.6 Sniff+
Sniff+ [SNIFF+, 2005] is a commercial code analysis tool that implements all four activities of
the architecture reconstruction process. It provides various code navigation and analysis
capabilities that help developers to understand large pieces of source code. By abstracting
the logical structure from the source files, Sniff+ provides an abstraction layer over the source
files [Klaus, 2002]. Users can browse through the extracted symbol information. Furthermore
inheritance-, component-, include- and dependency-trees can be shown.

Sniff+ supports various programming languages, including C/C++, Java, Ada 83/95, CORBA
IDL and Fortran. The C/C++ compiler is designed to efficiently process large amounts of
source code that can be syntactically incorrect. For a description of this compiler the
interested reader is referred to [Bischofberger, 1992].

[Armstrong and Trudeau, 1998a] and [Armstrong and Trudeau, 1998b] compare the quality of
various architectural extractors for software written in C, including Sniff+, Rigi, PBS, and CIA.
They conclude that the parser of Sniff+ is the best of the tested parsers. It provides very few
extraction errors and extracts facts with sufficient detail for architectural analysis.
[Bellay and Gall, 1997] evaluate the parsing capabilities, report generators and browsing and
editing possibilities of four reverse engineering tools for C software, namely Refine/C,
Imagix4D, Sniff+ and Rigi. They conclude that each tool has its strengths and weaknesses.

 20

Strengths of Sniff+ are its fast and fault tolerant parser, graphical cross-referencer and
printing capabilities. The limited graphical reporting possibilities are a weakness of Sniff+.

Because of its high quality parser, several other reverse engineering tools, including Dali and
FAMOOS, use Sniff+ for fact extraction.

3.3.7 InSight
Klocwork InSight [Klocwork, 2005] is a commercial source code analysis tool that implements
all four activities of the architecture reconstruction process. It can extract an architectural
representation of source code written in C, C++ or Java. This information is presented in
several views, both static and dynamic, which are shown in Figure 6. An arrow from view a to
view b indicates b is based directly on a. Indirect dependencies between views are not
shown. The straight arrows indicate automatic view construction by the fact extractor,
whereas the dotted arrows indicate manual view construction with the clustering approach
described in paragraph 6.2.7.

Component
view

Conceptual
viewPackage view

Code view Process viewFunctional
view

Scenario view

Collaboration
view

Source code

Figure 6: InSight architecture views

The views in Figure 6 each have a different purpose [Mansurov and Campara, 2003]:
• The code view describes how the source code, binaries and libraries are organised in

the development environment. This view defines the basis of a “summary model”, which
is discussed in paragraph 6.2.7.

• In the package view elements of the code view are combined into abstract packages.
This is done with three basic operations on the summary model, namely aggregation,
detalization and trimming. These are also discussed in paragraph 6.2.7.

• In the component view packages are combined to form abstract components. This is
done with the same operations as with which the package view is constructed.

• The functional view describes the functional relations between source code entities.
• The scenario view shows scenarios that are important for the architecture in terms of

event sequences. Examples of event sequences are procedure calls and inter-process
messages.

• The collaboration view projects scenarios onto component models. InSight identifies
two types of collaboration views. First, collaboration diagrams integrate a structural view
and a scenario by highlighting the edges that are involved in the scenario. Second, use
case maps display a “time thread” through the structural view.

• The process view describes the system’s dynamic structure in terms of processes,
tasks, threads and events.

• The conceptual view describes the system in terms of its major architectural elements
and the relations between them.

In terms of the 4+1 view model discussed in paragraph 2.4.2, InSight’s conceptual view maps
to the logical view in the 4+1 model. InSight’s functional-, scenario- and collaboration-views
map to the 4+1 scenarios and its process view maps to the 4+1 process view. InSight’s code-,
package- and component-views finally map to the 4+1 development view.

 21

3.3.8 X-ray architecture recovery
X-ray is an architecture recovery approach for distributed applications [Mendonça, 1999]. It
extracts the implemented executable components and their runtime interconnections. Instead
of performing dynamic, runtime analysis, X-ray combines several static analysis techniques.
This has the advantage that the difficulties of performing a runtime analysis are avoided
[Deursen, 2001]. These include high costs, difficulties linking traces to entities in the sources,
and the probe effect7 in real-time environments.

X-ray combines three static analysis techniques:
• Component module classification is used to map compilation modules to executable

components.
• Syntactic pattern matching is used to identify code fragments that implement typical

component interaction features such as pipes. For each found feature this produces a set
of code fragments.

• Structural reachability analysis is used to associate the found features to individual
components. Here features are assigned to one of the involved components.

X-ray has been implemented with Prolog. Prolog facts are used to represent the information
extracted from the source code, and Prolog predicates to implement the analysis techniques.
The output is visualised using dotty [North and Koutsofios, 1994]. [Mendonça, 1999] reports
the application of X-ray to two moderately sized distributed systems, called Samba and Field,
that are both written in C. “The results were successful in that important runtime and physical
allocation aspects could be recovered” [Mendonça, 1999].

3.4 Tools specific for view extraction activity
This paragraph discusses several tools that primarily cover the view extraction activity of the
architecture reconstruction process. Tools such as Sniff+ and InSight, that cover all
architecture reconstruction activities, including view extraction, have already been discussed
in the previous paragraph.

3.4.1 Columbus/CAN
Columbus/CAN is a reverse engineering framework for view extraction from C++ code
[Ferenc et al, 2004]. It provides a general framework that combines a number of reverse
engineering tasks, but mainly focuses on the view extraction activity. Columbus provides a
common interface for plug-ins, some of which are shipped with the framework itself. With
these plug-ins Columbus supports project handling, data extraction, data representation, data
storage, filtering and visualisation [Ferenc et al, 2001]. Other plug-ins can be developed with
the plug-in API.

Three types of Columbus plug-ins can be distinguished:
• Extractor plug-ins analyse a given input file and produce an output file that contains the

extracted facts in Columbus’ internal representation. Columbus is shipped with an
extractor for C++ called CAN (C++ ANalyser) [Columbus, 2003]. CAN has an embedded
C++ processor, but can also wrap other C++ compilers for support of proprietary
constructs.

• Linker plug-ins build and merge the internal representations of the project. For more
information on the schema Columbus uses for this representation the interested reader is
referred to [Columbus, 2003].

• Exporter plug-ins convert the internal representation built by the linker to a specific
output format. Columbus is shipped with exporter plug-ins for various formats, including
GXL, UML XMI, Famix XMI and RSF [Ferenc et al, 2004]. The multitude of export formats
is an important strength of Columbus [Kersemakers, 2005].

7 The probe effect is the effect that by implementing points of observation in the software the
timing-related behaviour of the software is influenced.

 22

Columbus has been used in many reverse engineering projects. For example Alborz, Sart
and Maisa all8 use Columbus/CAN to extract facts from source code to detect design pattern
instances in the as-built architecture.

3.4.2 Acacia
[Chen et al, 1998] describe a C++ data model for reachability analysis and dead code
detection. The Acacia system implements this model. Acacia uses the CCIA fact extractors to
process C and C++ code, and the older CIA fact extractor for C code. A simple database is
used to store the extracted facts, which are manipulated with a flat-file query language.
Finally, Dot [Graphviz, 2005] is used to visualise the results.

Acacia supports all four activities of the architecture reconstruction process, but in literature
the fact extractors are most commonly referred to. These are used in several reverse
engineering approaches, including PBS and Bunch, which are described in paragraph 3.3.2
and 6.2.4 respectively.

3.5 Approaches specific for architecture reconstruction
activity

Earlier in this chapter tools and methods implementing all architecture reconstruction activities
have been discussed. All these support the architecture reconstruction activity. However,
many specific tools and methods for the architecture reconstruction activity exist. This
paragraph discusses a non-exhaustive selection of several approaches that are relevant to
the case studies described in this thesis.

3.5.1 Manual approaches
Manual architecture reconstruction approaches use navigation and browsing tools to
manually reconstruct an architecture. Shrimp is an example of such a tool, but many others
exist. Shrimp is described here because it is used in the case studies described later in this
thesis.

Shrimp (Simple Hierarchical Multi-Perspective) is a visualisation and navigation tool for large,
hierarchical, information spaces. In the context of architecture reconstruction it can be used to
visualise and navigate through the architecture. Shrimp’s primary view is a zoom interface
that combines the hypertext-browsing metaphor with animated zooming over nested graphs
[Storey et at, 2001]. The hierarchical structure is visualised through a nested graph with the
parent-child relationship visualising subsystem containment. Additional relationships are
visualised with coloured arcs over the nested graph.

Shrimp can show subsystems in graphical and textual views, which can be divided in four
categories [Michaud et al, 2001]:
• Source code artefacts and relationships.
• Architectural abstractions and relationships.
• Documentation.
• Metrics and other analysis results.

[Bassil and Keller, 2001] describe the results of a survey on software visualisation tools and
the functionality in practice desired from these tools. Several of these tools are mentioned,
including Shrimp, Sniff+, Rigi, Fujaba and PBS. Because it is beyond the scope of this thesis,
the other visualisation tools are not discussed here. For more information on those the reader
is referred to [Bassil and Keller, 2001].

3.5.2 Pattern detection based architecture reconstruction approaches
Pattern-based architecture reconstruction approaches detect instances of common
constructs, or patterns, in the implementation. By replacing these instances with an
abstracted form a simplified view of the architecture is created. During reverse engineering,

8 These tools are described in paragraph 4.1.7, 4.1.9 and 4.1.4 respectively.

 23

engineers quickly recognise these abstractions, which reduces the time needed for program
understanding. Pattern-based reconstruction approaches are often based on structural
information, thus searching for structural design patterns. Alternatively, behavioural patterns
or repeated code fragments can be searched for.

In practice pattern detection based approaches do not cover all entities in the software
[Quilici, 1995]. The reason for this is that in practice software is never completely composed
of repeated structures. So these approaches produce architectural views in which a subset of
the program entities is converted to an abstract form, while the other entities remain at an
abstraction level just above that of the code.

According to [Sartipi and Kontogiannis, 2003], pattern detection based approaches are one of
the prominent methods for automatic architecture reconstruction (together with clustering-
based approaches). This thesis describes a case study where instances of structural design
patterns are detected in industrial software. Related work concerning pattern-based
architecture reconstruction is discussed in more detail in chapter 4.

3.5.3 Using clustering techniques for architecture reconstruction
Clustering-based architecture reconstruction techniques use clustering techniques to find
architectural components in source code. Clustering techniques find some natural ordering of
data elements, in this case source code elements.

The algorithms usually start with an abstract graph that represents the structure of the
program, for example with the nodes representing classes and the edges inter-class
relationships. Some similarity measure is then used to find groups of classes that belong
together, which are grouped into subsystems. This is repeated until an optimal decomposition
is found. The end result represents an architectural view with abstract entities that group
multiple source code entities.

The similarity measure determines the properties of the produced decomposition. Typically,
similarity measures attempt to achieve high cohesion within modules and low coupling
between modules. This is based the criteria used for the decomposition of software systems
for which [Parnas, 1972] and [Parnas et al, 1984] laid the foundations. [Booch, 1994] extends
this to object-oriented software, stating that systems should be composed of collaborating
agents (objects). To simplify their understanding, objects should be organised into hierarchies
that promote strong cohesion and loose coupling. [Sommerville, 2004] confirms that well
designed systems exhibit high cohesion and low coupling.

When reconstructing architectures with clustering techniques a ‘natural’ structure of the
software is determined. There is a difference however, between discovering an architecture
and imposing one. Clustering techniques impose a new ordering, instead of discovering some
hidden ordering [Wiggerts, 1997]. This ordering must be evaluated on its usefulness for
program comprehension [Tzerpos and Holt, 1998].

According to [Sartipi and Kontogiannis, 2003], clustering-based approaches are one of the
two prominent methods for automatic architecture reconstruction (together with pattern
detection based approaches). This thesis describes a case study where the architecture of an
industrial system is reconstructed with clustering techniques. Related work concerning
clustering-based architecture reconstruction is discussed in more detail in chapter 6.

3.5.4 Using Conway's law for architecture reconstruction
Besides technical factors such as the functional and non-functional requirements,
organisational factors also play an important role during the development of software
systems. [Conway, 1968] states that "organisations which design systems are constrained to
produce designs which are copies of the communication structures of these organisations".
This has become known as Conway's law [Brooks, 1995], [Demeyer et al, 2004] [Herbsleb
and Grinter, 1999]. Conway’s law can be used during the architecture reconstruction activity
to choose suitable abstractions.

 24

[Bowman and Holt, 1998] describe experiments where the ownership architecture is
compared to the as-built and as-designed architecture. These experiments used three large
software systems as input; Linux (800 KLOC of C code), Mozilla (1500 KLOC of C and C++
code) and Aleph, a commercial software development system (3500 KLOC of C and C++
code). The experiments showed that the ownership architecture predicts the as-built
architecture very well, and is closely correlated with the as-designed architecture. In fact, the
ownership architecture predicts subsystem dependencies in the as-built architecture at least
as good as the as-designed architecture. The as-designed architecture tends to
underestimate dependencies in the as-built architecture. The ownership architecture on the
other hand tends to overestimate them. This makes it difficult to perform architecture
reconstruction solely based on the ownership architecture, but in conjunction with the as-
designed architecture it provides a good starting point.

3.5.5 Slicing based architecture reconstruction approaches
Program slicing is a technique that extracts those program elements from the source code
that affect the behaviour of the program at a certain point. In this context a point is for
example a certain line of the code, or an interface. Together the extracted elements form a
specific view of the program that is called a program slice. A program slice consists of those
parts of the program that affect the behaviour of the program at the chosen point, either
directly or indirectly.

According to [Beck and Eichmann, 1993] slices are usually generated by first building a
program representation that contains a program dependence chart. This is done using data-
and control-flow analysis. In this graph the nodes represent the entities in the program and
the edges dependencies. Usually program statements are chosen as entities. A disadvantage
of this choice is that these entities have a relatively low abstraction level. [Beck and
Eichmann, 1993] use interface entities such as procedures and global variables to achieve a
slightly higher abstraction level.
After the program dependence graph is constructed the generation of the slices is
straightforward. Starting with the entities of interest, which are specified in the slicing criterion,
the edges in the graph are followed to generate their transitive closure.

In the context of reverse engineering slicing is often used to extract reusable components
from an implementation or specification. [Beck and Eichmann, 1993] for example use slicing
to detect which parts of a component affect some subset of its interface.

Slicing is a very useful technique for reverse engineering. But because it is not related to the
two methods applied in the case studies described in this thesis, we shall not discuss it in
more detail. For more information the interested reader is referred to [Beck and Eichmann,
1993] and [Zhao, 2000].

 25

4 Pattern detection in source code
One of the two case studies described in this thesis aims to detect design pattern instances in
source code. This chapter discusses similar approaches reported in literature. The discussed
approaches are divided in two categories; approaches in the first category need upfront
knowledge of the expected patterns, whereas those in the second do not have this limitation.
The approach used in the case study falls in the second category.

4.1 Detecting known patterns
This paragraph describes approaches that detect instances of known patterns in source code.
These approaches generally use a pattern library. In this library the patterns are specified in
some specification language. These specifications are matched against a model extracted
from the design documentation or source code to find the patterns.
Although not exhaustive, this paragraph gives a representative overview of these approaches.
It is based on references found in literature, using [Kersemakers, 2005] as a starting point.

4.1.1 Pat
[Krämer and Prechtelt, 1996] describe the Pat system, which treats pattern detection as a
constraint satisfaction problem. In Pat patterns are described with a set of propositions. The
fundamental idea is to check which propositions hold for a model of the system. More
precisely; let S = {s1,s2,…,sn} be a set of predicates modelling the system under
investigation (siªtrue, 1§i§n) and P = {p1,p2,…,pm} a set of propositions expressing
design patterns. Pattern pj (1§j§m) is present in the software if and only if pj can be inferred
from S. The Prolog Engine performs this inference. The instantiated values for the variables in
pj specify the entities involved in the pattern expressed by pj.

Figure 7 illustrates how this process is implemented in Pat. The Code Analysis module
extracts S from C++ header files and converts it to Prolog facts automatically. The Pattern-to-
Prolog module accepts a set of patterns as input and produces the Prolog rules that express
P. This is done in two steps; first the patterns are expressed as static OMT diagrams
[Rumbaugh, 1990] manually, after which they are translated to Prolog rules automatically.
The Prolog Engine uses the output of these two modules to calculate the set of pattern
candidates C.

Code
Analysis

Pattern-to-
Prolog

S P

Prolog Engine

C

Source
code

Pattern
diagrams

Figure 7: Dataflow in Pat

[Krämer and Prechtelt, 1996] expressed five structural design patterns as Prolog rules,
namely Adapter, Bridge, Composite, Decorator and Proxy [Gamma et al, 1995]. An important
limitation of the method is that behavioural patterns are difficult to detect. This is caused by
the fact that their distinguishing characteristics are difficult to extract from source code alone,
or are simply not extracted by the chosen extractor. For similar reasons some structural
design patterns cannot be detected reliably either; there is not enough semantic information

 26

available to achieve this. These limitations lead to false positives in the list of pattern
candidates. [Krämer and Prechtelt, 1996] applied Pat to four C++ programs, consisting of 9 to
343 classes. They report a precision between 14 and 50 percent and 100 percent recall. The
false positives in the result must be sorted out manually.

4.1.2 AOL Graphs
[Antoniol et al, 1998] describe a method for to find design patterns that uses metrics and
delegation constraints to filter out false positives. It takes both code and design documents as
input, as is shown in Figure 8. Both are translated to an intermediate representation called
AOL (Abstract Object Language). The Pattern Recogniser uses these together with the AOL
pattern descriptions from the AOL Pattern Library as input. After parsing the AOL graph it
calculates various metrics from it, for example the number of methods and operations of a
class, or the number of associations a class is involved in. The Constraint Evaluator then
executes three matching operations:
1. The metrics are used to filter out classes that cannot be involved in the searched

patterns. This is done before matching the AOL pattern specifications to reduce the
search space for operation 2.

2. The AOL pattern specifications are matched against the input graphs.
3. Delegation constraints are evaluated against the pattern candidates. A delegation

constraint specifies call delegation behaviour for classes.

Code
Analysis

Source
code

Code
Analysis

OMT
Design

Pattern Recogniser

AOL
Parser

Metrics
Extractor

Constraints
Evaluator

AOL Pattern
Library

Pattern
Candidates

Figure 8: Pattern detection process

[Antoniol et al, 1998] describe a Java implementation of the described method that searches
for five structural design patterns, namely Adapter, Bridge, Proxy, Decorator and Composite
[Gamma et al, 1995]. This application has been applied to fourteen programs written in C++,
including both public domain and industrial code. The programs varied in size between 4 and
50 KLOC. On average the precision of the result is about 55 percent and recall 100 percent.
The use of the metrics and checking of delegation constraints reduced the number of false
positives indeed. This conclusion is mainly based on the experience with the public domain
code. In the industrial code only a few pattern instances are found.
In some cases the authors found differences between the patterns detected in the design
documentation and in the source code. This is attributed to deviations between the as-
designed and the as-built architecture. In case of the industrial code the sets of patterns
detected from the design and from the code are disjoint, indicating large differences between
these two architectures.

4.1.3 Spool
[Keller et al, 1999] are the first to explicitly link design pattern detection to reverse
engineering. They state that design patterns capture the rationale and trade-offs in a software
design. This way knowledge about applied design patterns helps to understand a design.

 27

An important problem when searching for design patterns in existing software is that “patterns
can be implemented in many different ways” [Keller et al, 1999]. This is handled by utilising
the cognitive strength of a human analyser.

The presented environment, called Spool, supports automatic, semi-automatic and manual
searching. It stores facts extracted from source code in the Poet object-oriented database,
using a schema based on the UML meta-model. Design pattern candidates are presented in a
graphical user interface with which a human analyst can check them. The layouts in this user
interface are generated with Dot and Neato [Graphviz, 2005]. The detection of three design
patterns is implemented, namely Template Method, Factory Method and Bridge [Gamma et
al, 1995]. The analysis of three C++ programs ranging in size between 70 and 472 KLOC is
described. Although the detection results are described, no figures are presented for precision
and recall. This is done because the strength of the Spool environment is not so much the
quality of the automatic detection, but the integration of the human in the recovery process.
[Keller et al, 1999] state that this is the only way to find interesting patterns.

4.1.4 Maisa
Maisa is a tool for the analysis of software architectures that is based on the detection of
design pattern instances. It predicts the quality of designs by searching design-level UML
diagrams [Booch et al, 1999] for a set of design patterns and anti-patterns that are expressed
as Prolog facts [Paakki et al, 2000]. The tool matches these with the facts extracted from UML
designs. The resulting set of patterns is then used to extract quality-relevant metrics. Besides
these metrics, conventional metrics about the entire architecture (e.g. number of classes) are
also used. A human analyst can use the produced metrics, together with the properties of the
patterns, to determine the quality of the architecture.

[Paakki et al, 2000] have applied Maisa to a large telecommunications system. The approach
was able to detect design patterns efficiently and reliably and was able to find several known
design problems.

[Ferenc et al, 2001] describes the integration of Columbus/CAN and Maisa. Columbus is used
to extract a set of UML class diagrams from C++ code. These are then imported into Maisa
and analysed. For more information on Columbus/CAN the reader is referred to paragraph
3.4.1. The multitude of implementation variants is handled with partial satisfyability, which
means that the Prolog inference engine also accepts rules that do not match the propositions
completely.

[Ferenc et al, 2001] report that a lack of information in the design diagrams caused problems
for the pattern identification. Possible solutions are to search for the patterns using less
information or to use partial satisfyability. However, both would increase the number of false
positives. The lack of information also made it impossible to distinguish patterns with a similar
structure, but different behaviour, such as Bridge and Command [Gamma et al, 1995].

4.1.5 Idea
[Bergenti and Poggi, 2000] describe the Idea tool (Interactive DEsign Assistant), an
interactive design assistant that automatically searches for design pattern instances and
produces critiques about their implementation. Idea takes an UML design exported in XMI
format as input and detects instances of the following design patterns [Gamma et al, 1995]:

Proxy Factory Method
Adapter Abstract Factory
Bridge Iterator
Composite Observer
Decorator Prototype

These patterns are expressed as Prolog rules, which are matched with facts extracted from
the input file. Information extracted from collaboration diagrams is used to check if a detected
pattern instance has the required object interactions. If this is the case, the instance is shown
to the user. For each pattern a set of design rules is stored in the knowledge base, with the

 28

corresponding critiques. If a certain rule is violated the corresponding critique is fired and
presented to the user.

4.1.6 Fujaba
Fujaba (From UML to Java And Back Again) is a public domain research prototype of a CASE
tool [Klein et al, 1999]. Fujaba supports both forward- and reverse engineering for UML class-
and behaviour-diagrams. This means that Java code can be generated from these diagrams,
and that these diagrams can be generated from source code.

[Niere et al, 2001] and [Niere et al, 2003] describe a design pattern recognition method for the
Fujaba environment. Like other methods, this method uses a pattern library. The problem of
having many design variants is handled by composing the stored patterns of smaller sub-
patterns. These capture the generic parts of the pattern. The individual design pattern
variants are composed of these sub-patterns. This reduces the total number of different
patterns that must be detected. [Niere et al, 2001] describe an implementation that detects
the Composite pattern [Gamma et al, 1995].
Implementation differences are handled with fuzzy reasoning. The sub-patterns are specified
by a set of detection rules, each of which is associated with a fuzzy belief f (0≤f≤1). During
the detection phase a design pattern is only detected if the accumulated fuzzy beliefs of the
matching rules exceed a user-specified threshold. Besides detection rules, contra indications
can also be specified to improve the detection process. The actual detection is implemented
with Generic Fuzzy Reasoning Nets [Jahnke et al, 1997], which are expanded into Fuzzy
Petri Nets. The detection rules are implemented as graph rewrite rules.

The above pattern detection cannot check if the reported instances implement the dynamic
behaviour the design pattern prescribes. This causes false positives, especially if behavioural
patterns are searched for. [Wendehals, 2003] and [Heuzeroth et al, 2002] independently
report extensions to Fujaba that use dynamic analysis to reduce the number of false
positives. In both cases the dynamic analysis is applied to the output of the static analysis.

[Heuzeroth et al, 2002] consider a design pattern’s protocol as a set of state transitions. When
a node n is detected to be involved in a state transition it is checked whether or not n is part
of any pattern instance the static analysis reported. The pattern library is extended with a set
of specific rules that specify the protocol of each pattern. If n is part of a pattern instance the
appropriate rules are checked.
When the analysis is complete pattern candidates are partitioned into four groups:
• Full match: all rules in the protocol of the pattern candidate are completely executed.
• May match: at least one, but not all of the rules of the protocol are executed.
• Mismatch: the protocol requirements are violated.
• No decision: none of the monitored nodes of the candidate are executed.

The dynamic information is gathered using an on-line debugger and automatic code
instrumentation. The first method causes severe performance problems, which makes it
impossible to use in practice. The second has the disadvantage of requiring an extra
compilation, but this is considered acceptable. Note that both methods are vulnerable to the
choice of the execution scenario. A pattern that is not executed cannot be detected.
[Heuzeroth et al, 2002] reports the results of an experiment in which the Observer pattern is
searched for in two medium sized Java programs. [Heuzeroth et al, 2003] report a case study
where the Observer, Composite, Mediator, Chain of Responsibility and Visitor patterns are
searched. In both cases the addition of the dynamic analysis removed almost all false
positives.
A disadvantage of the previously described method is the need to specify the detection rules
manually. [Heuzeroth et al, 2003] describe a specification language in which the constraints
that define a design pattern can be expressed. The part of the language expressing the static
constraints is based on predicate calculus. The part expressing the dynamic constraints
defines pre- and post-conditions. From such a specification, the detection rules are generated
automatically.

 29

[Wendehals, 2003] describes a different method to reduce the number of false positives with
dynamic information. The proposed method expresses a design pattern’s protocol as graph
rewrite rules, similar to the static analysis. These rules are extracted from message sequence
diagrams. The dynamic information is retrieved from method traces.

4.1.7 Alborz
Alborz is a prototype toolkit for recovering the architecture of systems written in procedural
languages [Sartipi, 2001]. The tool provides two techniques for architecture recovery; pattern
recognition and clustering. In this paragraph the pattern detection is described, whereas
paragraph 6.2.5 describes the clustering method.

The pattern recognition of Alborz represents the analysed software with an attributed
relational graph in which the nodes represent files, functions, datatypes and variables [Sartipi
and Kontogiannis, 2003]. The edges represent “call” and “use” relationships. The patterns are
expressed as AQL queries (Architectural Query Language). These are translated to relational
graphs too, after which a graph-searching algorithm is used to find pattern instances. The
found instances are visualised with Rigi.

4.1.8 Using Soul
[Fabry and Mens, 2003] describe the use of the Soul language to detect patterns in Java and
Smalltalk code. Soul is a programming language for logic reasoning, similar to Prolog. Like
Prolog, Soul has a logical inference engine. The method is similar to that of Pat, but uses
more information. Besides header information, the proposed method also takes method
bodies into account. This includes method invocations and variable accesses.

[Fabry and Mens, 2003] applied the described method to two applications written in Java and
Smalltalk (38 to 377 classes). In the reported case study the Double Dispatch and Getting
Method patterns [Beck, 1997] are searched for. The results were validated manually, which
revealed neither false positives nor false negatives.

4.1.9 Sart
[Kersemakers, 2005] describes a case study where design pattern are detected in a way
similar to the method used in Pat. This method is implemented in the Sart tool (Software
Architecture Recovery Tool). Design patterns are expressed as Prolog rules and the facts that
are extracted from the source code as Prolog facts. Detection rules were implemented for the
Observer, Interceptor, Pipe-and-Filter and Blackboard patterns [Gamma et al, 1995],
[Buschmann et al, 1999].

To reduce the number of false positives, behavioural information is extracted from the code.
More specific, the set of methods S that can be called from the scope of each method m is
extracted. S is called the reach of m. Each design pattern has a specific sequence of method
calls. The reach is used to determine if a potential pattern instance can implement the
method-calling sequence the pattern prescribes. [Kersemakers, 2005] reports that adding the
reach-based filtering significantly reduced the number of false positives.

The multitude of pattern implementation variants is handled by introducing a set of relaxation
strategies for each pattern. These represent the variants typically used in practice.

[Kersemakers, 2005] uses Columbus/CAN for fact extraction. Difficulties are reported with the
extraction of associations based on attributes, which made it more difficult to reduce the
number of false positives. Rigi is used to visualise pattern instances.

 30

4.1.10 Backdoor
[Shull et al, 1996] present an inductive method to help discover custom, domain specific
design patterns in existing object-oriented code. The proposed method uses a knowledge
base of existing patterns and a six-step process to check if a suspected pattern instance
really matches an instance in the knowledge base [Shull et al, 1996]:
1. Review the problem specification and design documents. This provides insight in the

problem at hand, and incorporates existing knowledge.
2. Using the class declarations, develop a preliminary model of the system.
3. Refine the preliminary model with information from class implementations.
4. Identify candidate patterns in the refined model based on inheritance and communication

links between classes. In this step the actual pattern detection takes place.
5. Analyse the detected pattern candidates to find useful design patterns. This is the most

labour-intensive step and requires a skilled analyst.
6. Interview designers and implementers to check the suspected architecture and obtain

information about the rationale.

4.2 Detecting unknown patterns with FCA
The use of a pattern library requires upfront knowledge about the implemented patterns. This
paragraph describes the use of a mathematical technique called Formal Concept Analysis
(FCA) to detect various types of patterns. The selection of methods and tools is based on
[Snelting, 2000], [Snelting] and [Tilley et al, 2003]. Because one of the case studies described
later in this thesis uses FCA for pattern detection, the approaches in this chapter are
described in more detail than the earlier ones.

4.2.1 Formal Concept Analysis introduction
Formal Concept Analysis (FCA) is a mathematical technique to identify “sensible groupings of
formal objects9 that have common formal attributes” ([Siff and Reps, 1998] citing [Wille,
1981]). FCA is also known as Galois lattices ([Arévalo et al, 2003] citing [Wille, 1981]). The
analysis starts with a formal context, which is a triple C=(O,A,R) in which O is the finite set
of formal objects and A the finite set of formal attributes. R is a binary relation between
elements in O and A, hence RŒOµA. If (o,a)œR it is said that object o has attribute a.

Let XŒO and YŒA. Then the common attributes s(X) of X and common objects t(Y) of Y
are defined as [Ganter and Wille, 1998]:
 () (){ }: ,X a A o X o a Rσ = ∈ ∀ ∈ ∈ (1)

 () (){ }: ,Y o O a Y o a Rτ = ∈ ∀ ∈ ∈ (2)

The following derivation operators hold for any X,X1,X2ŒO and Y,Y1,Y2ŒA [Ganter and Wille,
1998]:

() ()
() ()

1 2 2 1

1 2 2 1

X X X X

Y Y Y Y

σ σ

τ τ

⊆ ⇒ ⊆

⊆ ⇒ ⊆
 (3)

()() () ()()()
()() () ()()()

() ()

 and

 and

X X X X

Y Y Y Y

X Y Y X

τ σ σ σ τ σ

σ τ τ τ σ τ

τ σ

⊆ =

⊆ =

⊆ ⇔ ⊆

 (4)

A formal concept of the context (O,A,R) is a pair of sets (X,Y), with XŒO and YŒA, such
that [Ganter and Wille, 1998]:
 () ()Y X X Yσ τ= ∧ = (5)

9 Be aware that formal objects and formal attributes are not the same as objects and
attributes in object-oriented programming.

 31

Informally a formal concept is a maximal collection of objects sharing common attributes. X is
called the extent and Y the intent of the concept.

For example consider the following six sports: swimming, soccer, waterpolo, icehockey,
triathlon and bobsledding. These sports are characterised with five properties: the fastest
wins, water/ice involved, players running on foot, ball used and teamsport or individual sport.
Suppose the sports must be organised according to their properties. Then in FCA terms the
sports are the formal objects and their properties the formal attributes. Table 3 shows the
relation between the objects and the attributes. For example soccer is a teamsport where the
players run on foot and a ball is used. Further, the only teamsports where a ball is used are
soccer and waterpolo.

Formal Attributes
Fastest Water Running Ball Team

Swimming ◊ ◊
Soccer ◊ ◊ ◊
Waterpolo ◊ ◊ ◊
Icehockey ◊ ◊
Triathlon ◊ ◊ ◊ Fo

rm
al

O

bj
ec

ts

Bobsledding ◊ ◊ ◊ ◊

Table 3: A characterisation of sports
In the example ({soccer, waterpolo},{ball, team}) is an example of a concept, but ({triathlon,
bobsledding},{fastest, water}) is not because swimming also has these attributes. ({soccer,
waterpolo},{running, ball, team}) is not a valid concept either because waterpolo does not
have the running attribute.

The extents and intents can be used to relate formal concepts hierarchically. For two formal
concepts (X0,Y0) and (X1,Y1) [Ganter and Wille, 1998] define the subconcept relation ≤ as:
 () ()0 0 1 1 0 1 1 0, ,X Y X Y X X Y Y≤ ⇔ ⊆ ⇔ ⊆ (6)
If p and q are formal concepts and p≤q then p is said to be a subconcept of q and q is a
superconcept of p. For example ({soccer}, {running, ball, team}) is a subconcept of ({soccer,
waterpolo},{ball, team}). The subconcept relation enforces an ordering over the set of
concepts that is captured by the supremum � and infimum ∏ relationships. They define the
concept lattice L of a formal concept C with a set of concepts I [Ganter and Wille, 1998]:

 ()
() () (), , ,

, ,
i i i i i i

i i i i
X Y I X Y I X Y I

X Y X Yτ σ
∈ ∈ ∈

 =

� ∪ ∩ (7)

 ()
() () (), , ,

, ,
i i i i i i

i i i i
X Y I X Y I X Y I

X Y X Yσ τ
∈ ∈ ∈

 =

∏ ∩ ∪ (8)

where I is the set of concepts to relate. To calculate the supremum� (or smallest common
superconcept) of a set of concepts their intents must be intersected and their extents joined.
The latter set must then be enlarged to fit to the attribute set of the supremum. The
infimum ∏ (or greatest common subconcept) is calculated in a similar way.
For example the supremum c7 of c1=({soccer},{running, ball, team}) and
c2=({waterpolo},{water, ball, team}) is calculated as follows:

{ } { }()() { } { }()
{ }() { }()

{ } { }()

7 1 2

7

7

7

, , , , ,

, , ,

, , ,

c c c

c soccer waterpolo running ball team water ball team

c ball team ball team

c soccer waterpolo ball team

τ σ

τ

=

= ∪ ∩

=

=

�

 32

[Siff and Reps, 1997] describe a simple bottom-up algorithm that constructs a concept lattice
L from a formal context C=(O,A,R) using the supremum relation. It starts with the concept
with the smallest extent, and constructs the lattice from that concept onwards. The algorithm
utilises that for any concept (X,Y) [Snelting, 1996]:

 () { } { }()
o X o X

Y X o oσ σ σ
∈ ∈

= = =

∪ ∩ (9)

This equation enables calculating the supremum of two concepts by intersecting their intents.
(10) gives a formalised description of the lattice construction algorithm. This description is
based on the informal description by [Siff and Reps, 1997].
Stated informally, the algorithm starts with the calculation of the smallest concept cb of the
lattice. The set of atomic concepts, together with cb, is used to initialise L. Next the algorithm
initialises a working-set W with all pairs of concepts in L that are not subconcepts of each
other. A hash table is used to store L and allow efficient checking for duplicates later on. The
algorithm subsequently iterates over W to build the lattice using the supremum relation for
each relevant concept-pair. The supremum of two concepts is calculated using (9). Recall that
in this calculation the intents of the concepts c1 and c2 are intersected, after which t is applied
obtain the extent. If the calculated concept is new it is added to L and the working-set is
extended with relevant new concept pairs.

()() ()()
{ } ()() ()(){ }

() (){ }
()

{ }
() (){ }

2
1 2 1 2 2 1

1 2

1 2

: ,
: , |
: ,

for each , do
c'=c
if ' do

: '
: , ' ' '

od
od

b

b

c
L c o o o O
W c c L c c c c

c c W
c

c L
L L c
W W c c c L c c c c

τ σ σ
τ σ σ

= ∅ ∅

= ∪ ∈

= ∈ ¬ ≤ ∨ ≤
∈

∉
= ∪
= ∪ ∈ ∧ ¬ ≤ ∨ ≤

� (10)

Figure 9 and Table 4 show the result of applying algorithm (10) to the sports example. cb and
ct are the bottom and top concepts respectively.

ct ({swimming, soccer, waterpolo, icehockey, triathlon, bobsledding}, «)
c0 ({swimming, triathlon, bobsledding}, {fastest, water})
c1 ({soccer}, {running, ball, team})
c2 ({waterpolo}, {water, ball, team})
c3 ({icehockey, waterpolo, bobsledding}, {water, team})
c4 ({triathlon, bobsledding}, {fastest, water, running})
c5 ({bobsledding}, {fastest, water, running, team})
c6 ({swimming, triathlon, bobsledding, icehockey, waterpolo}, {water})
c7 ({soccer, waterpolo}, {ball, team})
c8 ({soccer, waterpolo, icehockey, bobsledding}, {team})
c9 ({soccer, triathlon, bobsledding}, {running})
c10 ({soccer, bobsledding}, {running, team})
cb («, {fastest, water, running, ball, team})

Table 4: Extents and intents of the sports example

 33

ct

c6c8 c9

c10 c3c7

c0

c5c2

c4

c1

cb
Figure 9: Concept lattice for sports example

The time complexity of algorithm (10) depends on the number of lattice elements. If the
context contains n formal objects and n formal attributes, the lattice contains 2n concepts
[Snelting, 1996]. This means the worst case running time of the algorithm is exponential in n.
In practice however, the size of the concept lattice typically10 is O(n2), or even O(n). This
results in a typical running time for the algorithm of O(n3) [Snelting, 1996].

Algorithm (10) is a very simple lattice construction algorithm that does not perform very well.
[Ganter, 1987] presents the “NextConcept” algorithm. The computational complexity of this
algorithm is linear with the size of the concept lattice, but more difficult to understand. A
disadvantage of the NextConcept algorithm is that it only produces the concepts, and not the
relations between them. For cases where the lattice is needed, [Lindig, 2002] presents the
“Lattice” algorithm. This algorithm produces both the concepts and the relations between
them. Worst case it has a quadratic complexity, but since the quadratic component is
relatively small, the algorithm’s time complexity can be considered O(n). For more lattice
construction algorithms the interested reader is referred to [Kuznetsov and Obëdkov, 2001].

4.2.2 Early uses of FCA for reverse engineering
[Snelting, 1996] first described the use of FCA in the context of reverse engineering. He
describes the application of concept analysis to the problem of reengineering compile-time
configurations in procedural code. These configurations are defined by means of
preprocessing instructions (#if…#endif) in the source files. The formal context C=(O,A,R) is
used with:
• O: set of source-code fragments.
• A: set of used preprocessor symbols
• R: usage of the preprocessor symbols in the source-code fragment.
A concept lattice is used to provide insight in the configurations and their relations.

[Siff and Reps, 1997] and [Siff and Reps, 1998] describe the application of FCA to modularise
procedural programs into classes. The formal context C=(O,A,R) is used in the following
way:
• O: set of functions in the source code.
• A: set of datatype definitions.
• R: uses-datatype and does-not-use relations. The following datatype usages are

considered: return type, argument type and global variable type usage.
The algorithm generates the concept lattice and calculates concept partitions. A concept
partition is a grouping of the concepts such that every atomic concept in the lattice appears

10 This is based on [Snelting, 1996], [Tonella and Antoniol, 1999] and [Ball, 1999].

 34

precisely once in the concept partition. Each partition represents a possible modularisation. It
is up to the user to select the appropriate partition.

In the following paragraphs several other uses of FCA for program understanding are
discussed. For more applications the interested reader is referred to [Tilley et al, 2003] and
[Snelting, 2000].

4.2.3 Design pattern detection
[Tonella and Antoniol, 1999] describe the use of FCA to find recurring design constructs in
object-oriented code. The key idea is that a design pattern amounts to a set of classes and a
set of relations between them. Two different instances of a pattern have the same set of
relations, but different sets of classes.
Let D be the set of classes in the design and T be the set of relationship-types between
classes. For example T={e,a} defines the relationship types “extends” and “association”.
Then the set of inter-class relations P is typed PŒDµDµT. To find pattern instances of k
classes the formal context Ck=(Ok,Ak,Rk) is used with:
• Ok: set of k-sized sequences of classes in the design. More precisely

() []{ }1, , | 1..k k iO x x x D i k= ∈ ∧ ∈… where k is called the order of the sequence.

• Ak: set of inter-class relations within the sequences in Ok. Each is a triple11 (xi,xj)t, where
xi and xj are classes and t is a relationship-type. Ak is defined by

() () []{ }, | , , 1..k i jt t
A i j x x P i j k= ∈ ∧ ∈ .

• Rk: “possesses” relation between the elements in Ok and in Ak.

Figure 10 gives an example of a class diagram, for which Table 5 shows the corresponding
set of labelled class relations (P) and a legend.

E

F G

U

V

W

K

L

M

Figure 10: Example of a class diagram

(E,F)a (U,V)a (M,K)e
(G,F)e (W,U)e (M,L)e

 (W,V)e

α β (α,β)e

α β (α,β)a

Table 5: Set of labelled class relations P

A formal concept (X,Y) consists of a set of class-sequences X and a set of inter-class
relations Y. Thus the intent Y specifies the pattern and the extent X specifies the set of
pattern-instances found in the code.

Before the lattice can be constructed from the context this context must be generated from
the class diagram. [Tonella and Antoniol, 1999] describe a simple inductive algorithm, which
is shown in (11). Recall that D is the set of classes and P the set of class-relations.

The initial step generates an order two context. This is done by collecting all pairs of classes
that are related by a tuple in P; the set O2 of formal objects of the order two context consists

11 We use the same notation as [Tonella and Antoniol, 1999].

 35

of all pairs of classes related by a tuple in P. This means that for all formal objects in O2 a
relation of type t exists from the first to the second class. Therefore, the set A2 of formal
attributes of the order two context consists of the tuples (1,2)t for which a tuple in P exists
that relates two arbitrary classes by a relation of type t.
In the inductive step, the order of the context is increased with one. The construction of Ok
appends one component, xk, to the tuples in Ok-1. This xk is defined as any class for which a
tuple in P exists that relates xk to some other class xj that is present in the tuple of Ok-1. Next,
Ak is constructed by extending Ak-1 with two sets of tuples. The first set consists of the tuples
(k,j)t, for which j equals the index of the class xj that allowed the addition of xk during the
construction of Ok, and a relation of type t exists in P from xk to xj. The second set is similar,
with k and j exchanged.

() (){ }
() (){ }
()
() (){

() ()()}
() (){

() ()() () }

2

2

1 1 1 1

1 1

Initial step:
, | ,

1,2 | , : ,
Inductive step 2 :

, , | , ,
,1 1 , ,

, | , ,
1 1 1 1 ,

t

t t

k k k k

j k k jt t

k k k kt

i j t

O x y x y P
A x y D x y P

k
O x x x x O

j j k x x P x x P

A A i j x x O
i k j k j k i k x x P

− −

−

= ∈
= ∃ ∈ ∈

>
= ∈ ∧

∃ ≤ ≤ − ∧ ∈ ∨ ∈

= ∪ ∃ ∈ ∧

= ∧ ≤ ≤ − ∨ = ∧ ≤ ≤ − ∧ ∈

… …

…

 (11)

Note that in (11) the order n context contains the order n-1 context in the sense that all lower-
order sequences are initial subsequences of the objects in the order n context, and that all
attributes are retained. Note also that the algorithm assumes that design patterns consist of
connected graphs. This assumption holds for all of the patterns in [Gamma et al, 1995], so
provided that sufficient relationships between classes are extracted it does not impose a
significant restriction.

Table 6 shows the order 3 context algorithm (11) generated for the example. The order 2
context contains for example the formal object (E,F). In the inductive step the tuple (G,F)e
causes the extension to (E,F,G), and leads to the creation of a new formal attribute, (3,2)e.
Observe that the number of different formal objects is much less than the possible number of
class combinations of length 3 (which is 93=729). This is due to the very low connectivity of
the class-graph of the example (compared to a fully connected graph).

Formal attributes A3
(1,2)a (1,2)e (3,2)e (3,2)a (3,1)e (2,3)a (1,3)e

(E,F,G) ◊ ◊
(G,F,E) ◊ ◊
(U,V,W) ◊ ◊ ◊
(W,U,V) ◊ ◊ ◊
(W,V,U) ◊ ◊ ◊
(M,K,L) ◊ ◊ Fo

rm
al

 o
bj

ec
ts

O

3

(M,L,K) ◊ ◊

Table 6: Order three context for pattern example

[Tonella and Antoniol, 1999] use algorithm (10) to construct the lattice. For the example this
produces the concepts in Table 7 and the lattice in Figure 11.

 36

ct ({(E,F,G),(G,F,E),(U,V,W),(W,U,V),(W,V,U),(M,K,L),(M,L,K)}, «)
c0 ({(E,F,G),(U,V,W)}, {(1,2)a,(3,2)e})
c1 ({(G,F,E),(W,V,U)}, {(1,2)e,(3,2)a})
c2 ({(U,V,W)}, {(1,2)a,(3,2)e,(3,1)e})
c3 ({(W,U,V)}, {(1,2)e,(2,3)a,(1,3)e})
c4 ({(W,V,U)}, {(1,2)e,(3,2)a,(1,3)e})
c5 ({(M,K,L),(M,L,K),(W,U,V),(W,V,U)}, {(1,2)e,(1,3)e})
c6 ({(G,F,E),(W,U,V),(W,V,U),(M,K,L),(M,L,K)}, {(1,2)e})
cb («, {(1,2)a,(1,2)e,(3,2)e,(3,2)a,(3,1)e,(2,3)a,(1,3)e})

Table 7: Extents and intents of the pattern example

ct

c6

c3

c0

c5

c2 c4

c1

cb
Figure 11: Concept lattice of the pattern example

The concepts in Table 7 directly represent patterns, but some redundancies are present. For
example c0 and c1 represent the same pattern. [Tonella and Antoniol, 1999] informally define
the notions of equivalent patterns and equivalent instances to remove redundancies from the
lattice. (12) and (13) define these notions formally.

Definition 1 (Equivalent patterns): Let (X1,Y1) and (X2,Y2) be two concepts representing
design patterns that are generated from the same order k context. (X1,Y1) and (X2,Y2) are
equivalent patterns if an index permutation f on the index set {1..k} exists such that:

 () ()() (){ } () ()() (){ }1 12 1 1 1 1 21 1
,..., ,..., ,..., ,...,k kf f k f f k

X x x x x X X x x x x X− −= ∈ ∧ = ∈ (12)

(X1,Y1) @ (X2,Y2) denotes that (X1,Y1) and (X2,Y2) are equivalent patterns.

According to Definition 1 two patterns (X1,Y1) and (X2,Y2) are equivalent when X2 can be
obtained by reordering the classes in (some of) the elements of X1 and vice versa.
Consequently, each formal attribute in Y1 can be transformed into one in Y2 and vice versa
also.
In the example c0 and c1 are equivalent because the index permutation12 {1→3, 3→1}
transforms {(E,F,G),(U,V,W)} into {(G,F,E),(W,V,U)} and vice versa.

12 We use the informal notation {1→3, 3→1} to refer to the index permutation
1 2 3
3 2 1

.

 37

Definition 2 (Equivalent instances): Let (x1,1,…,x1,k) and (x2,1,…,x2,k) be two formal
objects in the extent X of an order k concept (X,Y) that represents a design pattern. These
formal objects represent equivalent instances within that concept if an index permutation g on
the index set {1..k} exists such that:

() () ()() () () ()()

() ()() (){ }
1 12,1 2, 1,1 1,1, 1 1, 2, 1 2,

1 2 1 2

,..., ,..., ,..., ,...,

, ,

k kg g k g g k

tt

x x x x x x x x

Y g y g y y y Y t T

− −= ∧ =

∧ = ∈ ∧ ∈
 (13)

(x1,1,…,x1,k) @ (x2,1,…,x2,k) denotes that (x1,1,…,x1,k) and (x2,1,…,x2,k) are equivalent
instances.

According to Definition 2 two formal objects in the extent X of a concept (X,Y) are equivalent
within that concept if an index permutation exists that transforms them into each other, and
when applied to the formal attributes in Y produces attributes that are also part of Y.
In the example the set of formal objects of c5 contains two pairs of equivalent instances
because the index permutation {2→3, 3→2} transforms (M,K,L) and (W,U,V) into
(M,L,K) and (W,V,U) respectively, and {(1,2)e,(1,3)e} into {(1,3)e,(1,2)e}.

If in the concepts in Table 7 all sets of equivalent patterns and equivalent instances are
replaced with one representative element, and concepts with empty extents or intents (cb and
ct) are removed, the concepts in Table 8 remain. Observe that concept c6 is trivial; it
represents the inheritance relation.

c0 ({(E,F,G),(U,V,W)}, {(1,2)a,(3,2)e})
c2 ({(U,V,W)}, {(1,2)a,(3,2)e,(3,1)e})
c5 ({(M,K,L), (W,U,V)}, {(1,2)e,(1,3)e})
c6 ({(G,F,E),(W,U,V),(W,V,U),(M,K,L),(M,L,K)}, {(1,2)e})

Table 8: Extents and intents of the pattern example

[Tonella and Antoniol, 2001] describe three case studies that apply the proposed method.
Besides the static inter-class relations (inheritance and association), two other attributes are
taken into account:
• Dynamic inter-class relations, for example the call and delegates relations.
• Class attributes such as member function definitions.

The method is applied to three public domain applications written in C++ (20-100 KLOC).
[Tonella and Antoniol, 2001] report the detection of several recurring design constructs,
including the Adapter pattern [Gamma et al, 1995] in several variants. The order of the
context was chosen between two and four, typically three. Higher-order patterns did not prove
to be a good starting point because “they impose an increasing number of constraints on the
involved classes and are therefore matched by few instances (typically just one)” [Tonella and
Antoniol, 2001]. For the order three context the number of formal objects was 1721 to 34147.
The number of formal attributes was 10 in all cases. The construction of the concept lattice
took between 1.8 and 85.8 seconds on a Sun SPARC 20 workstation13.

4.2.4 Class structure analysis
[Dekel, 2002] describes the use of FCA to gain insight in the internal structure of a complex
class. The method is based on the design heuristic that classes should have maximal field-
access class-cohesion. The strongest version of field-access class-cohesion prescribes that
all methods of a class should use all of its fields. The proposed method is based on the
hypothesis that deviations from this rule represent a potential error in the internal structure.
In FCA terms, the context C=(O,A,R) is used with:
• O: set of class member variables (“fields”).
• A: set of class methods.
• R: method-uses-uses-field relation.

13 The time to construct the context was not described in the paper.

 38

In the lattice, the concepts represent groups of classes. A method-call graph is superimposed
on the concept lattice to visualise the interactions between the methods.

The proposed method has been applied to Java classes. [Dekel and Gil] report its application
to the Molecule class of the Java Chemistry Development Kit (75 public methods, 1500 LOC).
[Dekel, 2002] describes the application to several versions the Graph class of the VGJ toolkit
(Visualising Graphs with Java), which contained 43 to 69 methods and 5 to 9 fields. In all
cases the methods provided insight in the structure of the class without overwhelming the
user with the details typically found in source files.

4.2.5 Inheritance hierarchy analysis
[Arévalo and Mens, 2002] propose to use FCA to analyse how inheritance and interfaces
relationships couple methods and classes in an inheritance hierarchy. The method takes the
calling & delegation behaviour into account, but only within the inheritance hierarchy. Let c
and d be classes and s a method signature. Then, in FCA terms the formal context
C=(O,A,R) is used with:
• O: set with method invocations from classes; (c,s)œO ‹ some method in c calls s.
• A: set with classifications of the message sending behaviour [Arévalo and Mens, 2002]:

• ConcreteSuperCaptureIn:d. (c,s) satisfies this predicate if s is called via a super send
in some method of c and the receiver method is implemented in d, which is an
ancestor of c.

• ConcreteSelfCaptureLocally:c. (c,s) satisfies this predicate if s is called via a self-
send in some method of c and the receiver method is a concrete method in c.

• AbstractSelfCaptureLocally:c. (c,s) satisfies this predicate if s is called via a self-send
in some method of c and the receiver method is defined as an abstract method in c.

• ConcreteSelfCaptureInAncestor:d. (c,s) satisfies this predicate if s is called via a self-
send in some method of c and the receiver method is defined as a concrete method
in d that is an ancestor of c.

• ConcreteSelfCaptureInDecendant:d. (c,s) satisfies this predicate if s is called via a
self send in some method of c and the receiver method is defined as a concrete one
in d that is an descendant of c.

• R: applicability of the message classifications in A to the invocations in O.

[Arévalo and Mens, 2002] describe the application of the proposed method to the Magnitude
hierarchy (Smalltalk, 29 classes). The formal context was extracted from the code with the
Soul logic programming language (part of FAMOOS). This produced 248 formal objects and
73 formal attributes. The application of FCA unveiled several common constructs.

The experiment also revealed a weakness of the approach; instead of only the receiver, the
sender of a self-send should also be taken into account. [Arévalo, 2003] describes an
improvement to the method that achieves this. If c is a class, m a method and s a method
selector then (c,m,s)œO ‹ method m in c calls s. The formal attributes are adapted
accordingly. For details the interested reader is referred to [Arévalo, 2003].

The modified method has been applied in several case studies, which led to three important
conclusions:
• The method is suitable to find unpredictable relationships.
• The method can be used to find behavioural patterns in inheritance hierarchies.
• The quality of the results depends on the chosen formal attributes. If the properties are

too generic the method produces a few concepts that are not interesting enough. If the
properties are too specific the method produces a lot of concepts with small extents.

4.2.6 X-Ray views
[Arévalo et al, 2003] describe the use of FCA to gain insight in the collaborations within a
single class, similar to [Dekel, 2002]. The main difference between the two is that [Arévalo et
al, 2003] incorporate dynamic behaviour into the concept lattice, whereas [Dekel, 2002]
superimposes a call-graph on a concept lattice that is based on member-accesses.

 39

The described approach uses FCA to gain insight in the elementary collaborations between
class attributes and methods. Three types of relations are extracted from the source code,
namely read-attribute, write-attribute and calls-method. Further, several indirect relationships
are inferred from these:
• Attribute-access (read or write).
• Transitive versions of calls-method, reads-attribute, writes-attribute and accesses-

attribute. The latter three consist of a sequence of calls-method relations, followed by a
read-attribute, write-attribute and accesses-attribute relation.

• The complements of the preceding relationships.

The sets of extracted and inferred relationships are used to create two formal contexts
C1=(O,A1,R1) and C2=(O,A2,R2) where:
• O: set of class methods.
• A1: set of possible read or write accesses to class attributes. For example A1={reads-x,

reads-y, writes-y}, in which x and y are class attributes.
• R1: method-accesses-attribute relation between methods in O and elements of A1.
• A2: set of possible class-method invocations.
• R2: method-calls-method relation between methods in O and elements of A2.

After extending the above definitions to sets [Arévalo et al, 2003] define a number of high-
level collaborations, which in turn are used to define three x-ray views of a class. The class
and attribute relationships are extended to sets in two ways:
• F R G: R relates each entity in F to each one in G.
• F R G: R exclusively relates each entity in F to each in G. This means that no pair of

entities f,g exists such that f œ F ⁄ f R g ⁄ g – G and inversely.

With these notions the following high-level collaborations are defined. For the sake of
compactness they are described informally here. A more precise description can be found in
[Arévalo et al, 2003].
• Direct accessors: set of methods with non-exclusive access to class attributes.
• Exclusive direct accessors: set of methods with direct access to class attributes by

exclusive relationships.
• Exclusive indirect accessors: set of methods that call direct accessors.
• Collaborating attributes: sets of attributes that are used exclusively by a set of methods.
• Statefull core methods: set of methods that access all the state-defining attributes.
• Collaborating methods: set of methods that use the behaviour defined in the class.
• Interface methods: set of methods that are not used by the class itself.
• Externally used state: subset of the interface methods that directly access class

attributes.
• Stateless methods: complement of the set of collaborating methods, i.e. set of methods

that provide a service without calling other methods or accessing class attributes.

Using the above collaborations [Arévalo et al, 2003] define three x-ray views. Each view
shows a different set of inner-class collaborations:
• State usage focuses on how methods access the state of classes. This view shows the

exclusive direct accessors, exclusive indirect accessors, collaborating attributes and
statefull core methods collaborations.

• External/internal categorises class methods according to their usage; internal or
external. This view shows interface methods and externally used state collaborations.

• Behavioural skeleton focuses on how methods invoke each other within the class. This
view shows the collaborating methods and stateless methods collaborations.

The proposed approach has been implemented in the ConAn tool, which is built on top of the
FAMOOS framework. To validate the approach it has been applied to three Smalltalk classes
from the VisualWorks distribution, namely OrderedCollection, UIBuilder and Scanner (3-18
attributes, 24-122 methods). [Arévalo et al, 2003] conclude that the approach allows “iterative

 40

application of the defined views and opportunistic code reading”. The fact that inheritance
relationships are not taken into account is an important limitation of the approach.

4.2.7 Feature allocation analysis
[Eisenbarth et al, 2001] use a combination of FCA and static analysis techniques to build a
mapping between functional, externally visible features of a program and relevant parts of the
source code. FCA is used to locate the most feature-specific subprograms among a set of
executed subprograms. The static analysis is used to retrieve a dependency graph of the
program. Subprograms in this graph that are called by the subprograms found with FCA are
added to the set of subprograms involved in the features.

More precisely, the method works are follows:
1. A set of relevant features F={f1,…,fn} is identified.
2. A set of scenarios A={S1,…,Sq} is identified such that the features in F are covered.
3. For each scenario in A execution summaries are collected that list all subprograms

executed during a run. This yields a set of required subprograms O={s1,…,sp} for each
scenario.

4. A relation table R is created such that (S1,s1), (S2,s2), …, (Sq,sp)œR.
5. Concept analysis is applied to the context (O,A,R), producing a set of subprograms P

that are associated with the features.
6. Dominance analysis and strongly connected component analysis is used to eliminate

general-purpose subprograms that do not contain any feature-specific logic.
7. Static dependency analysis techniques such as program slicing are used to extract the

code implementing the feature and all necessary variable and type declarations.

The proposed method is implemented using the Bauhaus toolkit and has been applied to two
web browsers, Mosaic and Chimera (51 and 38 KLOC respectively). These two programs
consisted of 701 and 928 subprograms respectively. The parts of the architecture relevant to
two use cases were recovered, successfully unveiling a view of the architecture.

4.2.8 Framework usage analysis
[Viljamaa, 2002] describes the use of FCA to recover the reuse interfaces of object-oriented
frameworks. The method searches for specialisation patterns, which are program structures
that can be instantiated in several contexts. A specialisation pattern defines a set of roles that
are played by structural elements of an instantiation. Knowledge about the most important
specialisation patterns of a framework helps developers use the framework efficiently.

The types of roles that are chosen to analyse determine the formal context to which FCA is
applied. If for example class roles are extracted the classes and their interfaces are selected
as formal objects, and class features (e.g. inheritance relationships, declared methods and
data fields) are used as formal attributes. To reduce the size of the context and prevent
performance problems, the relevancy of program elements is checked before they are added
to the context. A relevancy function r is associated with each program element v. Only those
elements where r(v)≥0 are used as formal objects. FCA is then applied to the produced
context, producing a concept lattice from which the specialisation patterns are extracted. This
is accomplished by looking for contexts in which each program element plays precisely one
role. This means each formal object must belong to one exactly extent. The context selection
is implemented by calculating concept partitions from the lattice and selecting the appropriate
one(s). A concept partition is a set of concepts whose extents form a partition of all formal
objects in the formal context. So in the concept partition each formal object is part of one
concept.

The proposed method is implemented in the Fred (FRamework EDitor) programming
environment [Viljamaa, 2002] and is applied to reverse engineer the interface of the JUnit
framework. The sources of the framework (50 classes) and a set of sample applications are
used as input. [Viljamaa, 2003] reports that Fred found about half of the specialisation
patterns used in the samples. The scalability of the used algorithms was reported to be a
major obstacle.

 41

4.2.9 Delfstof: detecting source code regularities
[Mens and Tourwé, 2004] propose the use of FCA to detect source code regularities in object-
oriented code based on naming conventions. The formal context C=(O,A,R) is used with:
• O: set of instances of source code entities like classes, methods and parameters.
• A: set of substrings of the names of the source code entities. Method- and class-names

are split according to the capitals and other separators occurring in them. Small
substrings and substrings with little conceptual meaning are discarded.

• R: containment relation between the entities in O and the substrings in A.
The substring comparison is case-insensitive, ignores colons, and reduces plurals to
singulars.

[Mens and Tourwé, 2004] give an informal description of a filter that is applied to the
produced concept lattice. (14) formally defines this filter. Let c : O Ø {true,false} be a
function such that c(x)ª trueñ x is a class (for every xœO). Further, let h(x) be the
hierarchy entity x is part of. Then all concepts (X,Y) that satisfy
 () () () ()2 1 , :X Y x y X c x c y h x h y≤ ∨ = ∨ ∀ ∈ ∧ ∧ = (14)
are discarded from the lattice. So the filter discards all concepts that are too small to be of
interest or only contain classes in the same hierarchy.

After the filter has been applied the concepts in the lattice are classified into three categories:
• Single class concepts group concepts from which all elements belong to a single class.
• Hierarchy concepts group entities that belong to multiple classes in a single class

hierarchy.
• Crosscutting concepts group entities from at least two class hierarchies.
Within the groups the lattice ordering is preserved whenever possible.

The proposed method is implemented in the Delfstof tool, which has been applied to five
Smalltalk programs (52-271 classes). Several cases of copy-paste code reuse were detected,
as well as several design pattern instances (detected through naming conventions).

 42

5 Case study: Pattern detection
This chapter describes one of the two case studies discussed in this thesis. This case study
investigates the detection of unknown structural design patterns in source code, using the
method described in paragraph 4.2.3.

5.1 Case study goals
Design patterns capture design experience in the form of frequently used and proven design
constructs for a certain context [Alexander, 1979]. Knowledge of applied design patterns
helps maintainers understand the structure of a program and its rationale [Gamma et al,
1995], and is therefore useful for software maintenance14.

[Kersemakers, 2005] used a pattern library to detect instances of structural design patterns in
the source code of two subsystems of the Océ Controller. This way a view of the as-built
architecture of these subsystems was reconstructed. A disadvantage of this approach is that
it requires upfront knowledge on the implemented patterns. Furthermore, it suffers from
variations in the implementation of the patterns.

The work described in paragraph 4.2.3 suggests that Formal Concept Analysis (FCA) can be
used to find frequently used design constructs in source code without requiring upfront
knowledge. Based on this, and the experiences of [Kersemakers, 2005], we formulate the
following hypothesis:

H1: With Formal Concept Analysis frequently used structural design constructs in
the source code of the Océ Controller can be detected without upfront
knowledge on the expected structures.

The confirmation of H1 does not imply that the found design constructs represent a useful
architectural view of the Océ Controller. We therefore formulate an additional hypothesis:

H2: Knowledge of frequently used structural design constructs found with Formal
Concept Analysis in the Océ Controller provides an architectural-view that is
useful to gain insight in the structure of the system.

The usefulness of knowledge on structural design constructs depends on the amount of
information this knowledge gives. The number of classes in the pattern and the number of
instances of the pattern are two important criteria for this. On average, the design patterns in
[Gamma et al, 1995] contain about four to five classes. Because we are reconstructing an
architectural view and not a subsystem-design we want to find slightly larger patterns. Hence
we decided the patterns must contain at least six classes to be useful for architecture
reconstruction.
The other criterion, the minimal number of instances of a useful pattern, is difficult to quantify.
To our knowledge no work is published on this subject, so we determine it heuristically.
Because no pattern-library is used, maintainers need to invest time to understand the patterns
before reaping the benefit of this knowledge. The benefit, easier program understanding,
must outweigh this investment. Obviously this is not the case if the patterns have one
instance. Because we search repeated structures and not named patterns (like library-based
approaches do) the investment is relatively high. Hence we decided that a pattern must have
at least four instances to be useful to reconstruct an architectural view of the Océ Controller.

To confirm these two hypotheses a prototype has been built that implements the approach
Tonella and Antoniol proposed, which is described in paragraph 4.2.3. Before applying the
prototype to the complete Océ Controller it has been applied to two of its subsystems, namely
Grizzly and the RIP Worker. Because this produced unsatisfactory results it was decided not
to apply the prototype to the entire Océ Controller. For more information on the results of this
case study the reader is referred to paragraph 5.4.

14 See paragraph 2.4.3 for more information on this subject.

 43

5.2 Pattern detection architecture
This paragraph describes the architecture of the pattern detection prototype. This architecture
is based on the pipe and filter architectural style [Buschmann et al, 1999]. The processing
modules have been implemented with two third party tools and XSLT transformations [XSLT,
2005].

XSLT is chosen because:
• Functional programming: XSLT allows functional programming. This is an advantage

because one of the most important algorithms of the implemented approach is defined
inductively (by (11)). This definition maps very well to a functional implementation.

• Easy integration: The two third-party tools, Columbus and Galicia, both support XML
[XML, 2005] ex- and import.

• Maturity: XSLT is a mature and platform independent language.

Figure 12 shows a view of the prototype’s architecture. The blocks represent processing-
modules and the arrows directed communication channels between the modules. The latter
are implemented with files.

Fact
extraction

Lattice
construction

Context
generation

Pattern
selection

Source
code

Most used
design

constructs
Figure 12: Architectural view of the prototype

The following paragraphs discuss each of these modules.

5.2.1 Fact extraction
The fact extraction module is based on the approach chosen by [Kersemakers, 2005]. In this
step Columbus/CAN is used to extract structural information from the source code. Columbus
uses the compiler that was originally used to compile the analysed software, in this case
Microsoft Visual C++ [MSVC, 2005]. The extracted information is exported from Columbus
with its UML exporter [Columbus, 2003], which writes the information to an XMI file. The
schema Columbus uses can be found in [Columbus, 2003]. For more information about
Columbus the interested reader is referred to paragraph 3.4.1.

Relationship types
Because the XMI file has a relatively complex schema the fact extraction module converts it
to an XML file with a simpler schema. This file serves as input for the context generation
module. It contains the classes and most important relationships between them.

Three types of relations are extracted [Booch et al, 1999]:
• Inheritance: The object-oriented mechanism via which more specific classes incorporate

the structure and behaviour of more general classes.
• Association: A structural relationship between two classes.
• Composition: A special kind of association where the connected classes have the same

lifetime.

Fact extraction output
Appendix 2 gives the schema of the XML file the fact extraction module produces. To
illustrate the format we give a simple example here.
Figure 13 shows a class diagram with five classes, A up to F. The bracketed numbers are
unique identifiers of the classes that are generated by Columbus. In the figure classes A and
D inherit from B and E respectively. Classes B and D have an association with classes C and
F respectively.

 44

A
(101)

B
(102)

C
(103)

D
(104)

E
(105)

F
(106)

Figure 13: Example static structure

(15) shows the output of the fact extraction module for the class diagram in Figure 13. It
consists of a Model containing Classes and Relations between classes. Each class has a
name and a unique id, which is the number shown between the brackets in Figure 13. The
Relations element contains A and I elements, which represent association and inheritance
relations respectively. In case of the A element the C1 and C2 attributes contain the id of
respectively the source and the destination class of the relation. In case of the I element the
C1 and C2 attributes contain the id of respectively the child and the parent class.
Composition relations are represented by a C element in the Relations element (not shown
in (15)), using the same notation as the A element.

<Model>
 <Classes>
 <Class id="101" name="A" />
 <Class id="102" name="B" />
 <Class id="103" name="C" />
 <Class id="104" name="D" />
 <Class id="105" name="E" />
 <Class id="106" name="F" /> (15)
 </Classes>
 <Relations>
 <I C1="101" C2="102" />
 <A C1="102" C2="103" />
 <I C1="104" C2="105" />
 <A C1="104" C2="106" />
 </Relations>
</Model>

5.2.2 Context generation
This module uses the inductive context construction algorithm given in (11) to generate the
formal context that will be used to find frequently used design constructs.

Recall that this algorithm consists of an initial and an inductive step. In the initial step an order
two context is created. In the inductive step the order of the context is increased with one.
This step is repeated until the desired order is reached. Also recall that the order of the
context represents the number of classes in the patterns searched for.

Removing duplicates
Since XSLT does not support sets the prototype uses bags. This however allows the
existence of duplicates. The prototype removes these with an extra template that is applied
after the templates that implement each of the initial- and inductive steps. This produces the
XSLT equivalent of a set.

Context generation output
After algorithm (11) has been completed, the “context generation” module converts the formal
context to the XML import format Galicia uses for “binary contexts”. Appendix 3 gives the

 45

schema of this XML file. To illustrate the format (16) gives a simple example for an order
three context, which is based on the facts in (15).

In (16) the BIN element represents the binary context as a whole. Its nbAtt and nbObj
attributes contain the number of formal-attributes and -objects in the context. The type
attribute specifies the type of the context, in this case a binary context.
The OBJS element contains the formal objects. Each OBJ element has an identifier (id), and
contains a string with the class IDs of the formal object separated by underscore characters.
The ATTS element contains the formal attributes. Each ATT element has an identifier (id)
and contains a string with a relationship type and two indices in the formal objects, separated
by underscore characters. These indices refer to positions in the formal objects. For example
the <ATT id="0">att_I_C1_C2</ATT> element refers to the first and the second position.
The RELS element represents the relations between the formal objects in OBJS and the
formal attributes in ATTS. It consists of REL elements, which specify that a certain formal
object has a certain formal attribute through its idObj and idAtt attributes.

<BIN name="Example" nbAtt="6" nbObj="4" type="BinaryRelation">
 <OBJS>
 <OBJ id="0">obj_101_102_103</OBJ>
 <OBJ id="1">obj_102_103_101</OBJ>
 <OBJ id="2">obj_104_105_106</OBJ>
 <OBJ id="3">obj_104_106_105</OBJ>
 </OBJS>
 <ATTS>
 <ATT id="0">att_I_C1_C2</ATT>
 <ATT id="1">att_A_C1_C2</ATT>
 <ATT id="2">att_A_C2_C3</ATT> (16)
 <ATT id="3">att_I_C3_C1</ATT>
 <ATT id="4">att_A_C1_C3</ATT>
 <ATT id="5">att_I_C1_C3</ATT>
 </ATTS>
 <RELS>

 <REL idObj="0" idAtt="0" />
 <REL idObj="0" idAtt="2" />
 <REL idObj="1" idAtt="1" />
 <REL idObj="1" idAtt="3" />
 <REL idObj="2" idAtt="0" />
 <REL idObj="2" idAtt="4" />
 <REL idObj="3" idAtt="1" />
 <REL idObj="3" idAtt="5" />

 </RELS>
</BIN>

For example in (16) the <OBJ id="0">obj_101_102_103</OBJ> element refers to the class
sequence [A,B,C], using the IDs of the classes specified in (15). This sequence is constructed
as follows. The initial step produces the string “obj_101_102” because the relation-element
<I C1=”101” C2=”102”> exists. This relation also leads to the creation of the
<ATT id="0">att_I_C1_C2</ATT> and <REL idObj="0" idAtt="0" /> elements. The next
inductive step extends the formal object to “obj_101_102_103” because the relation-element
<A C1=”102” C2=”103”> exists and “102” is already part of the formal object. Now the
complete <OBJ id="0">obj_101_102_103</OBJ> element has been obtained. This last
extension also causes the creation of the <ATT id="2">att_A_C2_C3</ATT> and
<REL idObj="0" idAtt="2" /> elements.
The other elements in (16) are constructed similarly.

 46

Size of the output
The initial step of the context generation algorithm produces an order two context. Each
inductive step extends the order with one. So in general the (k-1)-th step of the algorithm
(k¥2) produces a context Ck=(Ok,Ak,Rk) of order k, where Ok is the set of formal objects, Ak
the set of formal attributes, and Rk the set of relations between the formal objects in Ok and
the formal attributes in Ak.

The number of formal attributes, |Ak|, is bounded by the number of different triples that can
be made. Each formal attribute in Ak is a triple (p,q,t) where p and q are integer numbers
between 1 and k, and t is a relationship-type. The number of permutations of two values,
each between 1 and k, is bounded by k2 so at most k2 different combinations are possible for
the first two components of the formal attributes. Therefore, if T is the set of relationship-
types, and the size of this set is |T|, |Ak|§|T|·k2.

The number of formal objects, |Ok|, in the order k context is limited by the number of
permutations of different classes of length k. If D is the set of classes, and |D| the size of this
set, this means that |Ok|§|D|k. So the number of formal objects is polynomial with the
number of classes and exponential with the size of the patterns searched for. However, the
fact that the connectivity of the classes in D is usually relatively low (and even can contain
disconnected subgraphs), limits |Ok| significantly.

Computational complexity
Let PŒDµDµT be the set of relations between classes, with D and T defined above. In the
implementation the initial step is implemented with a template for the elements of P. Hence, if
|P| is the number of elements in P, the complexity of the initial step is O(|P|).

The inductive step increases the order of the context with one. This is implemented with a
template for the formal objects in the order (k-1) context, so for the elements of Ok-1. This
template extends each formal object oœOk-1 with a class that is not yet part of o and is related
to one of the classes in o via a class-relation in P. Because every formal object in Ok-1
consists of k-1 classes, the inductive step that produces Ok has a computational complexity
of O(|Ok-1|·(k-1)·|P|), which approximates O(k·|P|·|Ok-1|).

Let (x1,…,xk-1) be the sequence of classes represented by a formal object oœOk-1. Because
in our implementation the previous inductive step appended classes to the end of this
sequence15, in the next inductive step only the last element xk-1 can lead to the addition of
new classes to the sequence. Therefore, all but the first inductive steps do not have to iterate
over all k-1 classes in the formal objects in Ok-1, but can only consider the most recently
added class. This optimisation reduces the computational complexity of the inductive step to
about O(|P|·|Ok-1|). Because of limited implementation time this optimisation has not been
applied to the prototype however, but is left as future work.

Because |Ok-1| is polynomial with the number of classes in D, and in the worst case |P| is
quadratic with |D|, this optimisation gives the inductive step a computational complexity that
is polynomial with the number of classes in D. However, it is exponential with the size of the
patterns searched for.

5.2.3 Lattice construction
The prototype constructs the lattice with a third party tool called Galicia. Galicia is an open
platform for the construction, visualisation and exploration of concept lattices [Valtchev et al,
2003]. Its most important functions are the input of contexts, and lattice construction and
visualisation [Galicia, 2005]. Galicia also implements interactive data inputs and various
export formats.

15 The fact that this is the end is not really relevant. The essential point is that the new class is
always added at the same position.

 47

Lattice construction algorithm
Galicia implements several algorithms to construct a lattice from a formal context. Based on
their characteristics one of them is chosen for the prototype. [Kuznetsov and Obëdkov, 2001]
compare a set of lattice construction algorithms, both theoretically and experimentally. They
conclude that for large contexts the Bordat algorithm [Bordat, 1986] gives the best
performance16. Because it is expected that the number of classes extracted from the source
code, and hence the number of formal objects, will be relatively high, the Bordat algorithm is
chosen to generate the lattice. Let L represent a concept lattice with |L| formal concepts.
Further, let |O| and |A| be the number of formal-objects and -attributes respectively of the
formal context from which L is constructed. Then the Bordat algorithm has a worst-case
computational complexity of O(|O|·|A|2·|L|).

Theoretically the size of the lattice, |L|, is exponential with the size of the context; if
|A|=|O|=n then |L|≤2n. In practice however, the lattice-size may be O(n) [Snelting, 1996],
but this obviously depends on the properties of the formal context. When assuming that this is
the case, and considering that in our case |A| is much smaller than |O|, the computational
complexity of the Bordat algorithm approximates O(|O|2). Recall that the number of formal
objects is polynomial with the number of classes and exponential with the size of the patterns
searched for. This means that the computational complexity of the lattice construction is
polynomial with the number of classes in the source files and exponential with the size of the
patterns.

Lattice construction output
Figure 14 shows the lattice Galicia produces for the formal context in (16). Each node in the
graph represents a formal concept with its extent (E) and intent (I). The subconcept relations
between the concepts17 determine the structure of the graph. The numbers inside the nodes
are the unique identifiers of the formal concepts Galicia assigned to them.

Figure 14: Galois lattice for formal context in (16)

16 The following algorithms were examined: Bordat, Ganter, Close by One, Lindig, Chein,
Nourine, Norris, Godin, Dowling, and Titanic. For details the reader is referred to [Kuznetsov
and Obëdkov, 2001].
17 The extent, intent and the subconcept relation are discussed in paragraph 4.2.1.

 48

For example, concept 9 represents the class sequences [101,102,103] and [104,105,106],
and has an intent that consists of the formal attribute att_I_C1_C2. This concept represents
a pattern with two instances in which the first class in the sequence inherits from the second.

The next module of the prototype filters the found formal concepts. Like the other data
transformations in the prototype, this step is implemented with XSLT templates. The lattice is
exported from Galicia in the XML format described in Appendix 4. (17) shows a fragment of
this file that is produced for the formal context in (16). The OBJS and ATTS elements are the
same as in (16) and are shown empty here. The NODS element represents the set of formal
concepts, each represented by a single NOD element. (17) shows only one such element;
the actual XML file contains eight. The extent and intent of each NOD element are
represented by the EXT and INT elements respectively, and contain references to the
elements in OBJS and ATTS respectively. The SUP_NOD element describes the
subconcept ordering of the lattice but is not relevant for the prototype.

<LAT type="LinkedConceptLattice">
 <OBJS/>
 <ATTS/>
 <NODS>
 <NOD id="9">
 <EXT>
 <OBJ id="0"/>
 <OBJ id="2"/> (17)
 </EXT>
 <INT>
 <ATT id="0"/>
 </INT>
 <SUP_NOD>
 <PARENT id="8"/>
 </SUP_NOD>
 </NOD>
 </NODS>
</LAT>

5.2.4 Pattern selection
The final module of the prototype filters the patterns in the lattice. Two filters are applied.
First, sets of equivalent formal concepts, in the sense defined by (13), are replaced by one of
their elements. Second, the concepts are filtered according to the size of their extent and
intent (the number of formal objects and attributes respectively). In the remainder of this
paragraph these two filters are described more precisely

The prototype does not filter for equivalent patterns in the sense defined by (12). It was
planned to add this later if the output of the prototype proved to be useful. However, as is
described in paragraph 5.4, this was not the case.

Equivalent formal object filtering
Let X be the set of formal objects of some formal concept the lattice construction module
produced, and let instance equivalence @ be defined by (13). Then, for every formal concept,
the result of the first filter is the subset X’Œ X that is the maximal subset of X that does not
contain equivalent instances. If |X’| and |Z| refer to the number of elements in X’ and
another set Z respectively this is defined as:

() ()

() 1 2 1 2 1 2

' ' : '

with ' , ' :

X X f X Z X f Z Z X

f X x x X x x x x

⊆ ∧ ∧ ¬∃ ⊆ ∧ >

≡ ¬∃ ∈ ≠ ∧ ≅
 (18)

This filter is implemented with two templates for the formal objects (the elements of X). The
first template marks, for every formal concept, those formal objects for which an unmarked

 49

equivalent instance exists. Of every set of equivalent instances this leaves one element
unmarked. The second template removes all marked formal objects. It is easy to see that this
produces the maximal subset of X that does not contain equivalent instances.

Let avg(|X|) and avg(|Y|) represent the average number of formal objects and formal
attributes respectively of the formal concepts. If |L| represents the number of formal concepts
in the lattice, the first filter then has a time complexity of O(|L|·avg(|X|)·avg(|Y|)).

Size-based filtering
The second filter removes all formal concepts with a small number of formal-objects or
-attributes. Let px and py be two user-specified parameters that specify the minimum number
of required formal-objects and -attributes respectively. Then the output of this filter only
contains concepts with at least px formal objects and py formal attributes.

This is implemented with a trivial template for the elements in the lattice. If avg(|X’|)
represents the average size of the formal objects after equivalent instances have been
removed, and avg(|Y|) and |L| are defined in the previous section, this has a computational
complexity of O(|L|·(avg(|X’|)+avg(|Y|))).

Total complexity of the pattern selection
The two filters are applied subsequently. Because avg(|X’|) is smaller than avg(|X|), the
pattern selection module has a computational complexity of approximately
O(|L|·avg(|X|)·avg(|Y|)).

We now express these three terms in terms of the number of formal objects. Recall that |L|
represents the number of formal concepts in the lattice and that we assume it to be
proportional to the number of formal objects (and the number of formal attributes, but that is
much less). If every formal attribute is associated with every formal object, avg(|Y|) equals
the number of formal objects. Because we assume the number of formal attributes to be very
small compared to the number of formal objects, avg(|X|) is not relevant for the
computational complexity. Therefore, the computational complexity of the filtering module is
approximately quadratic with the number of formal objects. Recall that the number of formal
objects is polynomial with the number of classes and exponential with the size of the patterns
searched for. This means that the complexity of the pattern-selection is polynomial with the
number of classes in the input and exponential with the size of the patterns searched for.

5.3 Implementation validation
Before the prototype can be used to detect frequently used design constructs in source code,
it must be ensured that the implementation is correct. This paragraph discusses how this has
been handled.

E

F G

U

V

W

K

L

M

Figure 15: Validation code structure

To validate the quality of the prototype implementation, it is applied to a reference program
written in C++. The structure of this program is the same as the example given in paragraph
4.2.3, whose structure is repeated in Figure 15. The squares represent classes and the
relations are shown in UML notation [Booch et al, 1999]. For example class E has an
association relation to class F and class W inherits from classes U and V.

 50

Table 9 shows the output of the lattice construction module for the structure in Figure 15.
Every row in the table represents a formal concept. Each formal concept is a tuple (X,Y),
where X represents the set of formal objects and Y the set of formal attributes. The formal
attributes are shown using the same notation as in paragraph 4.2.3; each is a triple (p,q)t,
where p and q represent indices in the formal objects, and t the type of the relation between
the classes.

1 ({(E,F,G),(U,V,W)}, {(1,2)a,(3,2)e})
2 ({(G,F,E),(M,L,K),(W,U,V)}, {(1,2)e})
3 ({(U,V,W)}, {(1,2)a,(3,1)e,(3,2)e})
4 ({(G,F,E),(W,V,U)}, {(3,2)a,(1,2)e})
5 ({(M,L,K),(W,U,V)}, {(1,2)e,(1,3)e})
6 ({(W,V,U)}, {(3,2)a,(1,2)e,(1,3)e})
7 ({(W,U,V)}, {(2,3)a,(1,2)e,(1,3)e})

Table 9: Prototype output

Observe that in Table 9 concept 4 can be transformed into concept 1 and vice versa with the
index permutation {1Ø3, 3Ø1}. Therefore concept 4 and 1 are equivalent (according to
definition (12)). Concepts 6 and 3 are also equivalent, as are 7 and 3.

Table 10 shows the output of the pattern-selection module resulting from the automatic
filtering and the manual removal of redundant equivalent patterns from the concepts in Table
9. The two user-specified filtering-parameters are both set to one (px=py=1). Observe that
the shown concepts are equivalent to the patterns in Table 8 (the pattern example). In fact,
except for pattern 5, which is equivalent to c5 in Table 8, the patterns are exactly the same.
This confirms the correctness of the prototype’s implementation.

1 ({(E,F,G),(U,V,W)}, {(1,2)a,(3,2)e})
2 ({(G,F,E),(M,L,K),(M,K,L),(W,U,V),(W,V,U)}, {(1,2)e})
3 ({(U,V,W)}, {(1,2)a,(3,1)e,(3,2)e})
5 ({(M,L,K),(W,U,V)}, {(1,2)e,(1,3)e})

Table 10: Prototype output after manual filtering

5.4 Results of pattern detection case study
The prototype has been applied to the Grizzly and RIP Worker subsystems of the Océ
Controller. The characteristics of these subsystems have been given in paragraph 1.2. The
following paragraphs give some examples of the found patterns. In all cases classes will be
visualised as squares and the relations between them with UML notation [Booch et al, 1999].

5.4.1 Results for Grizzly
The application of the prototype to the Grizzly source code (234 classes) produced a formal
context and a lattice with the characteristics shown in Table 11.

Number of formal objects 40.801
Number of formal attributes 37
Number of attribute-object relations 128.065
Number of formal concepts 989

Table 11: Characteristics of the order four
context for Grizzly and the corresponding lattice

Recall from the “Size of the output” section in paragraph 5.2.2 that the number of formal
attributes of an order k context, |Ak|, is bounded by the number of relationship-types, |T|,
multiplied with k2, so |Ak|§|T|·k2. In this case, |T|=3 and k=4 so the number of formal

 51

attributes is bounded by 3µ42=48. Observe in Table 11 that the number of formal attributes
(37) is indeed less than 48.
Recall from the same section that the upper bound of the number of formal objects of an
order k context, |Ok|, is polynomial with the number of classes |D|. More specific |Ok|§|D|k.
Since the characteristics in Table 11 are of an order four context, |Ok|=2344º3.0·109, which
is clearly more than 40.801. In fact, the number of formal objects is in the same order as
2342=54.756. This large difference is due to the low connectivity of the classes.

The figures in Table 11 confirm the assumptions made in paragraph 5.2.3. The number of
formal attributes is indeed much lower than the number of formal objects. Furthermore, the
number of formal concepts is not exponential with the size of the context. In fact, it is about
one order smaller than the number of formal objects. This confirms our assumption in
paragraph 5.2.3 that the size of the lattice is approximately linear with the number of formal
objects.

With the user-specified filtering-parameters both set to four (px=py=4), the prototype
extracted 121 order four concepts from this context (with px=py=5 only twelve remained).
However, despite the filtering, many of the found patterns were very similar. The result even
included several variants of the same pattern, for example with the associations organised
slightly different.

The 121 concepts obtained with both filtering parameters set to four have been analysed
manually according to their number of formal-objects and -attributes. Figure 17 shows two of
the found patterns that were among the most interesting ones. For each pattern the ID of the
corresponding formal concept is shown, as well as the number of formal-objects and
-attributes. Galicia generated the concept-IDs, which uniquely identify the concept within the
lattice.

W

Y

Concept ID=941
Nr. of formal objects=21
Nr. of formal attributes=5

Concept ID=678
Nr. of formal objects=20
Nr. of formal attributes=4

K

NMLZX

Figure 17: Two patterns found in Grizzly

Concept 678 represents a pattern with classes W, X, Y and Z, where Z has an association
with X and Y. Furthermore, both W and Y have a composition relationship with X. Analysis of
the 20 instances of this pattern learns that for W fourteen different classes are present, for X
and Y both two, and for Z three. This indicates that the instances of this pattern occur in a
small number of source-code contexts.

Table 12 shows four example instances of this pattern. Examination of the Grizzly design
documentation [Delnooz and Vrijnsen, 2003] learns that the first instance in Table 12, with
W=BitmapSyncContext, covers a part of an Interceptor pattern [Buschmann et al, 1999]. This
pattern plays an important role in the architecture of Grizzly. The BitmapDocEventDispatcher
class plays the role of event Dispatcher, and the BitmapSyncContext the role of
ConcreteFramework. The abstract and concrete Interceptor classes are not present in the
detected pattern18. The EventDispatcherTest class is part of the Grizzly test code, and plays
the role of the Application class in the Interceptor pattern. The Document class is not part of

18 The designers of Grizzly omitted the abstract Interceptor class from the design.

 52

the Interceptor pattern. In the Grizzly design this class is the source of the events handled
with the interceptor pattern.
Observe that the pattern in Figure 17 does not contain the “create” relation between the
BitmapDocEventDispatcher (Y) and the BitmapSyncContext (W) classes [Buschmann et al,
1999] specified. This does not mean that this relationship is not present; it is omitted from this
pattern because the other pattern instances do not have this relationship.

W X Y Z
BitmapSyncContext
SheetDocEventDispatcher

Document BitmapDoc
EventDispatcher

BitmapDocEvent
DispatcherTest

FlipSynchronizer InversionWorkerJobInterceptor
StripeSynchronizer

BasicJob BitmapDoc
Synchronizer BitmapDocSynchronizerTest

Table 12: Example instances of pattern 678

The other concept shown in Figure 17 (with ID 941) represents a relatively simple pattern with
four classes labelled K, L, M and N. In this pattern class L, M and N inherit from K, L has a
self-association, and M an association to N. As shown in Figure 17, 21 instances of this
pattern are detected. Analysis of these instances of learns that in all cases K refers to the
same class, L to three, and M and N both to six different classes. This indicates that all
instances of this pattern are used in the same source-code context.

Table 13 shows four of the detected instances of pattern 941. SplitObjectStorage is an
abstract class from which all workflow-related classes that store data inherit. The “SplitList”
classes are container classes, for example for SplitTransition classes. The SplitTransition
classes each represent a single state transition and are each associated with two SplitState
objects. These represent the states before and after the transition.

K L M N
SplitTransition SplitState SplitListOfAllTransitions
SplitNode SplitDoc

SplitListOfAllStates SplitState SplitAttribute

SplitObjectStorage

SplitListOfAllDocuments SplitDocPart SplitImageSequence

Table 13: Example instances of pattern 941

Surprisingly, the Grizzly design documentation [Delnooz and Vrijnsen, 2003] does not
mention any of the classes listed in Table 13. Analysis of the code learns that these classes
are concerned with workflow management in the Océ Controller, and represent points where
Grizzly interfaces with the rest of the system. Strictly speaking these classes are not part of
Grizzly but of the workflow-management subsystem of the Océ Controller. However, they are
redefined in the Grizzly source-tree, and hence extracted by Columbus.

Observe that the two described patterns have a relatively low complexity. Recall that the two
patterns described here are among the most interesting ones that are detected. So on
average the complexity of the detected patterns is slightly lower that of the patterns described
here.

5.4.2 Results for RIP Worker
Applying the prototype to the RIP Worker source code (108 classes) produced a formal
context and a lattice with the characteristics shown in Table 14.

Number of formal objects 52.037
Number of formal attributes 41
Number of attribute-object relations 170.104
Number of formal concepts 3.097

Table 14: Characteristics of the order four context
for the RIP Worker and the corresponding lattice

 53

Observe that, if |T| is the number of relationship-types, |T|·k2 is an upper bound of the
number of formal attributes of the order k context. This confirms our assumption in the “Size
of the output” section in paragraph 5.2.2. The number of formal objects of the order k context,
|Ok|, does not exceed the upper bound predicted in the “Size of the output” section in
paragraph 5.2.2. Table 14 represents an order four context, and
|Ok|=52.037§|D|4=1084º1,4·108, so the number of formal objects is relatively low. As with
Grizzly, this is due to the low connectivity of the classes.

Observe also that the figures in Table 14 confirm our assumptions in paragraph 5.2.3: like
with Grizzly, the size of the lattice is approximately linear with the size of the context (one
order smaller), and the number of formal objects is much higher than the number of formal
attributes.

With the user-specified filtering-parameters both set to five (px=py=5), the prototype
produced 158 order four concepts (with px=py=4 799). Like the patterns found in Grizzly, the
set of patterns found in the RIP Worker also contains a lot of similar patterns. Figure 18
shows two of the found patterns, together with their number of formal-objects and -attributes.

L

NM

K

Concept ID=2694
Nr. of formal objects=25
Nr. of formal attributes=5

WZ

YX

Concept ID=2785
Nr. of formal objects=31
Nr. of formal attributes=5

Figure 18: Two patterns found in the RIP Worker

Concept 2694 represents a pattern with classes K, L, M and N, where class K has an
association relationship with L and M, L a self-association, and M an association to L. Finally,
class M has a composite relationship to N. Analysis of the output of the filtering-module learns
that for class N 25 different classes are present, but for K, L and M all pattern instances have
the same class. This indicates that all instances of this pattern are used in the same piece of
the source code.

Table 15 shows four examples of pattern 2694. All are concerned with job-settings and the
configuration of the system. The PJT_T_SystemParameters class stores information about
the environment of the system, for example supported media-formats and -types. The
PJT_T_JobSetting class represents the settings for a complete job, and is composed of the
classes listed for N. The class listed for L, PJT_T_Product, is used to detect if the machine
can handle a certain job-specification [DVRIP, 2002].

K L M N
PJT_T_MediaColor
PJT_T_MediaWeight
PJT_T_RunLength

PJT_T_System
Parameters

PJT_T_
Product

PJT_T_
JobSetting

PJT_T_StapleDetails

Table 15: Example instances of pattern 2694

 54

Concept 2785 represents a pattern with classes W, X, Y and Z, where X and Y inherit from W,
Y has a self-association, and W a self-composition. Class Z is only loosely connected to the
other classes, namely via an association to class W.
Analysis of the 31 instances of this pattern learns that in all cases W and Y refer to the same
class. X refers to eight different classes and Z to four. This indicates that all instances of this
pattern are used in the same source-code context.

Table 16 shows four example instances of pattern 2785. None of the listed classes are
mentioned in the RIP Worker design documentation [DVRIP, 2002]. Examination of the
source code learns that all instances are part of a GUI library the RIP Worker’s test tools use.

W X Y Z
CDialog CCmdUI
CButton CDialog
CListBox CWinThread

CWnd

CEdit

CFrameWnd

CDataExchange

Table 16: Example instances of pattern 2785

Similar to the result for Grizzly, the patterns described for the RIP Worker have a relatively
low complexity. Since these patterns are the most interesting of the detected patterns, the
other patterns can generally be regarded as uncomplicated.

5.4.3 Observations

Quality of the results
When examining the prototype’s output for Grizzly and the RIP Worker it is clear that better
filtering is required. Recall that filtering for equivalent patterns, as defined by (12), has not
been implemented in the prototype. The output contains many equivalent patterns so in
practice this filtering is desired too.

The occurrence of sets of patterns in the output with small differences represents a more
significant problem. A possible filtering strategy might be to group highly similar patterns into
subsets and (initially) show only one pattern of each subset of the user. This requires a
measurement for the difference between patterns. This measurement could for example be
based on the number of edges (class relations) that must be added and removed to convert
one pattern into another. We leave this as future work.

After filtering the results manually, the remaining patterns are of a relatively low complexity,
compared to for instance the patterns found in [Gamma et al, 1995]. More complex patterns
typically have one instance and are removed by the pattern selection module. This means we
are not able to achieve our goal of finding patterns that are useful to reconstruct architectural
views (hypothesis H2).

In literature several publications report finding large numbers of design pattern instances in
public domain code and few in industrial code, e.g. [Antoniol et al, 1998], [Kersemakers,
2005]. We speculate that it could be the case that industrial practitioners structurally design
software in a less precise way than public domain developers. Obviously further experiments
are needed to validate this statement, but it could explain why in our case study the number
of instances of the found patterns remains fairly low.

Encountered problems
During the fact extraction process several problems were encountered. First of all, Columbus
consistently crashed during the compilation of some source files. Recall that the source files
are compiled with the same compiler as with which they were compiled during forward
engineering ([MSVC, 2005]). Because they compiled without errors at that time, the error
during fact extraction must either be caused by an incompatibility between Columbus and the
Microsoft Visual C++ compiler, or by an error in Columbus itself.

 55

This problem was encountered once while analysing the RIP Worker and ten times while
analysing the full Océ Controller. In all cases, skipping the source file that triggered the error
solved the problem. Because this only happened once for the RIP Worker, and not at all for
Grizzly, this has little impact on the results described in paragraph 5.4.2.

The second encountered problem occurred during the linking step of the fact extraction. In
this step the linker of Columbus combines the compiled source files, similar to the task of a
linker during the generation of an executable. With the RIP Worker and Grizzly subsystems
no problems were encountered, but with the complete Océ Controller Columbus crashed
during this step. A few experiments revealed that this is probably caused by the size of the
combined abstract syntax graphs, which is closely related to the size of the source files.
Therefore it was not possible to extract facts from the full Océ Controller with Columbus.

Execution times
Both subsystems are analysed on the same test platform. Table 17 shows the characteristics
of this platform.

Processor Pentium 4, 2 GHz
Memory 2 GB
Operating system Windows 2000 SP4
Columbus 3.5
Galicia 1.2
Java 1.4.2_06

Table 17: Test system characteristics

Table 18 shows the execution times for the RIP Worker and Grizzly subsystems for an order
four context. All values, except for the lattice-construction time, are measured in wall-clock
time. The lattice-construction time is measured in CPU time, but because the CPU load
during this process was almost 100%, this is equivalent to wall-clock time. The time for lattice
construction includes the time needed to import the formal context into Galicia and export the
generated lattice to an XML file.
For Grizzly the total execution time was 7:44:59 and for the RIP Worker 11:17:17 (hh:mm:ss).

 Grizzly RIP Worker
1 Fact extraction 0:01:09 0:42:40
2 Context generation 0:26:00 0:36:00
3 Lattice construction 4:41:50 6:57:37
4 Pattern selection 2:36:00 3:01:00

Table 18: Execution times (hh:mm:ss)

The patterns the prototype detected in the Grizzly and RIP Worker source code are relatively
simple. Possibilities to produce more interesting patterns are:
1. Extending the size of the input to, for example, multiple subsystems of the Océ Controller.
2. Increasing the order of the context. This increases the number of classes in the patterns,

and hence their complexity.
3. Introducing partial matches.

The third possibility, partial matches, requires fundamental changes to the method. If FCA
would still be used, these changes would increase the size of the lattice significantly, and
hence the execution time of the lattice construction step.

The first two options have the disadvantage that they increase the size of the data that is
processed. This affects the running time of all modules. Recall that the computational
complexity of the algorithms each of the modules uses is polynomial with the number of
classes and exponential with the order of the context. Based on this, and the executing times

 56

in Table 18, we concluded that, from a performance point of view it is not practical to use the
prototype to reconstruct architectural views of the complete Océ Controller19.

5.5 Conclusions of the pattern detection case study
This case study aimed to investigate the following hypotheses:

H1: With Formal Concept Analysis frequently used structural design constructs in
the source code of the Océ Controller can be detected without upfront
knowledge on the expected structures.

H2: Knowledge of frequently used structural design constructs found with Formal

Concept Analysis in the Océ Controller provides an architectural-view that is
useful to gain insight in the structure of the system.

Paragraph 5.1 describes two criteria for a structural design construct to be useful to
reconstruct an architectural view; it must contain at least six classes and have at least four
instances.

To confirm the two hypotheses, a prototype has been built that implements the approach
[Tonella and Antoniol, 1999] proposed. This prototype has been applied to two subsystems of
the Océ Controller, leading to the following conclusions:
• FCA can indeed be used to find frequently used design constructs in source code without

upfront knowledge on the expected constructs.
• The performance our XSLT implementation of the approach is such that it is not feasible

to analyse very large software structures. Although this is partly due to inefficiencies in
our XSLT implementation, the computational complexity of the used algorithms is the
main reason for this. Since applying the algorithms to two small subsystems of the Océ
Controller already requires a lot of time we conclude that it is not practical to apply the
approach to the complete Océ Controller. With a more efficient implementation it seems
possible to detect design patterns in its subsystems though. These subsystems are about
five to ten percent of the size of the total system.

• The found design constructs are of a limited complexity. For performance reasons no
contexts of orders large than four could be analysed, so the detected patterns consisted
of four classes or less. Although large numbers of pattern instances were detected, these
were typically confined to a few areas of the source code.

• Due to an error in Columbus/CAN, this fact extractor cannot be used to extract facts from
the complete Océ Controller.

This case study shows that finding patterns without a pattern library takes a lot of computing
time, even for relatively simple patterns in relatively small pieces of software. Since it was
possible to find frequently used design constructs, the results confirm hypothesis H1.
Because it was not possible to detect patterns with six classes or more, we failed to confirm
H2.

This leads to the conclusion that the prototyped approach is not (yet) useful to reconstruct
architectural views of the complete Océ Controller. Using the distinction between architecture
and design described in paragraph 2.4.3, we conclude that it can be used to reconstruct
subsystem designs.

19 The Océ Controller contains about ten to twenty times more classes than the two
subsystems used in the experiment.

 57

6 Clustering-based architecture reconstruction
The second of the two case studies described in this thesis uses clustering techniques to
reconstruct an architectural view from source code. This chapter describes similar
approaches reported in literature.

6.1 Clustering introduction
Before literature on clustering-based architecture reconstruction is discussed, this paragraph
gives a non-exhaustive overview of clustering techniques. For more information on clustering
the interested reader is referred to [Jain et al, 1999], [Berkhin, 2002] and [Pal and Mitra,
2004].

Clustering is a data analysis technique for dividing data elements into groups of similar
elements that are called clusters [Berkhin, 2002]. This division is based on the similarity of
data elements, which are usually represented as points in a multidimensional space or
vectors of measurements [Jain et al, 1999]. Intuitively, in a valid clustering the data elements
within a cluster are more similar to each other than to those in other clusters. Figure 19 shows
an example of a clustering of points in a two-dimensional space.

Figure 19: Example clustering

Various terms are used to refer to the data elements. Publications that describe the clustering
process sec call them objects [Berkhin, 2002], [Pal and Mitra, 2004] or patterns [Jain et al,
1999]. [Lakhotia, 1996] presents a unified framework for software subsystem classification
techniques where the data elements are called nodes. Approaches that use clustering for
reverse engineering often use the terminology [Wiggerts, 1997] introduced, in which the
clustered data elements are called entities. To avoid confusion with the object-oriented
notions of objects and patterns we decided to use the latter term.

Clustering is an unsupervised classification technique. In general two types of classification
techniques can be distinguished [Jain et al, 1999]:
• Supervised classification techniques start with a collection of pre-classified entities. The

problem is to classify a newly encountered entity based on this collection. The pre-
classified entities are often used to train the algorithm to recognise distinguishing
characteristics of the entities, after which new entities can be classified.

• Unsupervised classification techniques do not start with a collection of pre-classified
entities. Instead, they work solely on the collection of unclassified entities.

Clustering has many applications, including the classification of plants and animals, speech
and character recognition, image segmentation, information retrieval and data mining. [Jain et
al, 1999] give examples of the last four. Chapter 6 of this thesis describes a case study where
clustering is used for architecture reconstruction. After completing our description of clustering
in general, this chapter describes clustering-based architecture reconstruction approaches
reported in literature.

 58

6.1.1 Definitions
The following definitions regarding clustering are used in this chapter. These definitions are
based on [Jain et al, 1999] and [Wiggerts, 1997].
• An entity x is a single data item used by the clustering algorithm. Typically it consists of a

feature-vector of D measurements. Observation, object, datum and pattern are some of
the synonyms for entity used in literature.

• The individual components of x are called features. In literature the term attribute is also
used.

• D is the dimensionality of the entity.
• An entity set H={x1,…,xN} denotes a set of N entities. The i-th entity is denoted xi

(1§i§N), and the j-th feature of xi as xi,j (1§j§D). Some clustering algorithms view the
entity set as an NµD entity matrix.

6.1.2 Components of a clustering task
A typical clustering task involves the following issues [Jain et al, 1999]:

1. Entity representation and feature selection involves the selection of the entities and

the features. This often comprises of selecting the features that lead to the most effective
clustering.

2. A similarity metric is a metric or quasi metric on the feature space that is used to
quantify the similarity of two entities. The proximity of entities is usually measured with a
distance function defined on pairs of entities.

3. Grouping the entities can be performed with many different algorithms. Traditionally
these are divided into hierarchical and partitional algorithms [Berkhin, 2002]. Hierarchical
algorithms produce a series of nested partitions by splitting or combining clusters.
Partitional algorithms iteratively relocate entities between clusters to optimise a clustering
criterion.

4. Data abstraction is an optional step in which a representation of the grouping result is
created that is meaningful to the user. Typically this is done with a compact description of
each cluster in terms of cluster prototypes or representative entities such as the
centroid20.

5. Assessment of output is an optional step that consists of an, often subjective, validation
of the grouping result.

The following paragraphs discuss these five issues in more detail.

6.1.3 Entity representation & feature selection
The first issue in any clustering process is the selection of features and entities. An important
goal of this step is to reduce the dimensionality of the feature space, while retaining the
salient characteristics of the entities [Mitra and Pal, 2004]. Although no theoretical guidelines
exist that suggest the appropriate entities and features for a specific situation [Jain et al,
1997], statistical measures can be used to evaluate the quality of a proposed feature
selection [Mitra and Pal, 2004].

In general two types of features can be distinguished [Jain et al, 1997]:
• Quantitative features, for example:

o Continuous values (e.g. the age or length of people).
o Discrete values (e.g. the number of children in a family).
o Interval values (e.g. the beginning and end of an event).

• Qualitative features, for example:
o Nominal or unordered values (e.g. gender or colour).
o Ordinal values (e.g. temperature classifications like “hot” and “cold”).

20 The centroid of a solid object is its centre of mass. The centroid of a cluster is the point in
the feature space that is the “average” of the points in the cluster. This point can be seen as
the centre of gravity of the cluster.

 59

[Wiggerts, 1997] uses a different classification, distinguishing two feature-types we will call
inter- and inner-entity features:
• Inter-entity features describe relationships between entities. In this case the search space

is considered as a graph in which the nodes represent the entities and the edges the
relationships between them.

• Inner-entities describe each entity’s score on the features.

Although these two classifications appear different, the relationship between them is easy to
see. The inter-entity features can be considered unordered qualitative features by using a
matrix that contains for each pair of entities the number of edges between them. Obviously
the inner-entity features can be classified according to the classification of [Jain et al, 1997].

Based on their features, the similarity measure calculates the similarity of two entities, as is
described in the next paragraph. This can be based on the values of the features (e.g. with
continuous feature-values), but also on the presence or absence of features (e.g. with
unordered feature-values). These two types are called distance measures and association
coefficients respectively.

6.1.4 Similarity measures
A similarity measure calculates the similarity or dissimilarity of two entities. The clustering
algorithm uses this measure to determine which entities must be placed in the same cluster.

Consider the case where inter-entity features are used. Recall that in this case the search
space is considered as a graph where the nodes represent the entities and the edges
relations between them. The similarity of two entities may be based on the edges between
them, for example by counting them. This is an example of a similarity measure called an
association coefficient. In case of directed edges, similarity measures may or may not take
the direction into account. If different edge types are present each may be associated with a
different weight, in which case the weights of the edges have to be summed.

Similarity measures produce a value bounded by 0 and 1, where 0 indicates no similarity at
all, and 1 no difference. Some similarity measures calculate the dissimilarity dis(xi,xj), of two
entities xi and xj. In this case the similarity sim(xi,xj)=1-dis(xi,xj).

Distance measures and association coefficients are two frequently used types of similarity
measures [Berkhin, 2002], [Wiggerts, 1997]:
• Distance measures usually calculate the dissimilarity of two entities based on numeric

features. Most distance measures are based on the Minkowski metric. Using the
definitions introduced earlier in this chapter for two entities xi and xj this metric can be
described as:

()
1

, ,
1

,
D pp

p i j i k j k i j p
k

dis x x x x x x
=

= − = −

∑

where 1§p§¶. The most popular distance measure, the Euclidean distance, is a special
case of this metric with p=2 [Jain et al, 1999]. The Manhattan distance is another special
case of the Minkowski metric, but with p=1 [Berkhin, 2002]. A disadvantage of the
Minkowski metrics is the tendency of the largest scaled features to dominate the others.
Normalising the features, or introducing weighting schemes can solve this [Jain et al,
1999].

• Association coefficients calculate the similarity of two entities based on the presence or
absence of qualitative features. The following matrix is commonly used in literature to
define association coefficients [Wiggerts, 1997]:

 entity xj

 1 0
1 a b a+b
0 c d c+d

en
tit

y
x i

 a+c b+d

 60

In this matrix xi and xj are two entities with binary features that are either absent (0) or
present (1). The value of a represents the number of features that are present in both xi
and xj, b represents the number of features present in xi but absent in xj et cetera.
Differences between the various association coefficients are cause by different handling
of 0-0 matches and different weighting of matches and mismatches [Wiggerts, 1997].
Popular association coefficients are the Rand and Jaccard indices, simR and simJ
respectively, that are defined as [Berkhin, 2002]:

(),R i j
a dsim x x

a b c d
+

=
+ + +

 (),J i j
asim x x

a b c
=

+ +

Observe that these two indices differ in the way 0-0 matches are handled. [Wiggerts,
1997] calls the Rand association coefficient the simple matching coefficient.
The Sørensen-Dice coefficient is similar to the Jaccard coefficient in the handling of 0-0
matches, but assigns double weight to 1-1 matches [Anquetil and Lethbridge, 1999]:

() 2,
2SD i j

asim x x
a b c

=
+ +

6.1.5 Grouping the entities
This task creates the actual clusters using one of the similarity measures described in the
previous paragraph. Clustering algorithms can be divided in two groups, hierarchical and
partitional algorithms. Algorithms of the first type produce a hierarchy of nested clusters,
whereas algorithms of the second type produce a single partitioning of the entities. This
paragraph describes these types, and the refinements that are listed below. This selection is
based on the taxonomy of [Jain et al, 1999] and the architectural clustering approaches
described in this chapter.

1. Hierarchical

a. Single link
b. Complete link
c. Average link

2. Partitional
a. Square error
b. Graph theoretic
c. Evolutionary

Before these types of algorithms are discussed in more detail, several crosscutting issues are
discussed that affect all algorithm types. This discussion is based on [Jain et al, 1999].
• Agglomerative vs. divisive concerns the starting point the algorithm chooses.

Agglomerative algorithms start with each entity in a singleton cluster and merge clusters
until some stopping criterion is satisfied. Divisive algorithms start with all entities in a
single cluster and split clusters until some stopping criterion is satisfied. Agglomerative
algorithms are also called “bottom-up” and divisive algorithms “top-down” [Lakhotia,
1996].

• Monothetic vs. polythetic relates to the use of the features. Polythetic algorithms use all
the features simultaneously in the similarity calculations. Monothetic algorithms do not do
this and consider for example the features sequentially, using a different feature in each
cycle of the algorithm.

• Hard vs. fuzzy relates to the output of the clustering. Hard clustering algorithms assign
each entity to a single cluster. Fuzzy algorithms assign each entity to a set of clusters,
each with a certain degree of membership.

• Deterministic vs. non-deterministic is important for algorithms that do not consider the
entire search space but a subset of it. When run repeatedly, deterministic algorithms
produce the same clustering, whereas non-deterministic algorithms produce different
ones.

Hierarchical clustering algorithms
Hierarchical algorithms produce a series of nested clusters. Each iteration of the algorithm
combines two clusters (agglomerative) or splits a single cluster (divisive). In both cases a

 61

dendrogram is produced. A dendrogram can be visualised in a tree where the nodes
represent clusters and the edges merge or split decisions taken by the algorithm. If the inner
nodes are numbered such that the numbers increase monotonically from each child node to
the parent node, levels in the clustering process can be identified.
Figure 20 (left) shows an example of a dendrogram. Slicing the dendrogram at a certain level
gives a partitioning. In Figure 20 the dotted line in the dendrogram leads to the partitioning on
the right.

x1

x2

A HGFEDCB

A

H

G

F
E

D
C

B

1

7

5

3

le
ve

l

sl
ic

in
g

po
in

t

Figure 20: Hierarchical clustering example

Divisive hierarchical algorithms have the disadvantage that in the first iteration a large number
of possible divisions must be evaluated. If the entity set consists of N entities, 2N-1-1
possibilities must be considered in the first iteration. Agglomerative algorithms do not have
this disadvantage and are therefore the most widely used hierarchical algorithms [Wiggerts,
1997].

Agglomerative hierarchical algorithms all fit the following scheme (adapted from [Lakhotia,
1996] and [Wiggerts, 1997]):

set of clusters obtained by placing each entity in its own cluster
Compute the similarities between the clusters in
while | | 1 do
 ' subset of with most similar clusters such that | ' | 2
 : \ '

K
K

K
K K K
K K K

=

>
= ≥
= ∪ _ (')

Update the similarities between the clusters in
od

merge clusters K
K

 (19)

The algorithm starts with the creation of singleton clusters. The similarities between each pair
of these clusters is computed by means of a similarity measure for entities, such as those
discussed in the previous paragraph. In the first two steps of the while-loop, the algorithm
finds the set of most similar clusters and merges them. In the third step of the loop the
similarities are updated using one of the update rules described below. The algorithm iterates
until a single cluster remains.

The last action of the while-loop, calculating the similarity between the newly formed cluster
and the other clusters, can be implemented in several ways. All are based on the similarities
of the merged clusters with the other clusters. These have been calculated earlier, either in
the initialisation or a previous cycle of the loop. Let ka, kbœ K be two distinct clusters that are
merged. Then three popular update strategies to calculate the similarity between the merged
cluster ka » kb and a different cluster kcœ K are [Lakhotia, 1996]:
• Single link: simSL(kc,ka » kb)=simSL(kc,ka) Æ simSL(kc,kb)
• Complete link: simCL(kc,ka » kb)=simCL(kc,ka) ∞ simCL(kc,kb)
• Average link: simAL(kc,ka » kb)=(simAL(kc,ka) + simAL(kc,kb))/2
in which Æ and ∞ denote the maximum and minimum of two values respectively. Two variants
of the average link strategy are the weighted and unweighted average link strategies.
The complete link strategy produces compact or tightly bound clusters, whereas the single
link strategy has a tendency to produce straggly or elongated clusters [Jain et al, 1999].

 62

Figure 21 illustrates this (from [Wiggerts, 1997]). The dendrogram in Figure 20 is the result of
applying an agglomerative hierarchical algorithm with a single link update strategy.

Figure 21: Clusterings obtained with single (left) and
complete (right) link strategies.

According to [Jain et al, 1999] the time complexity of hierarchical agglomerative algorithms is
typically O(N2 log N), where N is the number of entities. Because agglomerative algorithms
need to store a similarity matrix the space complexity is typically O(N2).

Partitional clustering algorithms
Partitional algorithms are the other main type of clustering algorithms. These algorithms
produce a single partitioning of the entities and no hierarchy of clusters, as hierarchical
algorithms do.

Due to the large number of possible combinations to cluster the entities it is usually not
practical to try all of them. Partitional algorithms handle this by investigating only a part of the
total search space, using various heuristical strategies. This typically causes these algorithms
to converge at local optima. In practice the algorithm is often run multiple times with different
starting states to handle this [Jain et al, 1999].

Several different types of partitional algorithms exist. In the remainder of this chapter three
types will be discussed, namely square error, graph theoretical and evolutionary algorithms.

Square error clustering algorithms
Square error algorithms are the most frequently used partitional algorithms [Jain et al, 1999].
They start with an initial partition of the entities in a fixed number of clusters and iteratively
relocate entities between clusters to optimise some clustering criterion. This criterion
represents the quality of the clustering [Tzerpos and Holt, 1998].

Square error algorithms all use the following clustering criterion. Recall that H is the entity set,
and let K be a clustering with |K| clusters. Further, let cj be the centroid of the j-th cluster and
nj the number of entities in the j-th cluster. Finally, let xi

(j) be the i-th entity belonging to the
j-th cluster in K. Then the squared error criterion e2 can be defined as [Jain et al, 1999]:

 () () 22

1 1
,

jnK
j

i j
j i

e H K x c
= =

= −∑∑ (20)

In (20) ||xi

(j)-cj|| represents a chosen distance measure between entity xi
(j) and the cluster

centroid cj. Squared error algorithms use the criterion in (20) to determine if some entity-
relocation improves the quality of the clustering. The relocation is only applied if this is the
case. When a certain convergence criterion is met the clustering process stops. Examples of
convergence criteria are that the squared error value has not decreased for some number of
iterations, or that no entity reassignment from one cluster to another has taken place for some
number of iterations.

The k-means algorithm is the simplest and the most commonly used square error algorithm.
In the initialisation-step a set of k cluster centroids is chosen, for example by randomly
choosing k entities as cluster centroids, or by randomly choosing k points in the feature
space. Next, the algorithm assigns the entities to the cluster that contains the closest centroid,
after which the centroids are recomputed. The last two steps are repeated until a
convergence criterion is met.

 63

(21) describes this in pseudo-code (adapted from [Jain et al, 1999]):

()

()

set of randomly chosen cluster centroids
repeat

: assign each entity to the cluster with the closest centroid in
: centroids

while

C k

K C
C K
criterion K

=

=
=

¬

 (21)

k-means algorithms are sensitive to the initial choice of the cluster centroids, which can lead
to the algorithm converging in a local minimum. Some variants of this algorithm attempt to
choose initial centroids that are more likely to lead to a good clustering. Other variations of
this algorithm permit the merging and splitting of clusters [Jain et al, 1999].

According to [Jain et al, 1999] the time complexity of the k-means algorithm is typically
O(N·k·l), where N is the number of entities, k the chosen number of clusters and l the
number of iterations. If k and l are fixed in advance the algorithm has a linear time complexity.
The space complexity is O(k+N) because both the centroid-set and the entity-set need to be
stored in memory.

Graph-theoretic clustering algorithms
Graph-theoretic algorithms are partitional algorithms that operate on graphs. The nodes of
such graphs represent entities and the edges relations between these entities. In general
graph algorithms try to split this graph into subgraphs that will form the clusters, instead of
focussing on the entities themselves [Wiggerts, 1997].

The best-known graph-theoretic clustering algorithm uses a minimal spanning tree (MST) of
the data [Jain et al, 1999]. A spanning tree is a graph connecting a set of N nodes such that a
complete tree of N-1 edges is constructed. A spanning tree is minimal if the total length of the
edges is the minimum necessary to connect all the nodes [Pal and Mitra, 2004]. Once the
MST is constructed, the longest MST edges are deleted. The disconnected subgraphs
obtained this way form the clusters [Jain et al, 1999].

Figure 22 shows an example of an MST. The numbers near the edges denote the length of
the edges. The edge between the nodes labelled C and G (dotted in red) is the longest. If a
single edge is removed to produce the clustering it will be this one, leading to the two clusters
shown as ellipses in the figure.

2,4

2,3 4,4

3,1

2,7

5,82,8

x1

x2

A

G

F
E

D
C

B

H

Figure 22: MST clustering example

Evolutionary clustering algorithms
Evolutionary algorithms are motivated by natural evolution. They use evolutionary operators
and a population of solutions to obtain a globally optimal partition. Candidate solutions are
encoded as ‘chromosomes’. In evolutionary clustering algorithms these represent a
partitioning. Examples of evolutionary operators are selection, recombination and mutation.
Each of these transforms one or more input chromosomes into one or more output
chromosomes.

 64

Evolutionary clustering algorithms typically start with the generation of a random population of
solutions, which represent a set of initial clusterings. The number of solutions in this
population is called the population size. Each solution is associated with a fitness value that
typically is inverse proportional to the squared error value of the corresponding clustering.
Next, two steps are repeated until some termination condition is satisfied. First, the
evolutionary operators are used to generate a new population of fitter solutions, typically with
the same size as the previous population. Second, the fitness values are updated.
These steps can be summarized as follows (adapted from [Jain et al, 1999]):

()

: random population of solutions.
Associate a fitness value with each solution in
repeat

: _ ()
Update fitness values

while

K
K

K next generation K

termination K

=

=

¬

 (22)

Genetic algorithms (GAs) are the best-known evolutionary clustering techniques [Jain et al,
1999]. These algorithms represent the solutions as binary strings, leading to a partitioning into
two clusters. For example consider an entity set H={x1,…,x6} and the six bit binary string
[101110]. This string corresponds to a clustering of the six entities in H in two clusters:
{x1,x3,x4,x5} and {x2,x6}.
The most popular recombination operator is the crossover operator [Jain et al, 1999]. This
operator takes two solutions as input and swaps the substrings after the crossover point. Let
≈ denote the crossover operator, p (1<p<N) the crossover point, and [s1,…,sN] and
[t1,…,tN] two binary strings that both classify N entities. Then the crossover operator applies
the following transformation:

[] [] ()1 1 1 1 1 1,..., ,..., ,..., , ,..., , ,..., , ,...,N p N p p N p p Ns s t t s s t t t t s s+ + ⊗ =

For example [011111] ≈2 [100010]=([10 1111],[01 0010]).

The selection operator uses a fitness function that implements a similarity metric to select the
best solutions. The mutation operator is used to reduce the possibility that the algorithm
terminates in a local optimum [Jain et al, 1999]. This operator takes a solution as input and
complements a randomly selected bit. For example [001000] is produced by mutating the
third bit of the input string [000000]. Mutation is used to increase the probability that the
search space is sufficiently explored.

[Jain et al, 1999] report that “the sensitivity of GAs to the selection of their parameters such as
the population size, crossover and mutation probabilities is a major problem”. Researchers
defined problem-specific heuristics to alleviate this problem.

6.1.6 Data abstraction
In many applications the clusters the grouping produces must be represented in a compact
form, simply because of their huge size. The entities that form the clusters are abstracted
from to achieve this. [Jain et al, 1999] describe several representation schemes:
• Representative elements represent clusters by their centroid or a set of distant points.

Distant points of a cluster are elements located at its edges.
• Classification tree represent the clusters by a classification tree that graphically

visualises the search space and the cluster boundaries.
• Logical expressions represent the clusters by predicates that hold for all elements in the

cluster, for example y1<4 ⁄ y2>3, where y1 and y2 are two numeric features.

In practice, clusters usually are represented by their centroid [Jain et al, 1999].

 65

6.1.7 Assessment of output
Assessment of output is an optional task that consists of an, often subjective, validation of the
grouping result. Three types of assessment can be distinguished, all using statistical
measures [Jain et al, 1999]:
• An external assessment compares the grouping to an a priory structure.
• An internal examination considers if the grouping is intrinsically appropriate for the data.
• A relative test compares two different groupings.

6.2 Clustering-based architecture reconstruction
This paragraph discusses several clustering-based architecture reconstruction approaches
reported in literature. This overview is based on [Wiggerts, 1997], [Tzerpos and Holt, 1998],
[Koschke, 2000] and [Mitchell, 2002].

6.2.1 Early architecture clustering
[Schwanke, 1991] describes a tool called Arch, which is a graphical and textual structure-
chart editor for understanding and reorganising the internal structure of software systems.
Arch provides a semi-automatic architectural-clustering method that clusters procedures into
modules. This is implemented with a hierarchical agglomerative clustering algorithm that uses
the single linkage update rule. The similarity measure is based on shared design decisions;
procedures are related if they share design decisions. Examples are procedures that use the
same tables or call the same procedures.
The clustering can be used in three ways:
• Batch clustering runs without supervision.
• Interactive radical clustering asks the user for confirmation each time two clusters are

combined.
• Interactive reclustering uses a previous clustering to guide the clustering.
An interesting feature of Arch is “maverick analysis”, which finds procedures that appear to be
assigned to the wrong module. These are prioritised, and assigned to more appropriate
modules.

[Choi and Scacchi, 1990] describe a fully automatic architectural clustering method that
produces a hierarchical decomposition of a system. The method uses the NuMIL module
interconnection language. In NuMIL a system is composed of subsystems, which are in turn
composed of modules and other subsystems. This creates a hierarchy of subsystems and
modules. In this hierarchy the subsystems correspond to interior nodes and the modules to
leaf nodes. A module can be a single procedure or a set of procedures that are defined in a
single source file.
The subsystem construction algorithm aims to minimize coupling and alteration distance.
Coupling is a measure for the strength of the association between modules. The coupling of a
system or subsystem is the sum of the couplings of all contained modules and subsystems.
The alteration distance between modules is a measure for the distance between an altered
module and the affected module. If both modules are located in the same subsystem the
alteration distance is zero. Otherwise, the alteration distance is the length of the path between
the altered and the affected module. The alteration distance for a system or subsystem is the
sum of the alteration distances of the contained modules or subsystems.
The clustering algorithm starts with a resource flow diagram (RFD), in which the nodes
represent the modules. An edge is placed from module A to module B if and only if module A
provides one or more resources to module B. The clustering algorithm searches articulation
points in the RFD, which are nodes that divide the RFD graph into two or more connected
components. Together with the subgraphs, the articulation points become subsystems. When
all articulation points have been processed the algorithm cleans the resulting hierarchy by
removing subsystems with a single node and placing their content in a higher-level
subsystem.

6.2.2 Rigi
Rigi [Rigi, 2004] is an architecture reconstruction tool (see paragraph 3.3.3). Rigi’s clustering
method [Müller and Uhl, 1990] is intended to assist users with the reconstruction of the
architecture of procedural software. Alternative decompositions are generated to achieve this.

 66

It is chosen not to construct the decompositions fully automatically because “an experienced
software engineer will always be able to produce a better system decomposition than an
automatic procedure –given sufficient time” [Müller and Uhl, 1990].

Rigi produces a hierarchical decomposition in the form of a (k,2)-partite graph. Such a graph
consists of a series of graph levels (or layers) and a special set of edges. These layers are
connected by so called layer-edges, which may only connect adjacent layers. The nodes
within each layer are connected by at most k edges. In terms of the software architecture, the
nodes in the graph represent system entities, such as subsystems, modules or files. The
levels are resource-flow graphs, each representing a certain abstraction level. The lowest
level consists of source-code entities. Nodes at higher levels are composed of lower level
nodes.

The clustering process consists of five steps [Müller and Uhl, 1990], which are described
below. Users can invoke each of these steps from the Rigi application.
1. Remove omnipresent nodes. Omnipresent nodes are nodes that use many other

nodes, or are themselves used by many other nodes. The first case represents driver
nodes, and the second library nodes. Omnipresent nodes (and all their edges) are
removed before the actual clustering takes place because they obscure the system
structure.

2. Compose by standard library places known library members into special subsystems.
3. Compose by interconnection strength is a step that is based on the principles of high

cohesion and low coupling. The interconnection strength similarity measure of two nodes
in a resource flow graph is defined as “the exact number of syntactic objects exchanged
between the two nodes” [Müller and Uhl, 1990]. Two nodes are strongly coupled if and
only if their interconnection strength exceeds a certain threshold. Two nodes are loosely
coupled if and only if their interconnection strength is below some other (lower) threshold.
This step places strongly coupled nodes in the same subsystem and loosely coupled
nodes in different subsystems. Node pairs that fall in neither category are placed in the
same subsystem.

4. Compose by common neighbour is based on the software engineering principle of few
interfaces. The intention is to identify pairs of loosely coupled nodes that have common
clients or common suppliers. Placing such nodes into the same subsystem reduces the
number of interfaces.

5. Clean-up layers identifies subsystems that contain only one node. Such subsystems are
merged with their parent nodes.

6.2.3 ACDC
The Algorithm for Comprehension-Driven Clustering (ACDC) [Tzerpos and Holt, 2000]
combines pattern detection and clustering techniques.

Instead of focussing on high cohesion and low coupling, ACDC uses a different approach to
reconstruct an architecture. It is based on three characteristics that are considered essential
for a recovered architecture to be useful for program understanding [Tzerpos and Holt, 2000]:
• Effective cluster naming: refers to the “data abstraction” issue discussed in paragraph

6.1.6. Giving meaningful names to the clusters that are familiar to maintainers makes an
architecture much easier to understand, as opposed to names like “SS0”, “SS1” et cetera.

• Bounded cluster cardinality: Clusters containing a lot of entities are not considered
useful because of the overwhelming amount of information they present to the user.
Clusters containing one or two entities are not considered useful either. Ideally, the
clusters should contain between about five and twenty entities.

• Pattern-driven: A structure is easier to understand if it is presented in the form of familiar
patterns, as was described in paragraph 2.4.3.

The ACDC algorithm works on procedural source code and clusters “source code resources”.
Examples of such resources are source-files, procedures, functions and variables. The
algorithm reconstructs the architecture in two steps. In the first step, pattern-based techniques
are used to detect common subsystem patterns. This produces a skeleton architecture. In the
second step, orphan adoption techniques are used to classify entities that were not classified
in the first step.

 67

The first step of the algorithm performs the following substeps [Tzerpos and Holt, 2000]:
1. Source file clusters group entities that are defined in the same file into a cluster. This is

only applicable if procedures, functions or variables are clustered.
2. Body-header conglomeration clusters group files that contain the definition and

implementation of the same entities. In the C programming language for example .h files
contain declarations and .c files the corresponding implementations.

3. Leaf collection and supporting library identification identifies sets of files that have a
very large fan-in. These are potential library modules, but are not placed in a separate
cluster yet.

4. Ordered and limited subgraph domination is the main step of the algorithm. A call
graph is considered to find domination-relations between entities. If an entity x dominates
an entity y this means that all paths in the call graph leading to y also contain x. When
domination relations are found, the dominating and dominated entities are placed in the
same cluster. This step ignores entities with a very large fan-out, as these are likely to be
central entities that perform high-level control functions.

5. Creation of support subsystem is the last substep of the skeleton construction. In this
step any entities found in step 3 that where not added to some cluster in step 4 are added
to a special subsystem containing libraries.

In the second step, the ACDC algorithm uses the orphan adoption technique [Tzerpos and
Holt, 1997] to place any remaining unclassified entities into the most appropriate cluster.
Orphan adoption uses structural information to determine the set of entities to which some
entity is closest related. This entity is then added to the cluster that contains the entities with
which it has the highest number of relations. For further details the interested reader is
referred to [Tzerpos and Holt, 1997].

[Tzerpos and Holt, 2000] describe two case studies that apply the ACDC algorithm to
reconstruct an architecture from procedural source code. The first analyses Tobey, an
industrial system consisting of 939 source files (250 KLOC). The second analyses Linux, an
open source operating system. The analysed version consisted of 955 source files (750
KLOC).
The clusterings ACDC produced are compared to authoritive decompositions produced by
experts on the analysed systems with the MoJo metric, which is discussed in paragraph 6.3.2.
[Tzerpos and Holt, 2000] conclude that the ACDC algorithm produces meaningful
decompositions that “are among the better ones an automatic clustering algorithm can
achieve”.

6.2.4 Bunch
[Mitchell, 2002] describes a clustering tool called Bunch that implements three different
partitional clustering algorithms [Bunch, 2005]. Bunch obtains hierarchical clusterings by
repeated application of the algorithm. This is explained later in this paragraph.

Bunch is based on a module dependency graph G=(V,E), in which V represents a set of
entities and E a bag of directed, weighted edges between the entities. E can contain multiple
edges between the same entities, possibly with the same weight. Bunch uses third party fact
extractors to extract G from the source code.

Bunch is developed to cluster procedural software, but can also be used for object-oriented
software. [Mitchell, 2002] describes several case studies where Bunch is used for procedural
code. In those the module dependency graph G=(V,E) is used with:
• E: set of source files.
• V: set of relations between the files in E. More specific, type references, variable access,

function calls and macro invocations are considered. All relationship types have the same
weight.

 68

For cases where Bunch is used to cluster object-oriented source code [Mitchell, 2002]
suggests to use the module dependency graph G=(V,E) with:
• E: set of classes.
• V: set of relations between the classes in E, such as inheritance and associations. All

relationship types have the same weight.

The similarity measure implemented in Bunch is called modularisation quality (MQ), and is
based on the notions of intra- and inter-connectivity. Intra-connectivity measures the degree
of connectivity within a cluster. Inter-connectivity measures the degree of connectivity
between two clusters. Both are bounded by zero and one. Let Ni be the number of entities in
a cluster i, and mi the total number of edges between all pairs of different entities in cluster i.
Further, let εi,j be the total number of edges between all pairs of entities of which one entity is
located in cluster i and the other in j or vice versa. Then the intra-connectivity Ai of a cluster i
and the inter-connectivity Ei,j between clusters i and j are defined as [Mitchell, 2002]:

 ,,2

0 if

if
2

i
i ji i j

i
i j

i j
A E

i jN
N N

µ ε
=

= = ≠

 (23)

Ai=0 indicates that there are no dependencies within cluster i and Ai=1 that every entity in
cluster i depends on all other entities in this cluster. Ei,j=0 indicates that none of the entities
in cluster i depends on an entity in cluster j and vice versa. Ei,j=1 indicates that every entity
in cluster i depends on every entity in cluster j and vice versa.

Figure 23 shows an example clustering of five entities x1,…,x5 (the circles), in two
subsystems (the squares). Subsystem 1 has one intra-edge and contains two entities, so
A1=1/4. Two inter-edges between subsystem 1 and 2 are present, giving ε1,2=2. Because
N1=2 and N2=3 E1,2=2/(2µ2µ3)=1/6.

x1

Subsystem 2Subsystem 1

x3

x5

x4x2

Figure 23: MQ calculation example

If k is the number of clusters and (23) defines intra- and inter-connectivity, the BasicMQ
similarity metric is defined as (adapted from [Mitchell, 2002]):

()

1
1

,
1 , 1

1

1 if 1
2

if 1

k k
k k

i i j
i i j i j

A E k
BasicMQ k

A k

−

= = ∧ ≤

− >=

 =

∑ ∑ (24)

In (24), for the case k>1 the left summation-term calculates the average cohesion and the
right one the average coupling. The metric rewards cohesion and penalizes coupling. The
BasicMQ metric is bounded by –1 (no intra-edges) and +1 (no inter-edges) [Mitchell, 2002].
Mitchell defines the BasicMQ similarity metric slightly differently, namely without the i§j term.
However, the metric is only bounded by –1 if this term is added. Further, the examples in
[Mitchell, 2002] and [Mitchell et al, 1998] also utilize this addition.
For the example in Figure 23

() ()
2 21

2 1 1 1 2 1 1
, 2 4 9 4 6

1 , 1

1 0,1944
2 2i i j

i i j i j
BasicMQ A E×

= = ∧ ≤

= − = × + − × =∑ ∑

 69

Worst case O(|E|)=O(|V|2), giving the BasicMQ calculation a worst-case computational
complexity of O(|V|4). Because in practice O(|E|)ºO(|V|) the average complexity is O(|V|3)
[Mitchell, 2002]. This is still too expensive for large graphs. Another disadvantage of this
metric is that it does not allow the edges to have different weights.

The TurboMQ metric solves both problems. Let k represent the number of clusters again, and
mi the summed weight of the intra-edges within cluster i. Further, let εi,j and εj,i represent the
summed weights of the inter-edges from cluster i to j and vice versa respectively. If i=j then
εi,j=εj,i=0. Using these definitions TurboMQ is defined as [Mitchell, 2002]:

()

1

i

i

, ,
1

0 if =0

if 0
1
2

k

i
i

i
i k

i i j j i
j j i

TurboMQ CF

CF

µ
µ

µ
µ ε ε

=

= ∧ ≠

=

= ≠
 + +

∑

∑

 (25)

CFi is called the cluster factor of cluster i.

Bunch implements three different partitional clustering algorithms [Mitchell, 2002]:
• An exhaustive algorithm that enumerates all possible partitions and returns the partition

with the highest MQ value. The computational complexity of this algorithm is O(|V|!), so
it can only be used for very small module dependency graphs.

• A hill-climbing algorithm that is based on the k-means algorithm discussed in
paragraph 6.1.5 (“Square error clustering algorithms” section). To reduce the risk of
finding a local optimum it does not generate one initial partition like the k-means
algorithm, but a set of initial partitions. All partitions in this set are clustered, after which
the best result is chosen. The computational complexity of the hill-climbing algorithm is
O(|V|2·|E|).

• A genetic algorithm, similar to the genetic algorithm discussed in paragraph 6.1.5
(“Evolutionary clustering algorithms” section). The algorithm described in that section
uses a binary encoding, giving a partition with two clusters. Both [Mitchell, 2002] and
[Doval et al, 1999] give an example with a quartairy encoding (i.e. four clusters), but the
chosen number of clusters is not mentioned explicitly. In Bunch’ genetic algorithm,
parameters like the population size and number of created generations depend on the
number of entities. If N is the number of entities (so N=|V|), the genetic algorithm uses a
population size of 10N, and creates 200N generations before terminating. These figures
were determined empirically. A version of the MQ metric is used as fitness function.

[Mitchell, 2002] compares the results of the genetic algorithm to that of the hill-climbing
algorithm. This shows that the quality of the results of the genetic algorithm varies more than
that of the hill-climbing algorithm. The execution time of the genetic algorithm also varies
widely. [Mitchell, 2002] speculates that the chosen encoding causes this, and concludes that
the genetic algorithm must be improved further in order to be useful.

[Shokoufandeh et al, 2004] apply spectral methods to the software-clustering problem. The
resulting algorithm is called the recursive bisection algorithm. The quality of clusterings is
frequently evaluated with the notions of conductance volume and normalised inter-cluster
distance [Kannan et al, 2004]. [Shokoufandeh et al, 2004] show that their algorithm has a
conductance volume and an inter-cluster volume within a known distance of the optimal
clustering. This means that their algorithm gives a bounded approximation of the optimal
clustering. For more details on conductance volume and an inter-cluster volume the
interested reader is referred to [Kannan et al, 2004].
A disadvantage of the recursive bisection algorithm is that it has a relatively large worst-case
complexity. If N is the number of entities, it is O(N4). [Shokoufandeh et al, 2004] applied their

 70

algorithm and the hill-climbing algorithm of Bunch21 to cluster 13 software systems and
compared the results. They observed that their algorithm “is generally worse than Bunch in
quality of solutions and running time, and only gets worse as the size of the input increases”.
This implies that the hill-climbing algorithm of Bunch efficiently yields clusterings within a
bounded approximation of the optimal solution.

Although partitional algorithms are used, Bunch can still produce hierarchical decompositions.
This is done by repeatedly applying the clustering algorithm to the result of the previous
clustering [Mitchell, 2002]. The first clustering cycle clusters the module dependency graph
the user provided. Say this produces a clustering K1. Based on K1 a new module dependency
graph is created that will be clustered again. Say this graph is G2=(V2,E2), where V2
represents the entity-set and E2 the set of edges between the entities. For each cluster in K1
a node is added to V2. The set of edges E2 is defined by considering the nodes in the clusters
of K1. For every pair of entities v,wœV2 for which the corresponding clusters in K1 contain
nodes with an edge between them, an edge is added to E2. The weight of this edge is the
sum of the weights of the edges between the clusters represented by v and w.
After the new module dependency graph G2 has been constructed, it is clustered. This
process of constructing a new module dependency graph and clustering it is repeated until a
clustering is obtained with only one cluster.

[Mancoridis et al, 1999] present several extensions to Bunch that were added in response to
user-feedback:
• Library and omnipresent-module detection allows the identification of modules that are

used everywhere in the software. The user can do this manually, or it can be done
automatically by considering the fan-in and fan-out of the modules, as [Müller et al, 1993]
described. Modules with a fan-out that exceeds the average value three times are
considered omnipresent modules and are ignored during the clustering process. Instead,
they are placed in a special subsystem. Modules with a fan-in that exceeds the average
value three times are considered library modules, and are treated similarly.

• User-directed clustering allows users to define clusters manually to incorporate their
knowledge in the clustering process.

• Orphan adoption is used to allow incremental clustering, as [Tzerpos and Holt, 1997]
described. An orphan is a module that is either completely new or has undergone
structural changes that might justify placement in a different subsystem. The hill-climbing
and genetic algorithms of Bunch are non-deterministic. If a clustering has been generated
earlier and new entities need to be incorporated, constructing a completely new clustering
can lead to a completely different result. Orphan adoption adds orphans to existing
clusters, instead of constructing a completely new clustering. This enables users to
preserve an existing subsystem structure.

Bunch uses dotty [North and Koutsofios, 1994] to visualise the resulting clustering, but it is
also possible to export the clustering to a file for integration with other visualisation tools.
[Mitchell, 2002] mentions the use of the Acacia fact extractors (see paragraph 3.4.2) for C
code and the Chava fact extractor [Korn et al, 1999] for Java code. However, the simple
format of the module dependency graph enables easy integration of other fact extractors.

Besides by means of the in- and output-files, Bunch can also be integrated into reverse
engineering frameworks by means of the Bunch API [Mitchell, 2002]. This API offers a Java
[Java, 2005] interface to the internal components of Bunch.

Bunch is used in various reverse engineering case studies. As described above,
[Shokoufandeh et al, 2004] empirically compared the clusterings produced by Bunch to those
produced by an algorithm whose results are within a known approximation of the global
optimum.
[Mitchell, 2002] reports on the use of Bunch to recover the architecture of dotty and Bunch
itself. The result of the clustering is compared manually to an expert’s decomposition. In both
case it is concluded that Bunch produces valid clusterings.

21 [Shokoufandeh et al, 2004] used Bunch with the default settings.

 71

[Tzerpos and Holt, 1999] use Bunch to evaluate an implementation of the MoJo similarity
metric, which is discussed in paragraph 6.3.2.
[Mitchell and Mancoridis, 2002] describe experiments with Bunch to investigate the effect of
several user-defined parameters. Five subject systems were analysed, with the number of
entities varying between 13 and 413. The MQ metric is used to evaluate the results.

[Anquetil and Lethbridge, 1999] use Bunch to experiment with different clustering
configurations. They experiment with various different feature choices and determine the
quality of the clustering based on precision and recall, which are discussed in paragraph
6.3.1. Four large software systems, written in C and Pascal (140-2000 KLOC), are used as
test subjects.
[Anquetil and Lethbridge, 1999] distinguish two types of features: formal and non-formal
features. Formal features directly affect the behaviour of the software, for example type
references, variable references and procedure calls. Non-formal features do not directly affect
the behaviour of the software, for example frequently used words in identifiers or comments.
Based on their experiments, [Anquetil and Lethbridge, 1999] conclude that non-formal
features can also produce good clusterings. These features have the advantage over formal
features that they offer less redundancy.

6.2.5 Alborz
[Sartipi and Kontogiannis, 2002] describe a supervised clustering technique for procedural
software. The technique represents the analysed system with an attributed relational graph in
which the nodes represent source code entities, like for example source-files, functions, data
types and global variables. The edges in this graph represent relationships between the
entities, like for example calls, defines, updates and declares.

The clustering algorithm uses the “maximal association” coefficient, which calculates the
similarity of two entities based on the maximum number of shared features. Data mining
techniques are used to extract the values for the coefficient from the attributed relational
graph.

The clustering algorithm is based on the k-means algorithm, which is described in the “Square
error clustering algorithms” section in paragraph 6.1.5. The algorithm is designed to be able to
handle large search spaces. This is achieved by dividing the clustering space into a number
of smaller, user-selected subspaces, and iteratively processing these subspaces. The impact
of incorrect placements is reduced in two ways: First of all, later iterations can reassign
entities that were assigned to some cluster in earlier iterations. Second, at the end of each
iteration the user can manually correct misplacements.

The describe approach has been implemented in a tool called Alborz. This tool has been
applied to six industrial software systems, (35 to 74 KLOC). The clustering results are
evaluated with the precision and recall metrics, which are described in paragraph 6.3.1.
Precision varied between 43% and 94%, and recall between 33% and 100%. These results
are considered satisfactory [Sartipi and Kontogiannis, 2002].

6.2.6 LIMBO
[Andritsos and Tzerpos, 2003] use the LIMBO algorithm to reconstruct the architecture of
procedural source code.

The LIMBO algorithm (scaLable InforMation Bottleneck) is an agglomerative hierarchical
algorithm that is based on information loss minimization. The algorithm uses a feature matrix
as input. In this matrix the rows denote entities, in this case source files, and the columns
boolean features, for example developer-names, directory paths or dependencies to source
files. This allows the combination of structural and non-structural features.
As all agglomerative hierarchical algorithms, LIMBO starts with an initial clustering in which
every entity is converted into a cluster. Based on the entropy of the feature matrix, clusters
are combined until a predefined number of clusters remains. The algorithm combines the pair
of clusters that gives the smallest reduction of the uncertainty (entropy) of the feature matrix.
Besides stopping when a certain number of clusters has been reached, the algorithm also

 72

stops combining clusters when subsequent clusters only differ in the allocation of one entity or
the merging/splitting of one cluster. This is determined with the MoJo metric22, which is
described in paragraph 6.3.2.

[Andritsos and Tzerpos, 2003] report the application of LIMBO to Linux (955 files, 750 KLOC)
and Tobey (939 files, 250 KLOC). The MoJo metric is used to compare the result with that of
several other clustering algorithms, including Bunch and ACDC. In this experiment all
clustering algorithms used the same structural features. LIMBO’s decompositions achieved a
lower (=better) MoJo value than those produced by the other algorithms.
The addition of features based on the developer-names, source directory, lines of code
(discretized) and development time (month and year) improved LIMBO’s clusterings further.

6.2.7 InSight
Klocwork InSight [Klocwork, 2005] is a commercial architecture reconstruction and analysis
tool. As described in paragraph 3.3.7, InSight identifies nine architectural views, including the
code, package and component views. Some of these views are extracted from the source
code, whereas the user defines the others. This paragraph describes how the latter is
achieved

At the basis of InSight’s code, package and component views lies the “summary model”
[Mansurov and Campara, 2003]. This model essentially is an attributed graph G=(N,E)
where N=Nr » Ns and E=Er » Es. Nr and Er represent entities defined in the source code
and relations specified in the source code between these entities respectively. The nodes in
Nr have an attribute that stores a reference to the concerned location in the source file. Ns
represents the set of summary nodes, which are user-defined aggregations of node sets.
Finally, EsŒNsµN represents the set of edges between summary nodes and the nodes they
aggregate.

[Mansurov and Campara, 2003] informally describe three operations on the summary model:
• Aggregation defines a new summary node that aggregates a set of child nodes.
• Detalization is the inverse of aggregation. It removes a summary node and replaces it

with its child nodes.
• Trimming moves a node to another location in the graph.

With these three operations users can manually reconstruct an architecture from source code.
Users can also experiment with the summary model to ask “What if?” questions. These can
be answered by applying envisioned changes, after which InSight visualises their impact on
the architecture.

6.2.8 ACT
[Bauer and Trifu, 2004] describe an elaborate architectural-clustering method called
“architecture aware, adaptive clustering”. This method combines clustering and pattern
detection to recover meaningful system decompositions. The method represents the static
structure of the software as a graph in which nodes represent classes and weighed edges
relations between these classes. The weights represent semantic information about classes
and are determined with “architectural clues”. Three types of architectural clues are identified,
namely method types, library classes and design patterns.

Prolog rules are used to detect instances of seven structural design patterns in the source
code. The detected patterns are Template method, Abstract factory, Strategy, Composite,
Proxy, Adapter and Façade [Gamma et al, 1995].

22 The MoJo similarity metric is defined as the minimal number of move- and join-operations
required to transform one clustering into the other or vice versa. This metric is described in
paragraph 6.3.

 73

The method-types classify methods according to three criteria:
• The kind of a method describes its function. Examples are constructor, empty, accessors,

template, factory and normal.
• The inheritance statue of a method describes the role of the method in an inheritance

tree, if inheritance is present at all. Possible values are implementing, extending,
overriding, adding or new.

• The usage criterion classifies methods according to their usage into initialisation, public
interface, protected interface and implementation methods.

The third type of architectural clue, library classes, is used to detect library modules. Based
on the number of classes that call a suspected library class, a library recogniser module
detects library classes. This is similar to the method [Tzerpos and Holt, 1997] described.

The architectural clues are used to determine the coupling between the classes from six
points of view [Trifu, 2003]:
• Inheritance coupling takes the different contexts of inheritance relations into account.

This is necessary because inheritance can be used for many different purposes, including
specialisation and implementation reuse.

• Aggregation coupling distinguishes composition from the other aggregation types.
• Association coupling refers to coupling through method parameters, method return

types and local variables.
• Access coupling determines the coupling through access of class attributes.
• Call coupling determines the degree of coupling by the number of method calls between

the classes.
• Indirect coupling is coupling through common usage of a resource. The assumption that

this type of coupling relates classes is based on the software engineering principle of few
interfaces; grouping classes that use the same resource reduces the number of
subsystems that depend on the subsystem with the used class [Müller and Uhl, 1990].

For details on how these types of coupling are related to the architectural clues the interested
reader is referred to [Trifu, 2003].

The weights of the edges between the classes are based on the weighted sum of the values
for the six types of coupling. The weight of each type is based on personal experience and
intuition [Trifu, 2003]. The resulting graph is clustered with the “modified-MST” algorithm. This
algorithm is an improved version of the MST algorithm discussed in paragraph 6.1.5 (“Graph-
theoretic clustering algorithms” section), which uses a different heuristic to obtain the clusters.

[Trifu, 2003] describes the implementation of architecture aware, adaptive clustering in a
framework called Adaptive Clustering Testbed (ACT). ACT is used to compare the results
obtained with the described method to a conventional clustering technique. This technique
does not use the architectural clues and does not consider indirect coupling [Trifu, 2003]. The
resulting clusterings are assessed using both the MoJo metric (see paragraph 6.3.2) and the
average cohesion and coupling of the clusters.

Two case studies were performed to compare architecture aware, adaptive clustering to the
conventional clustering method, namely using the Java AWT library (482 classes, 142 KLOC)
and the SSHTools project (507 classes, 76 KLOC) as input. The results show that
architecture aware, adaptive clustering produces more accurate clusterings than the
conventional clustering technique.

6.3 Clustering result evaluation
This paragraph discusses several methods to assess the output of the clustering process.
The selection is based on [Wen and Tzerpos, 2004a] and [Mitchell, 2002].

 74

In general clusterings are evaluated with an external or internal assessment, or a relative test,
as is described in paragraph 6.1.7. These methods can be applied to architectural clusterings
as follows:
1. External assessment: In a manual inspection it is checked if the proposed clustering

seems appropriate. Often the developers of the system are consulted. However, this
method is highly subjective.

2. Internal assessment uses metrics that only consider the proposed clustering itself. This
evaluation method takes the goal of architectural clustering, program comprehension, into
account indirectly through the choice of the metric.

3. A relative test compares the clustering result to an a priori structure. This is considered
the ideal assessment method to evaluate the quality of architectural clusterings [Mitchell,
2002], [Koschke, 2000]. However, it has the disadvantage that an expert’s decomposition
must be available to which the clustering result can be compared.

The first and last methods are most frequently used in architectural clustering literature. This
paragraph discusses several evaluation methods that fall in the last category. These methods
compare the similarity of the produced clustering to an expert’s decomposition using some
similarity measure. Note that these similarity measures are not the same as the similarity
measures used during the clustering process (which are described in paragraph 6.1.4). Those
quantify the similarity of two entities, whereas the measures discussed here quantify the
similarity of two clusterings.

6.3.1 Precision and recall
[Anquetil and Lethbridge, 1999] use precision and recall to compare a clustering result to an a
priori structure created by experts on the analysed systems. The latter is called an expert
decomposition.

In a clustering any pair of entities can either be placed in the same cluster or in a different
one. In the first case this is called an intra pair and in the second an inter pair. Let K and D be
two partitionings of the same entities such that K is produced by an architectural clustering
method and D is an expert decomposition. Then precision is defined as the percentage of
intra pairs in K that are also intra pairs in D. Recall is defined as the percentage of intra pairs
in D that are also intra pairs in K.

Figure 24 shows two partitionings labelled K and D of the entity-set {x1,…,x6}. Partitioning K
consists of the clusters K1 and K2. Partitioning D consists of the clusters D1 and D2. Observe
that the only difference between K and D is the placement of x4. In this example K1 contains
six intra-pairs, K2 one, and D1 and D2 both three. Of the seven intra-pairs in partition K, D
contains four, so precision=4/7=57%. Of the six intra-pairs in D, K contains four, so
recall=4/6=67%.

x1

x3

x5x2

x6

x1

x3

x5x2

x6

K1 K2 D1 D2

Clustering K Expert decomposition D

x4 x4

Figure 24: Precision/recall example

Though frequently used to evaluate clustering results, precision/recall has several limitations
[Mitchell and Mancoridis, 2001]. First of all, the calculation does not consider edges. Every
incorrect placement has the same weight. In literature incorrect placements that affect many
edges are usually considered more important than those that affect little edges, which
suggests that the calculation should also consider the edges. Second, the measurement is
sensitive to the number and size of the clusters. A few misplaced modules in a cluster with

 75

relatively few members have much more impact on precision/recall than when the cluster has
many members. Finally, the number and size of the clusters impacts precision/recall.

[Koschke, 2000] presents a framework for the evaluation of clustering algorithms for
architecture reconstruction. This framework compares the produced decompositions against
expert decompositions with a metric that is based on precision and recall.

6.3.2 MoJoQuality, EdgeMoJo and MoJoFM

MoJoQuality
[Tzerpos and Holt, 1999] define the MoJo metric for the comparison of two decompositions. It
the distance between two decompositions in terms of the minimal number of move and join
operations that is required to transform one decomposition into the other. A move operation
relocates a single entity from one cluster to another cluster. A join operation merges two
clusters. Let K and D be two decompositions of a system consisting of N entities and let
mno(K,D) be the minimum number of move and join operations to transform K into D. If x∞y
refers to the minimum of x and y, MoJo(K,D) is defined as [Tzerpos and Holt, 1999]:
 () () (), , ,MoJo K D mno K D mno D K= ↓ (26)
[Wen and Tzerpos, 2003] describe an efficient algorithm to compute the MoJo distance
between two decompositions, K and D. The total computational complexity of this algorithm is
O(N·log N + (L+M) ·L·M), where L and M are the number of clusters in K and D
respectively.

Figure 25 shows two partitionings labelled K and D of the entity-set {x1,…,x6}. K and D
consist of the clusters K1 and K2, and D1 and D2 respectively. Observe that the only
difference between K and D is the placement of x2 and x4. The minimum number of move
and join operations to transform K into D or vice versa is two, so MoJo(K,D)=2.

x1

x3

x5

x4

x2

x6

x1

x3

x5

x4

x2

x6

K1 K2 D1 D2

Partition K Partition D

Figure 25: MoJo Example

If K refers to a decomposition produced by a clustering algorithm and D to an expert
decomposition, [Tzerpos and Holt, 1999] define the quality of K relative to D as

 () (),
, 1 100%

MoJo K D
MoJoQuality K D

N

= − ×

 (27)

MoJoQuality(K,D)=100% indicates that the clustering is the same as the expert
decomposition. Because any partition of N entities can be transformed into any other partition
using N moves [Tzerpos and Holt, 1999], MoJo(K,D)§N. Hence MoJoQuality(K,D)¥0%.
Suppose that in the example of Figure 25 K is a decomposition produced by a clustering
algorithm, and D the expert decomposition. Because six entities are clustered,
MoJoQuality(K,D)=(1-2/6)µ100%=67%.

[Tzerpos and Holt, 2000] describe two case studies where the MoJoQuality metric is used to
evaluate the quality of decompositions produced by the ACDC algorithm. The two
decompositions achieve a MoJoQuality of 56% and 64%. This is claimed to be among “the
higher ones an automatic clustering algorithm can hope to achieve” [Tzerpos and Holt, 2000].

 76

This matches with the results reported by [Trifu, 2003]. Relative to the existing package
structure of two software systems, the method described by [Trifu, 2003] achieves a
MoJoQuality of about 50% to 65%.

EdgeMoJo
A disadvantage of the MoJo metric is that it does not take edges into account. Suppose that a
clustering algorithm is used to decompose a system consisting of N entities twice, producing
decompositions K1 and K2, and that D is an expert decomposition of the analysed system.
Further suppose that K1 and K2 both have one entity, say x1 and x2 respectively (x1∫x2), that
is placed in a different cluster in D, and that x1 has one edge to other entities and x2 has ten.
Then MoJo(K1,D)=MoJo(K2,D), indicating that K1 and K2 are equally good. But because the
misplacement of x2 is clearly more important than that of x1, K1 is actually better than K2.

[Wen and Tzerpos, 2004a] describe an extended version of MoJo, called EdgeMoJo, which
takes the number and weight of edges into account. This metric first calculates the MoJo
value, after which the additional cost imposed by the edges is calculated. [Wen and Tzerpos,
2003] show that the order in which the MoJo metric performs the move and join operations is
not relevant. Therefore, the EdgeMoJo algorithm starts with the join operations, after which
the move operations are performed.
Let Knew denotes the cluster an entity x is moved to, Kold the cluster x used to be placed in,
|z| the absolute value of z and W(x,Ki) the summed weight of the edges between x and the
entities in cluster Ki. In the EdgeMoJo metric each move operation of entity x has the weight
m(x), instead of one as in the MoJo metric, with:

 ()
() ()
() ()

, ,
1

, ,
new old

new old

W x K W x K
m x

W x K W x K
−

= +
+

 (28)

Figure 26 shows the same partitionings as Figure 25 but now with edges between the entities.
All edges have a weight of one. Recall that the only difference between K and D is the
placement of x2 and x4 and that MoJo(K,D)=2. The aggregate weight between x2 and the
entities in K1 W(x2,K1)=2. Similarly, W(x4,K1)=1, W(x2,D2)=3 and W(x4,D2)=2. Therefore
the cost of relocating x2 is m(x2)=1+1/5=1,2. Similarly, m(x4)=1+1/3=1,3. This gives
EdgeMoJo(K,D)=2,5.

x1

x3

x5

x4

x2

x6

x1

x3

x5

x4

x2

x6

K1 K2 D1 D2

Partition K Partition D

Figure 26: EdgeMoJo example

MoJoFM
[Wen and Tzerpos, 2004b] describe an improved version of the MoJo metric, called MoJoFM.
This metric solves some anomalies of the MoJo metric, such as the tendency of MoJo to
consider clusterings with singleton clusters23 very good. However, MoJoFM does not take the
edges into account.

MoJo for hierarchical decompositions
The metrics discussed so far compare two partitionings, so two clusterings without hierarchy.
[Shtern and Tzerpos, 2004] informally describe a method to compare hierarchical

23 Clusters containing one entity.

 77

decompositions. Essentially the method converts both hierarchical decompositions into a set
of partitionings and applies an existing similarity metric for partitionings to them. Next, the
obtained set of metrics is aggregated to produce a single value that indicates the similarity of
the hierarchical decompositions.

A hierarchical decomposition K is converted into a partitioning as follows. Suppose that a tree
in which the nodes represent clusters and entities represents a hierarchical decomposition.
Further, suppose that the edges of this tree represent containment relations between clusters
and entities. Let the level of a cluster in K be the number of edges between the cluster and
the root of the tree representing K. Further, let height(K) be the depth of the tree
representing K.
For each level l of K (1§l<height(K)) a partioning is constructed as follows (adapted from
[Shtern and Tzerpos, 2004]):

1. Assign each entity in each cluster with a level larger than l to its ancestor at level l.
This produces a hierarchical decomposition K’ such that of height(K’)=l+1.

2. Create a new clustering Kl that contains the clusters that contain the leaves of K’.
Now height(Kl)=1, so Kl is a partitioning of the classes.

The left side of Figure 27 shows an example of a hierarchical decomposition of four levels.
This decomposition classifies the entity-set {x1,…,x9} into the clusters A, A1, A2, A3, A4, A5
and A6. On the right side of the figure the result of step 1 and 2 of the above algorithm are
shown for l=2. Observe that the classes originally placed in A5 and A6 are now placed in A4.

A1

x8x7

x6x5x4x3

x2x1

A

A4A3

A2

x9

A6A5

l=2

x8x7x6x5x4x3x2x1

A4A3 A2

x9

Figure 27: Example conversion of a hierarchical
decomposition (left) into a partitioning (right) for level 2

Let K and M be two hierarchical decompositions. The similarity of K and M is computed as
follows. First K and M are both converted to a set of partitionings using the method described
above. Next, it is ensured that both of these sets have the same size. Let hk and hm be
height(K) and height(M) respectively, and let Ki be the partitioning of K obtained with the
above procedure for level i (1§i<hk). If hk∫hm, the decomposition with the lowest height is
extended by copying its most detailed partition. For the case hk<hm decomposition Khk-1 is
copied (hm-hk) times to obtain the partitionings numbered hk up to hm-1 of K. The case
hk>hm is treaded likewise with k and m exchanged. Suppose for example hk=3 and hm=5, as
is shown in Figure 28. Then the partitionings for level 3 and 4 of K are copies of that for level
2.

level 1
level 2

level 3

level 1
level 2

level 4

K (hk=3) M (hm=5)

copy

Figure 28: Example of level copying

 78

To calculate the similarity of K and M, some similarity metric for partitionings, for example
MoJo, is applied to every pair of decompositions at the same level. Let Kj and Mj be the
partitionings of K and M respectively the previous algorithm produced for level j
(1§j<(hkÆhm))24. Now the similarity is calculated for every level. Let Sj be the similarity of Kj
and Mj, and wj the weight of level j. The overall similarity sim is calculated with [Shtern and
Tzerpos, 2004]:

 ()2

1 1
with 1

k m k mh h h h

j j j
j j

sim w S w
↑ ↑

= =

= ⋅ =∑ ∑ (29)

[Shtern and Tzerpos, 2004] use a linear weighting scheme that assigns equal weights to all
levels, as is applied in (29).

6.3.3 EdgeSim and MeCl
The methods discussed in the previous paragraphs compare two decompositions based on
the placement of entities in clusters. [Mitchell and Mancoridis, 2001] present two methods for
comparing partitionings that are based on the relations between the entities. Both methods
are based on the module dependency graph Bunch uses (see paragraph 6.2.4). In a module
dependency graph G=(V,E), V represents the set of entities (e.g. source files) to be
clustered and E a bag of weighted edges between entities in V. If the entities represent
source files, the edges in E represent dependencies between source files.

EdgeSim
Let A and B be two partitionings of G into l and m different clusters respectively. Further, let
A contain the clusters {A1,…,Al} and B the clusters {B1,…,Bm}. [Mitchell and Mancoridis,
2001] distinguish two types of edges:
• Intra-edges that do not cross a cluster boundary.
• Inter-edges that do cross a cluster boundary.

The set F of intra-edges in both A and B, and the set Q of inter-edges in both A and B are
defined as (adapted from [Mitchell and Mancoridis, 2001]):

() () (){ }
() () (){ }

, , 1 1

, , 1 1

i i j j

i i j j

u v n E i l j m u A v A u B v B

u v n E i l j m u A v A u B v B

Φ = ∈ ≤ ≤ ∧ ≤ ≤ ∧ ∈ ∧ ∈ ∧ ∈ ∧ ∈

Θ = ∈ ≤ ≤ ∧ ≤ ≤ ∧ ∈ ∧ ∉ ∧ ∈ ∧ ∉

ϒ = Φ ∪ Θ

 (30)

The set U represents the set of edges that are either intra-edges or inter-edges in both A and
B.
Let weight(E) and weight(U) be the sum of the weights of the edges in E and U
respectively (if an edge has no associated weight, a weight of one is assumed). Using these
definitions the EdgeSim measurement is now calculated with ([Mitchell and Mancoridis,
2001]):

 () ()
()

, 100%
weight

EdgeSim A B
weight E

ϒ
= × (31)

Figure 29 shows two partitionings labelled A and B of the entity-set {x1,…,x8}. A consists of
the clusters A1 and A2, and B consists of the clusters B1, B2 and B3. Observe that the
difference between A and B is the placement of x2, x4, x5 and x6. The edges in the set F of
intra-edges in both A and B are drawn in blue, and the edges in set Q of inter-edges in both A

24 Æ gives the maximum of two numbers.

 79

and B are drawn in red. The first contains 5 edges and the second 1. In total the module
dependency graph contains 11 edges. Since the weight of all edges is one, this gives
EdgeSim(A,B)=6/11µ100%=55%.

x1

x3

x6

x4

x2 x7

A1 A2

Partition A

x5 x8

x1

x3

x6

x4

x2 x7

B1 B2

Partition B

x5 x8

B3
Figure 29: EdgeSim example

MeCl
The MeCl measure is also based on edge similarities. Again, let A and B be two partitionings
of G into the clusters {A1,…,Al} and {B1,…,Bm} respectively. Let FA(Ai) denote the set of
intra-edges in cluster Ai (1§i§l) and QB(Bj) the set of inter-edges connected to entities in Bj
(1§j§m). Then the set Ui,j of edges that are intra-edges in Ai and inter-edges connected to
entities in Bj is defined as [Mitchell and Mancoridis, 2001]:
 () (),i j A i B jA Bϒ = Φ ∩ Θ (32)

Using (32) the set of edges that became intra-edges in Bj is defined as [Mitchell and
Mancoridis, 2001]:

 ,
1

j

l

B i j
i=

ϒ = ϒ∪ (33)

If weight(E) and weight(UB) are the sum of the weights of the edges in E and UB
respectively25, the MeCl measure is calculated with [Mitchell and Mancoridis, 2001]:

() ()
()

1

, 1 100%

j

m

B B
j

Bweight
MeCl A B

weight E

=

ϒ = ϒ

 ϒ
= − ×

∪
 (34)

Figure 30 shows the same two partitionings as Figure 29. The setU1,1 of edges that are intra-
edges in A1 and inter-edges connected to entities in B1 consists of the edge from x1 to x2, and
of the edge from x2 to x3. These edges are drawn in blue. U1,2 equals U1,1. U1,3 and U2,1 are
empty and U2,2 and U2,3 both consist of the red edge from x6 to x7. This gives
MeCl(A,B)=(1-3/11)µ100%=63%.

x1

x3

x6

x4

x2 x7

A1 A2

Partition A

x5 x8

x1

x3

x6

x4

x2 x7

B1 B2

Partition B

x5 x8

B3
Figure 30: MeCl example

A disadvantage of both EdgeSim and MeCl is that the placement of entities in clusters is not
considered at all [Wen and Tzerpos, 2004].

25 Again, if an edge has no associated weight a weight of one is assumed

 80

7 Case study: Architectural clustering
This chapter describes the second of the two case studies described in this thesis. This case
study investigates the use of clustering-based architecture reconstruction methods, using the
theory described in chapter 6. These methods automatically reconstruct a structural view of a
software architecture from source code. In this chapter the terms “clustering-based
architecture reconstruction” and “architectural clustering” are used interchangeably.

7.1 Case study goals
Clustering-based architecture reconstruction techniques use mathematical clustering
techniques to reconstruct architectural components. These techniques find some natural
grouping of data elements, in this case source code elements. A view of the system’s as-built
architecture is constructed by defining abstractions that group source code elements.

Chapter 6 describes several methods for architectural clustering reported in literature.
Although it is known that it is not possible to reconstruct architectures from source code fully
automatically [Müller et al, 1993], several publications indicate that the architectural views
reconstructed this way can serve as good starting points for manual refinement. Based on this
we formulate the following hypothesis:

H3: Automatic clustering-based architecture reconstruction methods can
reconstruct an architectural view of the Océ Controller from its source code
that is a good starting-point for manual refinement.

We use the MoJoQuality metric to quantify “good”. It will be used to compare the clustering
result to the result of a manual reconstruction of the architecture. The latter will be referred to
as the expert decomposition. Paragraph 7.2.2 describes how this decomposition is obtained.
The motivation for choosing the MoJoQuality metric is described in the “Assessment of
output” section in paragraph 7.2.1. Based on clustering results reported in literature26, we
consider a decomposition produced by architectural clustering good if it has a MoJoQuality of
at least 60% relative to an expert decomposition.

During its lifetime the Océ Controller has been modified extensively. As described in
paragraph 2.1.3, the internal structure of software systems that are continuously modified
inevitably deteriorates, which obfuscates the architecture. This means that in the original
version the architecture is present in a purer form than in later versions. Since architecture
reconstruction is usually performed for software of which several versions have been
released, it is likely to be applied to software of which the architecture has deteriorated
significantly. We speculate that this reduces the effectiveness of clustering-based architecture
reconstruction techniques. If this is the case, incorporating information from multiple versions
in the clustering process could improve the quality of the result. This leads to the following
hypothesis:

H4: Utilizing information obtained from source code of older versions can improve
the quality of the output of architectural clustering algorithms for more recent
versions of a system.

The “Combining version information” section in paragraph 7.2.1 describes how the
information of the older versions is used in the clustering process.

An architectural clustering is considered to be better than another clustering if it achieves a
lower EdgeMoJo value. The EdgeMoJo metric is used here because it gives a more detailed
assessment of a decomposition’s quality than MoJoQuality. Because it produces a non-
normalised result it cannot be used for H3 however. The “Assessment of output” section in
paragraph 7.2.1 describes the reasons for choosing this metric in more detail.

26 More precisely, we base this on [Tzerpos and Holt, 1999], [Wen and Tzerpos, 2004b] and
[Trifu, 2003].

 81

A workbench has been built that uses clustering techniques to reconstruct a static view of a
software architecture from source code. This workbench can incorporate information obtained
from the source code of multiple versions of a system into the clustering process. The
workbench is applied to the Océ Controller to confirm the two hypotheses.

7.2 Architectural-clustering architecture
This paragraph discusses the architecture of the architectural-clustering workbench. Before
the actual architecture is described, the decisions that led to it are discussed.

7.2.1 Initial Choices
The following issues need to be considered in a clustering task [Jain et al, 1999]:
1. Entity representation.
2. Similarity metric.
3. Algorithm choice (how to group the entities).
4. Data abstraction.
5. Assessment of output.

This paragraph describes how the architectural-clustering workbench handles these issues.
Paragraph 6.1 gives a detailed description of the nature of these issues.

Entity representation & feature selection
Most researchers agree that architectural clustering approaches based on structural criteria
and naming conventions are the most promising ones [Tzerpos and Holt, 2000]. Recall from
paragraph 1.2 that most of the Océ Controller is written in an object-oriented programming
language (C++). In object-oriented software classes are the most important building blocks
[Booch et al, 1999]. They provide an initial grouping of closely related data and functions
[Mitchell, 2002]. Architectural clustering approaches for object-oriented source code reported
in literature often choose classes as the entities to be clustered. We therefore decided that
the set of classes extracted from the source code would form the entity set. Clusters grouping
a number of classes will be called subsystems, or simply clusters.

Based on [Tzerpos and Holt, 2000], [Mitchell, 2002] and [Trifu, 2003] we decided that the
clustering will be based on structural relations between the classes. Other approaches use
different kinds of information, like for example ownership information, as is described in
paragraph 3.5.4. However, this kind of information is not always available. If the complete27
source code of a system is available, all structural relations between classes are available.
Because this is the minimal amount of information that must be available for architecture
reconstruction to make sense, an approach based on this kind of information has the widest
applicability.

We distinguish the three most important types of relationships between classes in object-
oriented systems [Booch el at, 1999]:
• Association: a structural relationship between two classes that specifies one class is

connected to another.
• Generalization: the object-oriented mechanism via which more specific classes

incorporate the structure and behaviour of more general classes.
• Dependency: a “using” relationship that specifies a change in one class may affect

another class.

If two classes are related by any of these relations, it is possible that multiple instances of this
relation exist. For example if a class c1 has three methods that all reference a class c2, these
lead to three dependencies from c1 to c2. The clustering can take the actual number of
relation instances into account, or just its presence. To our knowledge no work has been
published describing the effect of this choice on the quality of the clustering result in the
context of object-oriented software. We therefore decided to define a user-specified

27 Here “complete” means that a working system can be compiled from the source code.

 82

parameter pc (c for combine), that specifies if only the presence, or also the number of
instances of a relation between two classes must be taken into account:
• pcªfalse fl take the number of instances of each class-relation into account.
• pcªtrue fl take only the relation’s presence into account, not the number of instances.

In various publications it is suggested to use different weights for the different relationship-
types, making certain types more important than others [Mitchell, 2002], [Trifu, 2003].
However, to our knowledge no work exists that describes how different choices for the
weights of the object-oriented structural relation-types affect the quality of the clustering
result. We therefore decided to introduce a user-specified parameter for each relationship-
type that specifies the weight of instances of this relation in the similarity calculation. This
leads to three parameters, pwa, pwg and pwd, which specify the weight of association,
generalization and dependency relations respectively.

Similarity metric and algorithm choice
Given the entity representation and feature selection chosen in the previous paragraph, a
clustering algorithm is required that can cluster an entity set with inter-entity features28. Bunch
[Bunch, 2005] is a tool that implements several clustering algorithms that operate on this kind
of data. It has been used in various architectural-clustering experiments and is known to
produce clusterings within a bounded approximation of the optimal clustering [Shokoufandeh
et al, 2004]. Because Bunch has been implemented as a generic clustering tool, it can easily
be integrated in an architecture-reconstruction workbench.

Because Bunch seemed the most appropriate choice, we decided to use Bunch in the
architectural-clustering workbench. Based on experiences with Bunch reported by [Mitchell,
2002], we decided to use the hill-climbing algorithm and the TurboMQ similarity metric.
Paragraph 6.2.4 describes this algorithm, the TurboMQ metric, and several applications of
Bunch.

Note that we use Bunch differently than the applications reported in literature. The difference
is threefold:
• We use Bunch to cluster object-oriented software, whereas the applications reported in

literature cluster procedural code29. This affects the entity representation and feature
selection, and not the clustering algorithm itself. Hence, this does not invalidate the
conclusions of [Shokoufandeh et al, 2004].

• We distinguish multiple different relationship-types with different weights, whereas the
applications reported in literature use the same weights for all relationship-types.
However, Bunch has been designed to support different weights for the relationships. A
small experiment revealed that the weights have the expected effect on the clustering
result.

• Applications reported in literature use information from one version. In some cases we
use information from multiple versions, as is described in the “Combining version
information” section in this paragraph. This however only affects the number of features,
and not the clustering algorithm itself. Hence, this does not affect the conclusions of
[Shokoufandeh et al, 2004].

Data abstraction
Bunch automatically generates names for the created clusters. These names are based on an
increasing sequence number and the level of the cluster in the decomposition. However,
these names have little meaning to software maintainers. Ideally the workbench gives
meaningful names to the clusters. Because we consider the decomposition produced by the
architectural clustering as a starting point that needs to be refined manually, using the names
Bunch generated is no significant restriction. Therefore we decided to leave the issue of

28 These are features that describe relationships between the entities, as is described in
paragraph 6.1.3.
29 As described in paragraph 6.2.4 those approaches use source files as entities, and
dependencies between source files as features.

 83

automatically giving meaningful names to the clusters as future work and use the names
Bunch generated.

Assessment of output
As described in paragraph 6.3, architectural clustering methods usually assess their output by
comparing it to some expert decomposition, or by manually checking if it seems appropriate.
In literature consensus is that the first method is to be preferred [Mitchell, 2002], [Koschke,
2000], so we choose to implement this method in the workbench.

To validate hypothesis H3 a metric is needed that produces a normalised result that can be
compared to values for similar cases reported in literature. Paragraph 6.3 describes several
metrics for the comparison of automatically generated decompositions to expert
decompositions. We choose to use the MoJoQuality metric [Tzerpos and Holt, 1999] because
it is a normalised metric for comparing clustering results to expert decompositions for which
reference values have been published.

The EdgeMoJo metric [Wen and Tzerpos, 2004a] is a non-normalised metric that uses a
similar approach as MoJoQuality. Unlike MoJoQuality, this metric also takes the relations
between the classes into account. Incorrect class-placements that affect many relations are
considered more important than those that affect a few relations. Several recent publications
concerning comparison metrics for clusterings30 state that that it is important to take edge-
information into account also. Because we agree with this, we decided to use the EdgeMoJo
metric to validate hypothesis H4. Because it is not normalised, this metric cannot be used to
compare the quality of architectural clusterings of different systems (so for hypothesis H3),
but it can be used to determine if changes to the clustering process lead to an improvement of
the result (assuming that the same classes are clustered).

Due to the size of the Océ Controller (the last version contains 2661 classes) both the expert
decomposition and the decomposition Bunch produces must be hierarchical. To our
knowledge the approach [Shtern and Tzerpos, 2004] described is the only method for
comparing hierarchical decompositions that is reported in literature31. We therefore decided to
use this approach to assess our decompositions.

For more information on the two similarity metrics and the conversion approach the reader is
referred to paragraph 6.3.2.

Combining version information

Approach
Hypothesis H4 states that the use of information from older versions of the Océ Controller
during the clustering process can improve the quality of a decomposition of the last version. In
this context “improve” means that this decomposition comes closer to an expert’s
decomposition.

The underlying assumption is that the original architecture of the system has deteriorated and
that this reduces the effectiveness of architectural clustering.
When a system is refactored its internal structure improves again. This makes it unlikely that
the “structuredness” of systems is decreasing monotonically. It is even possible that after a
refactoring a system’s envisioned architecture is implemented more accurately than in the first
version. Therefore it is not necessarily the first version of the system in which the architecture
is present in its purest form. This must be taken into account when choosing the versions to
combine.

Figure 31 illustrates the difference between architectural clustering based on a single version
and on multiple versions. Let {V1,…,Vn} be the versions of the analysed system, where Vj is

30 For example [Mitchell and Mancoridis, 2001] and [Wen and Tzerpos, 2004a].
31 Actually, this method describes transformations that allow using a metric for partitionings to
compare hierarchical decompositions.

 84

released before version Vj+1 (1§j<n). From now on we assume that an architectural view of
the most recent version, Vn, is reconstructed, since maintenance will usually be done on this
version. Of each version Vi that is involved in the clustering process (1§i§n) a model Mi is
constructed. Each of these models describes a single version of the system in terms of
classes and the relations among them, as is described in paragraph 6.1.3.
If architectural clustering only uses information from version Vn (the last one), it uses
clustering to construct an architectural model An from Mn. This is illustrated on the left side of
Figure 31.
If architectural clustering uses information from for example versions V1 and Vn, the models
M1 and Mn are combined, producing a model M1,n. The construction of the architectural
model An is then based on M1,n. This is illustrated on the right side of Figure 31. This
paragraph describes two methods for combining information from multiple versions.

V1 Vn...

Mn

An

V2Versions:

Models:

Architecture:

V1 Vn...

M1
Mn

An

V2

M1,n

Figure 31: Architectural clustering based on a single (left)

and multiple versions (right)

Before the architectural-clustering workbench can be described further, it must be described
how two models of system-versions are combined. Recall that these models consist of
classes and structural relations among these classes. In the remainder of this paragraph
these two are addressed separately, starting with the classes.

Combining the classes
The first question is which classes are selected from the two models. Let us assume that one
of the models represents the version of which the architecture is reconstructed, Vn. A
decomposition that contains the united sets of classes of Vn and some version is likely to
contain classes that are no longer present in Vn. Because this shows unexpected classes to
maintainers we argue that this must be avoided.

On the other hand, a decomposition of Vn that only contains the classes that were also
present in the other version will not have much value either, because it is likely to leave some
of the classes of Vn unclassified.

We therefore decided that the produced decomposition must contain the classes in Vn and no
more.

Combining the relations
The second question is how the structural information of the two models is combined. From
the preceding discussion it is obvious that only the classes present in the last version must be
clustered. This means that information from other versions must be incorporated through the
relationships. Set operations like union and intersection can be used to combine sets, but
their use leads to unexpected results, as is demonstrated below.

Let C be the set of all classes of all versions, and T the set of relationship-types between the
classes. As described earlier in this chapter, multiple instances of a relationship may be
present between two classes. Therefore each relation has a source, target, type and count.
The count value represents the number of instances of the relation. The set of class-relations

 85

R is defined such that it contains each distinct triple of a source, target and type at most once.
Hence, if Í the set of natural numbers R Œ CµCµT µ Í.
We will refer to the third component of R as the type-component, and to the fourth component
as the count-component. An element of R is called a class-relation.

Sets of class-relations can be combined with set operations like union and intersection. Due
to the count-component in R, applying these operations directly to two of these sets leads to
strange results. For example, suppose that a system consists of two classes, x and y, and
that only one relationship-type, say t, is present in the model. Suppose further that two
versions of the system exist, V1 and V2, with sets of class-relations R1 and R2 respectively.
Suppose also that in version V1 n1 instances of relation t exist from x to y, and in version V2
n2 instances (n1∫n2). This gives the class-relation sets R1={(x,y,t,n1)} and R2={(x,y,t,n2)}.
Now R1… R2={(x,y,t,n1)}…{(x,y,t,n2)}=«. However, it is highly unlikely that this represents
the set of class-relations present in both versions because the two versions probably do have
some relations in common. We therefore cannot use the normal set operations to combine
sets of class-relations.

Below two operations to combine sets of class-relations are described that do not have this
problem. They are described using the definitions of C, T and R given earlier in this chapter.
The first operation is class-relations-intersection, which intersects two sets of class-relations.
The second is class-relations-union, which unites two sets of class-relations.

Class-relations-intersection, denoted by …r, is an operation with type RµRØR that gives the
class-relations present in both sets of class-relations, ignoring differences in the count
component. Informally, the class-relations-intersection of two sets of class-relations Ri and Rj
starts by intersecting Ri and Rj with the count-component removed. Next, each tuple of the
result is extended with a count-component that is the minimum of the count-components of
the corresponding tuples in Ri and Rj.
If ni∞nj refers to the minimum of two values ni and nj, the class-relations-intersection of two
sets of class-relations Ri,RjŒR is defined as:

 () () (){ }, , , , , , , , ,i r j i j i i j jR R x y t n n x y t n R x y t n R= ↓ ∈ ∧ ∈∩ (35)

Consider the following example. Suppose that the set of classes C={x1,x2,x3} and the set of
relationship-types T={a}. Further suppose we have two sets of class-relations, namely
R3={(x1,x2,a,3),(x1,x3,a,1)} and R4={(x1,x2,a,1),(x2,x3,a,3)}. Then
R3…r R4={(x1,x2,a,1)}.

Class-relations-union, denoted by »r, is an operation with type RµRØR that gives the class-
relations present in any of the two sets. In general, when uniting sets, two types of elements
can be distinguished: those present in both sets, and those present in one but not in both
sets. The class-relations-union operator treats these two types differently. First, the class-
relations union of two sets of class-relations Ri and Rj calculates the (normal) intersection of
the two sets without the count-component, and adds a count-component to each tuple that is
the maximum of the count-components of the corresponding tuples in Ri and Rj. Second, the
obtained set is extended with the tuples in Ri for which no corresponding tuple in Rj exists
and vice versa.

In order to define the class-relations-union operator more precisely, we need an operator to
test the membership of an element in a subset of R without considering the count-component.
We therefore define the class-relations-membership operator œr. This operator takes an
element (x,y,t,n) of R and a subset RxŒR, and gives either true or false. If Í is the set of
natural numbers, it is defined as:
 () ()(), , , : , , ,r x xx y t n R m x y t m R∈ ⇔ ∃ ∈ ∈` (36)
The class-relations-membership operator gives true if the provided set contains an element
that equals the provided element on the first three components. Otherwise this operator gives

 86

false. For example suppose that we have the sets of classes and relationship-types defined
above and R5={(x1,x2,a,3)}. Then (x1,x2,a,1)œr R5 is true and (x1,x3,a,3)œr R5 is false.

If niÆnj refers to the maximum of two values ni and nj, the class-relations-union of two sets of
class-relations Ri,RjŒR is defined as:

() () (){ }

{ } { }
, , , , , , , , ,i r j i j i i j j

i r j j r i

R R x y t n n x y t n R x y t n R

r R r R r R r R

= ↑ ∈ ∧ ∈

∈ ∈ ∈ ∈

∪

∪ ∪
 (37)

For example, suppose that we have the sets of classes and relationship-types defined earlier
and R6={(x1,x2,a,3)} and R7={(x1,x2,a,1),(x2,x3,a,3)}. Then
R6»r R7={(x1,x2,a,3),(x2,x3,a,3)}.

7.2.2 Workbench architecture
Based on the decisions described in the previous paragraph the architecture of the
architectural-clustering workbench can now be defined. Figure 32 shows a conceptual view of
it. The boxes indicate processing steps and the black arrows directed dataflows.

Assessment

Source-tree
based clustering

Dependency
graph

Decomposition
Similarity

metric

Fact
extraction ClusteringSource

code

Decomposition
editing

Class
information

Expert decomposition

Visualisation

Expert knowledge

Architectural
view

Figure 32: Conceptual view of the workbench

Figure 32 illustrates two typical usage scenarios of the workbench:
1. Automatic generation of a decomposition with clustering (fine dotted blue arrow).
2. Assessment of the clustering result (coarse dotted red arrow).

Both scenarios start with the extraction of facts from the source code. The first scenario
represents the normal process when using clustering to reconstruct an architecture from
source code. In this scenario the dependency graph that was extracted from the source code
is clustered and the result is visualised.

The second scenario is a validation scenario that is used to validate the approach. In this
scenario the clustering result is compared to an expert decomposition. This decomposition is
obtained in two steps. First the classes found during the fact extraction step are organised
according to their location in the source tree. Although our reconstruction approach does not
need this information, in the case of the Océ Controller it is available and not using it would
make the manual construction of the expert decomposition much more labour intensive.
Second, an editor is used to refine the resulting “draft” decomposition. The resulting expert
decomposition is then compared to the clustering result.

Figure 33 shows a process view of the workbench architecture. The rectangles represent
processes and the black arrows directed communication channels. The dotted lines represent
the data flows of the two scenarios discussed above.

 87

MySQL Rigi

Shrimp

MoJo

Bunch

Sniff+ Sniff
Import

RSF
Export

Bunch
Import

Bunch
Export

RSF
Import

Source
code

Export
parameters

Similarity
metricSource-tree

based clustering

Architectural
view

Expert
knowledge

Figure 33: Process view of the workbench

The Sniff+ module extracts the facts from the source code. Because of the large size of the
Océ Controller’s and the experiences in the previous case study (see chapter 5), it is
expected that this is a computation-intensive step. Therefore we decided to store the results
in a database, in this case MySQL [MySQL, 2005a]. The Bunch module implements the
clustering process. During the conversion of the facts into a format Bunch accepts the Bunch
Export module takes several user-specified parameters into account. This is discussed in
more detail in the “Bunch Export, Bunch & Bunch Import” section of this paragraph.

The expert decomposition is obtained in the two steps shown in Figure 32. First, the classes
are organised according to the structure of the source tree. This is implemented in the module
labelled “source-tree based clustering”. We expect this to be a reasonable approximation of
the expert decomposition. In the second step an expert uses Rigi to refine this approximation.

The Shrimp module allows users to browse a decomposition, but without editing possibilities.
The last module, labelled MoJo, implements the comparison of two decompositions to assess
the quality of the clustering result.

The import and export modules contain “glue-logic” that connects the third party applications
to the database. Because of the limitations of the XSLT language encountered in the first
case study, a different language is required. Java [Java, 2005] is chosen because it is a
mature and stable programming language, and because the most important third party
applications used in the workbench (MySQL, Sniff+, Bunch and MoJo) have a Java API.

The next paragraphs describe each of these modules in more detail. Before the actual
modules are discussed, the meta-model used for MySQL is discussed. This model is
discussed separately because it affects all modules.

Meta-model

The model
The meta-model of the workbench is an abstraction of the source code from which the input
for the clustering process is derived. It needs to accommodate the classes and the three
types of structural relations among them that were identified in the “Entity representation &
feature selection” section in paragraph 7.2.1. Since the clustering uses information from
multiple versions of the Océ Controller, the model must accommodate multiple versions.

Based on existing meta-models of architecture reconstruction workbenches32, the meta-model
for the workbench has been defined. Figure 34 shows an ER model [Silberschatz et al, 2002]
of the result. In this figure the rectangles represent (ER) entity-sets, diamonds relationships

32 More precisely, this model is based on the FAMIX [Bär et al, 1999], MeMoJ [Bauer and
Trifu, 2004], Columbus [Columbus, 2003] and HisMo [Ducasse et al 2004] meta-models.

 88

between entity-sets and ellipses attributes. For notational convenience lines are used to
represent one-to-one and one-to-many relationships (the numbers denote the cardinality).

Subsystem

Version

Class

Association

Generalization

Decomposition

History

Dependency

AssV

SsClass

ClassV DepV

GenV

CountCount

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

0..*
0..*

0..*

0..*

0..*
0..*

0..*

0..*
0..*

0..*

0..*

0..*0..*

0..*

0..*

0..*

0..*

0..*

0..* 0..*

1

Figure 34: Clustering workbench meta-model

The entities that are clustered (the classes) are the central component of the meta-model. In
the model a class is associated with certain versions of the system, indicating its presence in
these versions. A set of versions forms a history of a system.

As described in paragraph 7.2.1 three types of relationships between classes are
distinguished:
• Associations
• Generalizations
• Dependencies
In the meta-model these are represented by the corresponding entities. Each relationship is
associated with two classes, and is present in one or more versions. Because multiple
association and dependency relations can exist between two classes, a numeric “count” value
is associated with these relations. An alternative would be to allow duplicate tuples in the
association and dependency relations, but that would increase the space complexity of
instances of the model significantly without adding any information.
The count-value is not relevant for the generalization relationship because by definition only
one such relationship can exist between two classes.

The right side of Figure 34 models decompositions of the analysed system. A decomposition
classifies classes of a certain version of the system. It contains a set of subsystem-trees,
which is modelled by the recursive relation of the subsystem entity. Each subsystem groups a
set of classes.

Relation schemas
Based on the ER model in Figure 34 the schemes of the clustering workbench’s tables are
defined. The left column in Table 19 shows them using the notation [Silberschatz et al, 2002]
introduced. In this notation the underlining indicates primary keys. The right column in Table
19 shows abbreviated names of the relations, which are used in the remainder of this chapter.
For example the Class relation will be referred to as the C relation and the ClassV relation as
CV.

 89

Association (ID, SourceID, DestinationID) A (id,sid,did)
AssV (AssID, VersionID, Count) AV (aid,vid, c)
Class (ID, Name, Scope, SourceFile) C (id,n,s,f)
ClassV (ClassID, VersionID) CV (cid,vid)
Decomposition (ID, Description, BaseVersionID) DC (id,d,bid)
Dependency (ID, FromID, ToID) D (id,fid,tid)
DepV (DependencyID, VersionID, Count) DV (did,vid,c)
Generalization (ID, ParentID, ChildID) G (id,pid,cid)
GenV (GeneralizationID, VersionID) GV (gid,vid)
History (ID, Description) H (id,d)
SsClass (ClassID, SubsystemID) SC (cid,sid)
Subsystem (ID, DecompositionID, ParentID, Name) S (id,did,pid,n)
Version (ID, Description, HistoryIndex, HistoryID) V (id,d,hix,hid)

Table 19: Clustering workbench relation schemes

Notation
Relational algebra [Silberschatz et al, 2002] will be used to refer to the meta-model. This
algebra uses the s, P, » and ´ operators to refer to selection, projection, union and inner
join respectively. To illustrate this we give a few examples:
• svid=5(CV) selects the tuples from the CV relation that have the vid attribute set to 5.
• ÷id (C «C.id=CV.cid svid=5(CV)) takes the inner join of the C relation and a subset of the

CV relation (the tuples with vid=5), and projects the id attribute of the resulting relation.
This expression gives the set of IDs of classes present in version 5.
The C.id=CV.id predicate is called the join condition. If the join condition is omitted a
join is performed on the attributes in the two relations that have the same name.

• aidGsum(c) as d (AV) is an example of an aggregation operation. It gives a relation with two
attributes, aid and d, such that d contains the summation of the AV relation’s c attribute
when this relation is grouped by the aid attribute.

A small subset of tuple relational calculus will also be used. In this notation t[a] denotes the
value of attribute a of tuple t and rœR denotes a tuple r in relation R. For example:
• tœC ⁄ t[id]=7 refers to a tuple t in the C relation of which the id attribute is 7.
• tvœCV ⁄ tv[cid]=4 ⁄ tv[vid]=2 refers to a tuple tv in the CV relation of which the cid

attribute is set to 4 and the vid attribute to 2. This tuple indicates that the class with ID 4
is part of the version with ID 2.

For a more complete description of tuple relational calculus and relational algebra the
interested reader is referred to [Silberschatz et al, 2002].

MySQL
As described in the previous paragraph the database in the workbench stores the facts that
are extracted from the source code and the created decompositions. MySQL is a relational
database that claims to be “the world’s most popular open-source database with over six
million installations” [MySQL, 2005a].
The workbench uses the MySQL database because it is a stable, proven database. MySQL
Connector /J [MySQL, 2005b] is used to interface with the import and export modules.

During the installation MySQL is configured for optimal performance on large databases with
a small number of concurrent clients. To eliminate the performance penalty induced by
transaction support (logging mechanisms, see [Silberschatz et al, 2002]), the import and
export modules do not use transactions. This is possible because only one module is active
simultaneously.

 90

MySQL supports several different storage engines. The workbench uses the MyISAM storage
engine for all tables in the meta-model. This engine is chosen because it is the fastest engine
that provides persistent storage [Lentz, 2004]. Temporary tables are stored with the
MEMORY storage engine, which is even faster than the MyISAM storage engine, but does
not provide persistent storage when MySQL is shut down.

Sniff+ & Sniff Import
In the first case study, Columbus/CAN is used for fact extraction. As is described in the
“Encountered problems” section in paragraph 5.4.3, Columbus/CAN is not able to extract
facts from the complete Océ Controller. Therefore a different fact extractor is required for this
case study. The Sniff+ parser is used in several reverse engineering frameworks and
performs well in various comparisons of reverse engineering tools (see paragraph 3.3.6).
Further, Sniff+ has a Java API that provides access to its parsing results. Therefore it is
decided to use Sniff+ for fact extraction.

In the workbench the Sniff Import module uses the Sniff API to extract facts from the source
code and write these to the database. This API is based on a publish-subscribe model.
Subscribers register classes that contain handler functions for various entity-types. Sniff+
contains a publisher module that calls these methods during the extraction. Examples of such
classes are the SymbolHandler and the ReferenceHandler classes.

Sniff+ identifies entities like classes and methods with an internal identifier. However, this
identifier is not unique across multiple Sniff+ sessions. Because the different versions are
extracted from the source code in separate Sniff+ sessions, a new unique identifier for the
classes is required. The Sniff Import module bases this identifier on the id attribute of the C
relation, which is an automatically generated primary key.

If multiple versions of a system are analysed and one version has already been loaded in the
database, subsequent versions can contain the same classes. During the extraction of these
versions only new classes are added to the C relation. This however requires a unique
identification of the classes. Class-names and scopes do not provide a unique identification
for the classes for two reasons:
• The Océ Controller consists of multiple executables. Because these executables are

compiled separately this allows duplicate class names and scopes to be used.
• Some branches of the source tree are nearly identical copies of other branches.

Examples are stubs, nearly identical test tools, and experimental copies of subsystems
that are stored for future use. In these cases, based on configuration- and make-files, the
build-process selects certain branches of the source-tree. Sniff+ does not take the
configuration- and make-files into account, producing duplicate class-names and scopes.

Within a single version of the Océ Controller a combination of the class-name and the path of
its source-file can uniquely identify classes. Therefore it is decided to use the combination of
the f and n attributes of the C relation to uniquely identify classes during the addition of
classes to the database.

Recall that three types of relationships between the classes are extracted, namely
generalizations, associations and dependencies. Let xa and xb be two classes with database
IDs ia and ib respectively. Then source code constructs are mapped to these relationship
types as follows:
• Generalization: suppose xa inherits from xb. This inheritance leads to a tuple tgœG with

tg[cid]=ia ⁄ tg[pid]=ib.
• Association: suppose xa has a member variable of type xb, or a pointer to type xb. This

leads to a tuple taœA with ta[sid]=ia ⁄ ta[did]=ib ⁄ ta[c]=na, where na is the number
of association-instances from xa to xb.

• Dependency: suppose xa contains a method that refers to a variable of type xb, a method
of xb, or an attribute of xb, such that xa∫xb. This leads to a tuple tdœD with td[fid]=ia ⁄
td[tid]=ib ⁄ td[c]=nd, where nd is the number of dependency-instances from xa to xb.

The GV, AV and DV relations are updated accordingly.

 91

Dependencies from a class to itself are called self-dependencies. Observe that such
dependencies are not extracted from the source code. This is done because self-
dependencies are trivial; any well-designed class exhibits high cohesion and hence self-
dependencies [Sommerville, 2004]. Furthermore, self-dependencies are not relevant for the
clustering because they do not relate two different entities.

Associations of a class to itself are called self-associations. Unlike self-dependencies they are
extracted from the source code because of their relevance at the architectural level; they
indicate recursive object structures. Like self-dependencies, self-associations are not relevant
for the clustering process.

Bunch Export, Bunch & Bunch Import
The Bunch Export module creates a file containing the module dependency graph (MDG).
Bunch reads the entities to be clustered and the relations between them from this file. After
the clustering process is completed, the Bunch Import module writes the produced
decomposition to the database. Note that the MDG-file is not limited to the dependency
relationship type, but can contain any kind of relationship.

Bunch Export
Each line in the MDG-file written by the Bunch Export module specifies a single edge in the
module dependency graph. Together, the lines in the MDG-file specify the bag of edges E of
the module dependency graph G=(N,E), where N represents the set of nodes (the classes).
N is not specified explicitly in the MDG-file, but implicitly by E.
Let x1,x2œN be two classes. A line in the MDG-file in the following format represents a
relation from x1 to x2 with weight w [Mitchell, 2002]:

x1 x2 w

The workbench consecutively writes the contributions of the associations, generalizations and
dependencies to the MDG-file to obtain E. A mapping between the meta-model of the
workbench and these three contributions, Ea, Eg and Ed respectively is defined below.

Bunch Export: queries for one version
Let v be the ID of the version that must be clustered. The Ea(v) relation contains the
contribution of the associations to E for version v. It is obtained by joining relation A with the
subset of the AV relation that is related to version v. More precisely, Ea(v) is calculated by
joining the tuples in A with sid∫did to the tuples in AV with vid=v. Tuples in A with sid=did
(self-associations) are removed because Bunch cannot handle edges that start and end in the
same node. Because such relations have no effect on the clustering, this does not affect the
clustering result. Finally, a projection selects the appropriate attributes:

() () ()(), ,

if
with

if

a

a

a

a sid did w sid did id aid vid v

a w c

a w c

E v A AV

w c p p

w p p

σ σ≠ = =← Π

= × ¬
 =

´

 (38)

In (38) pc is the user-specified parameter described in paragraph 7.2.1 that specifies if the
number of instances, or just the presence of a relationship between two classes must be
considered. Further, pwa, is a user-specified parameter that defines the weight of association
relations (see paragraph 7.2.1 also). Observe that the edges point from the child class to its
parent. This direction is chosen because the child depends on the parent and not the other
way around.

 92

The Eg(v) relation contains the contribution of the generalizations to E for the version
identified by v. It is obtained in a similar way as Ea(v), namely by selecting the subset of
relation GV that is related to the version v identifies, and joining the resulting relation with the
G relation:
 () ()(), ,

wgg cid pid p id gid vid vE v G GVσ= =← Π ´ (39)

GV has no c attribute because by definition only a single generalization relation can exist
between two classes. Analogue to pwa, pwg is a user-defined parameter that specifies the
weight of generalization relations.

The Ed(v) relation contains the contribution of the dependencies to E for the version identified
by v. The calculation of this relation is slightly more complex than that of the previous
relations. By our definition of the relationship types, an association from class x1 to class x2
also implies a dependency from x1 to x2. A similar argument can be held for generalizations: If
x1 inherits from x2, x1 is likely to use methods or attributes of x2. Therefore this generalization
usually leads to a dependency from x1 to x2.
[Booch et al, 1999] state that such redundant dependencies can be omitted from UML models
because associations and generalizations imply a dependency. To our knowledge no work
has been published on how the omission of these relations affects the output of architectural
clustering. We therefore define a user-specified boolean parameter pi (i for ignore) such that:
• piªfalse fl Eg(v) includes all dependencies in the version.
• piªtrue fl a dependency d is only included in Eg(v) if

o Ea(v) contains no association a with a[sid]= d[fid] ⁄ a[did]= d[tid] and
o Eg(v) contains no generalization g with g[cid]= d[fid] ⁄ g[pid]= d[tid].

In the case piªfalse, the Ed(v) relation is obtained by joining the D relation with the subset of
the DV relation that is related to the version identified by v, similar to the calculation of Ea(v)
and Eg(v). However, if piªtrue, some dependencies must be ignored. This is achieved by
subtracting the sets of associations and generalizations from the set of dependencies.
If pwd is a user-defined parameter that specifies the weight of dependency relations, analogue
to pwa, Ed(v) is defined as:

() ()()

()

()

()
()()

()()
()()

, ,

,

 as , as

 as , as

'

if
with

if

' if

'

' if

d

d

d

d fid tid w id did vid v

d w c

d w c

d i

fid tid d

d
d sid fid did tid a i

cid fid pid tid g

E v D DV

w c p p

w p p

E v p

E v
E v

E v E v p

E v

σ= =← Π

= × ¬
 =

 ¬

 Π − ← Π − Π

´

´

 (40)

In (40) the Ed’(v) relation is obtained by joining the D relation with the subset of the DV
relation that is related to the version v identifies. For the case piªfalse, Ed(v) equals Ed’(v).
For the case piªtrue, Ed(v) only contains tuples in Ed’(v) for which no corresponding tuple in
Ea(v) or Eg(v) exists. This is calculated by projecting the fid and tid attributes of Ed’(v), and
subtracting the projections of the sid and did attributes of Ea(v), as well as that of the cid
and pid attributes of Eg(v). The resulting set of tuples with schema (fid,tid) is joined with
Ed’(v) to obtain the c attribute.

The translation of the expressions in (38), (39) and (40) into SQL queries is trivial and is
omitted from this thesis.

 93

Bunch Export: queries for intersection of versions
Class-relations from multiple versions can be combined with the class-relations-intersection
…r and class-relations-union »r operators defined in paragraph 7.2.1. In both cases the
contributions of the associations, generalisations and dependencies are written to MDG-file
consecutively. This is equivalent to the definitions in paragraph 7.2.1 because these three
sets are disjoint (they have a different type attribute).

The class-relations-intersection operator …r gives the relations present in both versions and is
implemented with a set of SQL queries. Recall that according to (35), Ri…r Rj consists of the
tuples (x,y,t,c) for which a pair of tuples exists in the sets of class-relations Ri and Rj that are
equal to each other on the first three components. The c component of the resulting tuples is
set to the minimum value of the c component of the two corresponding tuples in Ri and Rj.

The implementation of the class-relations-intersection operator is based on the queries for
one version. Since all three relationship-types are treated in the same way we only describe
the implementation for the associations here. This implementation is based on the Ea(v)
relation (38) defines. Because the implementation handles each relationship-type separately
this relation has the schema (sid,did,c).
Let u and v be the IDs of the two versions of which the class-relations-intersection is
calculated. The implementation starts with projecting the sid and did attributes of Ea(v) and
Ea(u) in order to remove the c attribute. Next the resulting relations are intersected to obtain
the relation Ei,a’(u,v), which contains the associations present in both versions. Then the
implementation obtains the minimum value of the count component for every association.
This is calculated by uniting Ea(v) and Ea(u), grouping the resulting tuples on {sid,did}, and
selecting the tuple with the minimum value of the c attribute of each group. The result is
joined with Ei,a’(u,v) to select only those associations that are present in both Ea(v) and
Ea(u).

Using the definition of Ea(u) and Ea(v) in (38), the contribution of the associations to the
class-relations-intersection Ei,a(u,v) of two versions u and v is defined as:

() ()() ()()
() () () ()()() ()

, , ,

, , min

' ,

, ' ,

i a sid did a sid did a

i a sid did a a ac

E u v E u E v

E u v E u E v E u v

← Π ∩ Π

← ∪G ´
 (41)

Ei,g(u,v) and Ei,d(u,v) are calculated likewise for the generalization and dependency
relations respectively.

Bunch Export: queries for union of versions
The class-relations-union operator »r gives the relations present any of the two versions and
is implemented with a set of SQL queries. (37) defines the »r operator as the union of three
subsets. Let s1, s2 and s3 be these subsets, numbered ascending from top to bottom and left
to right:
• Subset s1 is defined as the tuples (x,y,t,c) for which a pair of tuples exists in Ri and Rj

that are equal to each other on the first three components. The c component of the tuple
in s1 is set to the maximum of the c components of the corresponding tuples in Ri and Rj.

• Subset s2 is defined as the tuples (x,y,t,c) from Ri for which no tuple (x,y,t,n) exists in
Rj (for any nœÍ).

• Subset s3 is obtained in the same way as s2, but with Ri and Rj exchanged.
Observe that s1, s2 and s3 are disjoint by definition.

Similar to the implementation of the previous operator the implementation of the class-
relations-union operator handles each relationship-type separately. Because s1, s2 and s3 are
disjoint sets (without duplicates of course) that are united to get the result, taking the
maximum can after the union instead of before it does not affect the result. Let w and v be the
IDs of the versions of which the class-relations-union is calculated. The implementation unites

 94

Ea(w) and Ea(v), groups the result on {sid,did} and takes the tuple with the highest value of
the c attribute of each group. This produces the Eu,a(w,v) relation, which contains the
contribution of the associations to the class-relations-union of version w and v:
 () () () ()(), , max, u a sid did a acE w v E w E v← ∪G (42)

Eu,g(w,v) and Eu,d(w,v) are calculated likewise for the generalization and dependency
relations respectively.

Clustering the MDG
After the Bunch Export module created the MDG-file, Bunch clusters it. For the experiments
that showed the quality of the decompositions produced by Bunch, [Shokoufandeh et al,
2004] used the default settings. The architectural clustering workbench does this too, with one
exception. In the workbench, Bunch is configured to generate “tree format” output. Activating
this setting does not affect the clustering itself, but only the format of the output. If a tree
format is chosen the complete dendrogram, instead of just one slice, is written to the output-
file [Mitchell, 2002]. This gives a hierarchical decomposition, instead of a partitioning. If no
tree format is chosen each output file contains a slice of the dendrogram and the output files
together contain the complete dendrogram.

Bunch Import
The Bunch Import module reads the clustering result from the output-file written by Bunch.
For each cluster defined in this file a tuple is created in the S relation. The classes and
clusters placed within each cluster are handled as follows:
• For each class with ID x in a cluster with ID s a tuple t is added to the SC relation with

t[cid]=x ⁄ t[sid]=s. This places the class in the cluster.
• For each cluster with ID s’ in a cluster with ID s the tuple t in the S relation with t[id]=s’

is updated such that t[pid]:=s. This makes the cluster with ID s’ a child of the cluster
with ID s.

Recall that in the MDG-file the set of vertices of the module dependency graph is represented
implicitly by the set of edges. However, some classes in the system version of which the
architecture is reconstructed may not be involved in any association, generalization or
dependency relation at all, for example classes that only write a configuration file. Due to the
implicit definition of the vertices the clustering algorithm does not classify these classes. If
such unclassified classes exist, the Bunch Import module creates a cluster in the root of the
decomposition that contains the unclassified classes. This is called the “unconnected classes”
subsystem.

MoJo
This module implements the assessment of the clustering output. This is achieved by
converting two hierarchical decompositions into two sets of partitionings. This produces a
partitioning for each level of the hierarchical decomposition. Next, the MoJoQuality and
EdgeMoJo metrics are used to compare each pair of partitionings of the same level.
Paragraph 6.3.2 describes the conversion process and the two metrics, and paragraph 7.2.1
the reasons for choosing this approach.

The MoJo module implements both the conversion into partitionings and the two metrics,
using the implementation of [Tzerpos, 2005]. The decompositions are extracted from the
database with SQL queries.

The conversion of the hierarchical decompositions into partitionings handles each of the two
decompositions separately. Recall that in this process each level of the decomposition is
handled separately (level is defined in paragraph 6.3.2). If l is the level considered in the
current iteration, this iteration assigns all classes in a cluster with a level higher than l to the
parent of this cluster at level l. Each iteration produces a decomposition consisting of the
classes and the subsystem they are placed in. For a more complete description the reader is
referred to paragraph 6.3.2. This paragraph describes the implementation of the approach.

 95

Before a hierarchical decomposition is converted to a partitioning, a temporary relation TS is
created with the schema (subsystemid, level, idAtlevel). The attributes of this relation will
be referred to with the bold parts of their names. For each subsystem in the decomposition a
tuple exists in TS. For each tuple in TS the sid attribute represents the ID of the subsystem in
the S relation, and the l attribute the level of the subsystem. The idl attribute represents the
id of the subsystem at level l or less that contains the entities in the subsystem sid identifies.
This is explained further in the algorithm description given below.

Let d be the ID of the decomposition that is converted. The algorithm starts with an
initialisation step, in which for each tuple sœ S with s[did]=d a tuple t is added to TS with
t[sid]=t[idl]=s[id] and t[l]=the level of subsystem s.
Next, the algorithm iterates over the levels of the decomposition in descending order (starting
with the highest level). Level 0 is excluded because it is trivial; all classes are part of the
application. For each level l (l>0) two actions are performed in the order shown below:
1. A partitioning is exported to an RSF-file. In this partitioning the classes are not placed in

the subsystem identified by TS[sid], but in the subsystem identified by TS[idl].
2. Every tuple tœTS with t[l]=l is updated such that t[idl] is set to the ID of the parent of

the subsystem identified by the old value of t[idl]. More precisely, for a tuple sœS with
s[id]=t[idl] (s refers to the subsystem under consideration), t[idl]:=s[pid] ⁄
t[l]:=t[l]-1.

The above algorithm converts the hierarchical decomposition into a set of partitionings. The
MoJo module applies this procedure to both decompositions. Usually these are the clustering
result and the expert decomposition. If the two decompositions have a different number of
levels, the deepest level of the shallower decomposition is copied.

Next, the set of relations is exported to an RSF-file and the MoJo implementation of [Tzerpos,
2005] is used to calculate the MoJoQuality and EdgeMoJo values for each level. If L is the
number of partitionings after the above procedure for two hierarchical decompositions A and
B, and al and bl are two partitionings obtained this way for level l (1§l§L), this procedure
compares al and bl. For each value of l the EdgeMoJo implementation starts with the
calculation of MoJo(al,bl). Next, the additional cost of the edges and MoJoQuality(al,bl)
are calculated. This produces two vectors EM=(em1,…,emL) and MQ=(mq1,…,mqL) that
contain the EdgeMoJo and MoJoQuality values respectively for the different levels. As [Shtern
and Tzerpos, 2004] suggested the workbench uses a linear weighting schema for the levels.
Therefore, MoJoQuality(A,B) and EdgeMoJo(A,B) are obtained with:

 () ()2 2

1 1

1 1, ,
L L

l l
l l

MoJoQuality A B mq EdgeMoJo A B em
L L= =

 = × = ×

∑ ∑ (43)

The computational complexity of the algorithm to calculate MoJo(al,bl) for two partitions al
and bl, is O(n·log n + (|al|+| bl|)·|al|·|bl|), where n is the number of classes that are
clustered and |al| and |bl| the number of clusters in al and bl respectively [Wen and Tzerpos,
2003]. [Wen and Tzerpos, 2004a] do not describe the algorithm used to calculate the
additional cost of the edges and the computational complexity of this algorithm.

Shrimp & RSF Export
The workbench uses Shrimp33 to visualise the decompositions. Shrimp is chosen because it
is designed to browse through large hierarchical information spaces, such as decompositions
of large systems. The RSF Export module uses SQL queries to write a decomposition to a
structured RSF-file, which Shrimp then reads. This file contains the classes of a single
version, and the relations stored in the database for this version.

33 For more information about Shrimp the reader is referred to paragraph 3.5.1.

 96

Figure 35 shows a view of the static structure of version 8a of the Océ Controller that is
created with Shrimp. In this view the small squares represent classes and the arrows
relationships between the classes. All 2.661 classes are placed in a single subsystem. Three
types of relations are shown: associations (1.818, in red), generalizations (2.215, in blue) and
dependencies (10.663, in green). This view is a typical example of the views obtained when
converting the facts extracted from the source code to an architectural view without defining
higher-level abstractions. Because of the large number of classes and relations shown this
view gives no insight at all in the structure of the Océ Controller.

Figure 35: Initial unstructured view of the Océ Controller

Figure 36: View of the Océ Controller based on association relations

 97

Figure 36 shows a view of the static structure of the Océ Controller in which only the
association relations are shown, in this case using a spring-layout. The arrows point from the
source to the destination of the associations. Observe that several groups of related classes
can be distinguished. This confirms that the association relations can be used to group the
classes.

Figure 37 shows two other views of the Océ Controller that are also based on a spring-layout.
On the left side a view with generalization relations is shown. The arrows point from the child
to the parent class. Observe that several clusters can be distinguished here also.
On the right side a view obtained when applying a spring layout to the dependency relations
is shown. The edges have been omitted here because they obfuscate the view too much.
Observe that in this view the clusters are smaller than in the other views. The reason for this
is that there are much more dependencies than associations or generalizations, which leads
graph with a higher connectivity.

Figure 37: Views of the Océ Controller based on generalization (left)
and dependency relations (right)

Source-tree based clustering
The module labelled “source-tree based clustering” (STBC) is needed for validation purposes
only. It creates a decomposition for a single version based on the structure of the source tree.
This decomposition is used as a starting point for the expert decomposition, which in turn is
used to determine the quality of the clustering result.
The algorithm for the construction of this decomposition is based on the assumption that
classes that are defined in source-files in the same directory belong together. The resulting
clusters are hierarchically related by their location in the source tree. Based on approaches
reported in literature34 we expect this to be a good starting point for refinement by an expert.

The source tree of the Océ Controller contains both the source code and the documentation.
If only source-files are considered this tree contains many empty directories and directories
with a single subdirectory. If every directory is converted into a subsystem this is expected to
lead to a poor quality decomposition because such directories do not add any structural
information. Therefore they must be ignored during the construction of the decomposition.
This is achieved by considering the source tree as an abstract tree, reducing it, and using the
result to construct a decomposition.

The STBC module creates a directed graph G=(Nc » Nd, E) that represents the source tree,
where E represents the set of edges and Nc » Nd the set of nodes. Nc represents the set of
classes present in the version of which the architecture is reconstructed and Nd the set of
distinct directories where classes in Nc are defined. Since empty directories do not define
classes this definition of Nd filters out empty directories.
E contains an edge from node na to nb (naœ Nd, nbœ Nc » Nd) if and only if directory na
contains nb. The latter can be a directory or a class. If G has no single root node a root node

34 More specific, we refer to [Choi and Scacchi, 1990], [Tzerpos and Holt, 2000] and
[Demeyer, 2004].

 98

nr is created, E is extended with an edge from nr to every node in Nd that has no parent, and
nr is added to Nd. Observe that Nd contains the interior nodes and the root node, and Nc
contains the leaf nodes of the tree.

After the tree has been constructed, the algorithm reduces it by removing all nodes ny from Nd
that have a parent node nx and a single child node nz that is not a leaf node (so nzœNd)35.
The edges from nx to ny, and from ny to nz are removed from E, and an edge from nx to nz is
added to it.
This is repeated until no more nodes can be removed from the tree. Then, for every interior
node in the tree, a cluster is created. Each cluster created this way contains the classes and
clusters that are represented by child nodes of the node representing the cluster.

After the algorithm has terminated, a subsystem is created in the S relation for every interior
node ni of the tree (so niœ Nd\{nr}, nr refers to the root node). Let ti be the tuple that defines
a subsystem. In case ni is not a direct child of the root node, ti[pid] is set to the value of the
id attribute of the tuple in S that represents the parent node of ni. In case ni is a direct child of
the root node, ti[pid] is set to zero. For every leaf node nc of the tree (so ncœ Nc) a tuple tc is
added to the SC relation such that tc[cid] refers to the class represented by nc and tc[sid] to
the tuple in S that represents the parent node of nc.

On the left side, Figure 38 shows an example of G. The large circles represent nodes in Nd
(directories), with their name placed inside the circle. The smaller dots represent nodes in Nc
(classes). The edges represent the containment of a class or directory in another directory.
The right of Figure 38 shows G after the reduction algorithm has terminated. Observe that the
B, D and H nodes have been removed from the tree.

A

Q R

J

F

B D

H

PI

A

Q R

J

F

PI

Figure 38: Example source-tree before (left) and after the reduction (right).

Rigi & RSF Import
An expert must refine the decompositions produced by the “source-tree based clustering”
module. This is done with Rigi, which is described in paragraph 3.3.3.

Rigi reads the RSF-file written by the RSF Export module. Experts on the architecture then
use Rigi to improve the decomposition the “source-tree based clustering” module produced,
after which the RSF Import module writes the resulting RSF-file back to the database.

35 The “no leaf node” condition is necessary for cases where only one class is defined in a
directory. If a directory, say d, contains several of these directories, omitting this condition
causes several classes to be placed in the cluster representing d. This is not desired because
it removes too much structural information.

 99

7.3 Implementation validation & parameter tuning
Before the workbench could be used to reconstruct the architecture of the Océ Controller it
had to be ensured that its implementation was correct. Further, the proper values of the user-
specified parameters had to be determined. As paragraph 7.3.2 describes we determined a
set of parameter values that produced the best clusterings for two subsystems of the Océ
Controller. These values were then used to cluster the complete Océ Controller. Instead of
using the two subsystems we also attempted to use a specially built guinea-pig application.
However, difficulties obtaining the expert decomposition to which the clustering result is
compared forced us to abandon this route and use the two subsystems.

7.3.1 Validation
The validation of the implementation of the architectural-clustering workbench amounts to
checking that the used third-party applications perform the expected functions and that the
import and export modules apply the proper transformations. The separate modules are
tested individually, or together with a few closely related modules.

Sniff and Sniff Import
The Sniff+ and Sniff Import module are tested by extracting the meta-model from the source
code of several small programs with a known structure. The produced meta-model is then
compared to the expected model. This procedure has been applied to two programs:
• The application used to validate the pattern detection prototype, which is described in

paragraph 5.3.
• A small application based on the blackboard pattern [Buschmann et al, 1999]. This

application is designed to use a wide range of source-code constructs for the association,
generalization and dependency relations. This application is called the simple-blackboard
application and is described in paragraph 7.3.2.

The tests show that all classes and class-relations are extracted from the source code, with
one exception: associations created with C++ templates [Stroustrup, 1997]. Although Sniff+
can handle their use and the Sniff API has facilities for them, they are not exported. The Sniff
API documentation states that template support will be added in a future version of Sniff+.
However, because templates are not used very often in the Océ Controller this has little
impact on the clustering result.

Bunch Export
To test the implementation of the Bunch Export module an MDG-file for the simple-blackboard
application is exported. This application is described in the corresponding section in
paragraph 7.3.2. Recall that five different user-specified parameters are defined that all
influence the exported information:
• pwa, pwg and pwd: numeric parameters that specify the weight of association,

generalization and dependency relations respectively.
• pc and pi: boolean parameters that reduce the amount of information that is written to the

MDG-file. The pc parameter specifies whether the instance-count or just the presence of
class-relations must be written to the MDG-file. The pi parameter specifies whether or not
redundant dependencies must be omitted from the MDG-file.

The Bunch Export module is tested using three distinct values for the numeric parameters,
and all possible combinations of the boolean parameters. The numeric parameters do not
affect the control flow of the Bunch Export module but are written to the output directly.
Therefore it is not necessary to test different combinations of the numeric parameters.

The above method is applied to the Bunch Export module, using the test application of the
pattern detection prototype (see paragraph 5.3) as input. This application contains all types of
relations identified in the meta-model. Further, it contains enough classes to be realistic, but
not too many to make manual assessment of the output impossible.

 100

In all cases the Bunch Export module wrote the same information to the MDG-file as was
calculated manually.

Bunch, Bunch Import, RSF Export & Shrimp
Recall that the workbench uses an existing implementation of Bunch [Bunch, 2005], which
has been used in various case studies. Therefore the Bunch module is only tested
superficially by applying it to the simple-blackboard application and the test application for the
pattern detection prototype. The produced decompositions are inspected visually with Shrimp.
This is done with various values of the user-specified parameters. In all cases the produced
result seemed correct.

Because these tests use Shrimp, the Bunch Import, RSF Export and Shrimp modules are also
tested in this process. These three modules are tested further through the application of small
test-inputs that (non-exhaustively) enumerate several input combinations. The output
matched the expected result. Since the Bunch Import, RSF Export and Shrimp modules are
relatively simple, this is sufficient to assess their correctness with sufficient confidence.

MoJo
Recall that the implementation of the MoJo module uses an existing implementation of the
similarity metrics that was obtained from [Tzerpos, 2005]. This implementation is used in
several case studies, including the ones described in [Wen and Tzerpos, 2004a]. We
therefore tested this implementation only superficially. For several small, manually
constructed decompositions the output equalled the values found by manual calculation of the
metrics.

The implementation of the transformation of hierarchical decompositions into partitionings is
tested by applying it to several decompositions and checking the resulting partitionings
manually. Several decompositions Bunch produced for the test application of the pattern
detection prototype served as input. The partitionings matched the expected result.

Source-tree based clustering
The source-tree based clustering module is tested by applying it to Grizzly (see paragraph
1.2). Grizzly is chosen because its source-tree is sufficiently complex to allow a realistic test,
yet small enough to allow manual application of the algorithm.

The output of the source-tree based clustering module matched the decomposition that was
produced manually.

RSF Export, Rigi, RSF Import
The RSF Export, Rigi and RSF Import modules are also tested by applying them to an
application and checking the results manually. The simple-blackboard application is used as
input because its size is sufficient for a realistic test, but manual assessment of the output is
also possible. In these tests all three modules behaved as expected.

7.3.2 Parameter tuning
During the transformation of the meta-model into the module dependency graph, five user-
specified parameters are used, as is described in paragraph 7.2.2. Summarizing, these
parameters are:
• pwa, pwg and pwd: numeric parameters that specify the weight of association,

generalization and dependency relations respectively.
• pc and pi: boolean parameters that reduce the amount of information that is written to the

MDG-file. The pc parameter specifies if the instance-count or just the presence of class-
relations must be written to the MDG-file. The pi parameter specifies whether or not
redundant dependencies must be omitted from the MDG-file.

We call the tuple (pwa,pwg,pwp,pc,pi) a parameter-tuple.

 101

Since these parameters directly affect the input of the clustering process, they are likely to
affect the quality of its output too. To our knowledge no work has been published that
describes the effect of these parameters on the clustering result in the context of object-
oriented software.

As described in paragraph 1.2, the Océ Controller is relatively large. Therefore clustering its
module dependency graph is relatively time consuming; on the platform described in Table 27
clustering the MDG-file of the most recent version once takes about eighteen minutes
(including Bunch Export and Import). The following MoJo calculation takes about five minutes.
Therefore, the number of tested parameter-tuples must be limited significantly. Besides this,
the numeric parameters (that have no upper bound) make it impossible to test all different
parameter-tuples anyway.

We address this issue with practical approach. First, we search for the set of near-optimal
parameters for two relatively small subsystems of the Océ Controller. This allows a
reasonably large area of the total search space to be investigated. Next, the parameter-tuples
that lead to the best clustering for these subsystems are used to cluster the complete Océ
Controller. In this process the clustering result is compared to an expert decomposition with
the EdgeMoJo metric. Because the clustering algorithm Bunch uses is non-deterministic, the
average EdgeMoJo value of ten different clusterings is calculated for each parameter-tuple.

Instead of using subsystems of the Océ Controller to reduce the number of parameter-tuples,
a specially developed guinea-pig application can also be used. Because the Océ Controller is
based on the blackboard architectural style (see paragraph 2.4.3) a simple blackboard-based
application was built and it was attempted to find the set of near-optimal parameter-tuples for
it. Recall that the clustering result is compared to the result of a manual decomposition. We
attempted to obtain this “expert” decomposition by asking ten experienced architects and
designers to reconstruct an architecture for the simple-blackboard application. Surprisingly,
this led to ten different decompositions. Because insufficient time was available to devise a
method for combining these decompositions into one, it was decided to use subsystems of
the Océ Controller instead. The next section describes the “simple-blackboard” application
and the experiment to obtain an expert decomposition for it.

Simple-blackboard application
Ten experienced software architects and designers were asked to reconstruct an architecture
for a specially-built guinea-pig application. They based this on information that is similar to the
information available in practical architecture-reconstruction situations:
• A class diagram showing the static structure of the program. In practice, such a diagram

is extracted from the source code, either manually or with tools like Sniff+. In practice only
some of the classes will have meaningful names. In our experiment this is mimicked by
giving about half the classes meaningful names that reflect their roles in the application.
In the class-diagram the classes are positioned such that the number of edge crossings in
minimised, mimicking the application of an edge-crossing minimization algorithm to the
extracted diagram.

• An (incomplete) description of the dynamic behaviour. In practice, the architects would
extract this information from the source code. Because of time limitations this is explained
to them verbally in our experiment.

• Answers to questions of the architects on specific details about the application were
also given verbally. This mimics the iterative process [Demeyer et al, 1998] described,
where the reconstructor obtains information about the software by analysing how specific
aspects are handled.

Obviously the placement of the classes in the diagram can influence how the architects
decompose the application. Using a different diagram for each architect with randomly placed
classes could circumvent this. However, with these diagrams it would be much harder to
explain the dynamic behaviour to the architects. Due to time limitations this was not
considered possible. However, the architects were told explicitly that they should not let the
placement of the classes influence their decisions. While creating their decomposition several
architects made small tree-like diagrams to visualise possible decompositions that had a
completely different structure than the provided class diagram. So although it is possible that

 102

the class diagram’s structure influenced the architects, we feel that the chosen approach
sufficiently matches a practical architecture reconstruction case.

Figure 39 shows the class diagram of the simple-blackboard application. The diagram uses
the static-structure notation of UML [Booch et al, 1999]. To simplify the diagram some
dependencies have been omitted. More precisely, dependencies from class ca to cb for which:
• an association from ca to cb exists or
• ca inherits from cb
are omitted from the diagram, as [Booch et al, 1999] suggested.

+inspect()
+update()
+getContent()
+setContent(in content)

-solutions
-controlData

Blackboard

+updateBlackboard()
+execCondition()
+execAction()

KnowledgeSource

+loop()
+nextSource()
+AttachKS()
+DetachKS()

Control

+getType()
+setType(in type)

BlackboardContent 10..1

1
0..1

1 0..*

1

0..1

+execCondition()
+execAction()

KSA

+check()
+doAction()

A1

+extraCheck()
+prepareAction()

A2

1
1

1
0..1

10..1

+execCondition()
+ececAction()

KSB

+execCondition()
+execAction()

KSC

+getItem(in key)
+getCount()
+insert(in item)
+remove(in key)

B1

+Key
+Value

B2

1 0..*

11

1

1

+calculate()

C3

+initialize()
+execute(in data)
+finalize()

C1

+process(in data)

C2

10..*

+value
Content1

+buffer
Content2

Figure 39: Simple-blackboard application class diagram

The application implements a simple data processing application that has been designed with
extensibility in mind. Because the future interactions among the processing units are hard to
predict, the architecture is based on the blackboard architectural style [Buschmann et al,
1999]. Some of the architects were not very familiar with this style. In those cases it was
explained to them first. The application has three data processing classes, KSA, KSB and
KSC. KSA reads a file from disk and places its content on the blackboard in a Content1 class.
KSA uses two other classes, A1 and A2. KSB is triggered by the presence of Content1 data
on the blackboard and uses this data as input for a set of complicated calculations. The
results of these are placed on the blackboard in a Content2 class. KSB uses two other
classes, B1 and B2 to perform the calculations. KSC is triggered by the presence of the
Content2 class on the blackboard. This data is used as input for a complicated calculation, a
part of which is inherited from the C3 class (reuse through inheritance). The results of this
calculation are written to disk by KSC.

To prevent the triviality of the application from influencing the decomposition, the architects
were told that each class represents a significant size, and that the diagram shows only public
properties and methods, not the private ones. Further, they were told that they would not have
to worry about limitations with respect to the number of human resources available.

 103

Surprisingly, all architects produced a different decomposition. These are described in
Appendix 5. To our knowledge no work has been published on the merging of a set of
architectural decompositions. We have experimented with an approach that assigns an
“attractive force” to each pair of classes that specifies their affinity. These forces are based on
the decompositions produced by the architects. If an architect places two classes in the same
subsystem this creates an attractive force between them. The decompositions are combined
by summing the total forces for each pair of classes in the set of decompositions. In our
experiments the dominant (i.e. strongest) forces determine the final combined decomposition,
but a mechanism based on spring-layouts might be preferable. If architects have created a
hierarchical decomposition, the attractive force between two classes increases with the
number of levels on which the two classes are placed in the same subsystem. Because of
time limitations we were not able to investigate the combining of decompositions further and
decided to leave this as future work.

Besides the ten decompositions, Appendix 5 also describes the reasons that led to them. The
majority of the architects based their decomposition on functional criteria. The architects that
did consider the class-relations all considered dependencies to be the least important. The
large number of dependencies in Figure 39 probably caused this. Inheritance was considered
an important, but not compulsory indicator for a subsystem boundary. For the clustering
parameters this suggests that the weight of inheritance relations (pwg) should be relatively
low. The architects attempted to keep associations, especially the compositions, within a
single subsystem. For the clustering process this suggests that the associations relations
should have a relatively high weight (pwa).

Because of time limitations, and because an expert decomposition of the Océ Controller
needs to be constructed anyway to assess the quality of the clustering result, it was decided
not to use the simple-blackboard application to find a set of near-optimal parameters for the
clustering process. Instead, two subsystems of the Océ Controller are used for this purpose.
The question of how to merge a set of decompositions is left as future work.

Grizzly & Rip Worker
Instead of the simple-blackboard application, the Grizzly and RIP Worker subsystems
described in paragraph 1.2 are used to determine a set of near-optimal parameter-tuples.
These are then used to cluster the complete Océ Controller.
The expert decompositions of the Grizzly and RIP Worker subsystems are constructed with
the two-step process described in paragraph 7.2.2. First, the “source-tree based clustering”
module is used to create an approximation of the expert decomposition. Next, the architecture
and design documents, together with information from the original developers, are used to
refine this decomposition. The input of the original developers was especially valuable to
classify classes in the implementation that are not mentioned in the design documentation.

Because it is not possible to enumerate all possible parameter-tuples, a subset must be
selected. Recall that three of the five parameters are numeric and two of them are booleans.
For each of the numeric parameters the search space is initially set to {0,1,2,3,4,5,6}. This
gives a total of 7µ7µ7µ2µ2=1372 combinations to investigate, each requiring ten executions
of the clustering algorithm. Because combinations containing zero for all three numeric
parameters do not export any information to the MDG-file these are not used. This leaves
1368 combinations to test.

To speed up the calculations AutoIt [AutoIt, 2005] scripts have been used to automate the
clustering process. For every different parameter-tuple these scripts use the Bunch Exporter
module to create an MDG-file. Next they repeat the following four steps ten times:
1. Cluster the MDG-file with Bunch.
2. Write the decomposition to the database with the Bunch Importer module.
3. Calculate the MoJoQuality and EdgeMoJo values with the MoJo module. This module

writes these values to a file, which is used to determine the quality of the clustering for
each parameter-tuple.

4. Remove the decomposition written in step 2 from the database.

 104

In the remainder of this chapter the cycle of exporting the MDG-file once and the tenfold
execution of these four steps is called a ten-clusterings cycle.

Grizzly and the RIP Worker have been processed separately, both on the platform described
in Table 27. For Grizzly the ten-clusterings cycle took about four minutes, resulting in a total
execution time of about 5488 minutes (91 hours) to test the 1372 combinations. For the RIP
Worker this was about 3:20 (m:ss), resulting in a total execution time of about 4573 minutes
(76 hours).

Table 20 shows the five best and five worst parameter-tuples for Grizzly and the RIP Worker,
and the resulting EdgeMoJo and MoJoQuality. Observe that the two sets of best parameter-
tuples are disjoint. For Grizzly the EdgeMoJo metric varies between 101,7 for the best and
169,7 for the worst decomposition. The MoJoQuality varies between 69,0% for the best and
57,3% for the worst decomposition. For the RIP Worker these figures are 42,6 and 67,9, and
66,3% and 55,0% respectively. These figures indicate that the choice of the clustering
parameters affects the quality of the clustering result significantly.

Grizzly RIP Worker
pwa pwg pwd pc pi Edge

MoJo
MoJo

Quality
pwa pwg pwd pc pi Edge

MoJo
MoJo

Quality
2 5 5 false false 101,7 69,0% 0 5 2 false false 42,6 66,3%
1 3 2 false false 102,0 69,0% 2 4 3 false true 42,6 66,4%
0 0 6 true false 102,2 69,8% 1 6 4 true true 42,7 66,7%
2 3 5 false true 102,3 68,2% 1 5 2 false true 42,7 67,1%
1 4 3 false false 102,7 68,9% 2 4 1 true false 42,7 66,0%

1358 other measurements 1358 other measurements
4 0 0 false false 169,1 61,2% 1 0 0 true false 67,4 55,0%
1 0 0 true true 169,4 61,2% 5 0 0 false true 67,6 54,8%
3 0 0 false true 169,4 61,2% 3 0 0 true false 67,8 55,1%
6 0 0 false true 169,6 61,2% 3 0 0 true true 67,8 54,8%
0 3 0 false false 169,7 57,3% 4 0 0 true false 67,9 55,0%

Table 20: Best five parameter-tuples for Grizzly and the RIP Worker

Appendix 6 shows the fifty “best” parameter-tuples and the produced clustering result for
Grizzly and the RIP Worker. The tuples are sorted ascending according to the EdgeMoJo
value. Note that, even though a large number of tuples are shown, this does not necessarily
include the optimal parameter-tuple (assuming such a tuple exists). The reason for this is that
only a subset of the search space has been investigated.

For the tuples that lead to a good clustering it is difficult to distinguish trends. The presence of
parameter-tuples with zero for the numeric parameters indicates which types of relationships
are important for the clustering result and which are not. When considering the best fifty
parameter-tuples for Grizzly, tuples that have pwa=0 also have pwg=0. For the RIP Worker
several tuples with pwa=0, but none with pwg=0 are present in the top fifty. So in both cases
no tuples with pwg=0 and pwa∫0 are present in the top fifty. This indicates that ignoring the
generalizations while taking the associations into account does not lead to a good clustering
result. In other words, if the associations are used the generalizations must be used too.

With respect to the two boolean parameters (pc and pi) no trends can be distinguished. In the
best fifty parameter-tuples all four possible combinations are represented equally.

For the parameter-tuples that lead to a poor quality clustering a clear trend is visible; for both
Grizzly and the RIP Worker, the parameter-tuples with pwd=0 give the worst clustering result.
Any parameter-tuple with pwd∫0 gives a better clustering result than the same parameter-
tuple with pwd=0. This means that ignoring the dependencies leads to a poor quality
clustering. Recall that the architects consulted for the reconstruction of the architecture of the
simple-blackboard application considered dependencies to be the least important

 105

architectural-indicator. Instead, most of them based their decomposition on functional criteria.
The unexpected importance of dependencies for the clustering result can be explained in two
ways:
1. Ignoring the dependencies leaves many classes without any connection to other classes

(unconnected classes). These classes are then placed in the “unconnected classes”
subsystem, which is probably not the right choice.

2. The presence and number of dependencies reflects the functional relations between the
classes better than the associations and generalizations do.

If the first explanation holds, ignoring the dependencies must increase the number of
unconnected classes much more than ignoring the other relationship-types. Table 21 shows
the number of unconnected classes and the number of classes that are only connected with
relations of the tree types, both for Grizzly and the RIP Worker. Observe that the number of
unconnected classes in both subsystems is about the same. In the RIP Worker the number of
classes that are only connected with dependency relations is relatively high compared to the
other relationship types. But for Grizzly this is not the case; much more classes are only
connected with a generalization than with a dependency. This means that the first explanation
for the importance of the dependencies for the clustering result does not hold.
We therefore assume that dependencies are so important for the clustering result because
they reflect the functional relations between the classes better than the other relationship-
types.

Type of classes Grizzly RIP Worker
Unconnected 6 7
Only connected with dependency 4 19
Only connected with association 4 1
Only connected with generalization 9 3

Table 21: Connectivity of classes in Grizzly and the RIP Worker

Because no single best parameter-tuple could be identified it was decided to use a set of
tuples instead of a single one. Recall that three different types of clusterings are performed; of
one version only, and a class-relations-intersection and class-relations-union of two versions.
Of these, the last produces the largest module dependency graph and therefore takes the
longest to cluster. As can be seen in Table 25, this clustering takes almost one hour. Since
each parameter-tuple leads to ten clusterings, we decided to test forty parameter-tuples on
the Océ Controller.
The overlap between the set of best tuples for Grizzly and for the RIP Worker is very small. In
fact, the set of twenty tuples that lead to the best clustering result for each of them are
disjoint. We therefore decided to use the union of these two sets, leading to forty tuples to
test.

7.4 Results of architectural-clustering case study
Now that a sub-optimal set of parameter-tuples has been identified the Océ Controller is
clustered. The same procedure as described above is followed, where for every parameter-
tuple ten clusterings are generated and the average quality is determined. To avoid basing
conclusions on a single case, the architectures of the last two versions of the Océ Controller,
7d and 8a, are reconstructed.

The paragraphs below describe the results of these experiments. Paragraph 7.4.1 describes
the results when clustering a module dependency graph that is based on a single version.
Paragraph 7.4.2 describes the results when information from multiple versions is used.

7.4.1 Result when clustering one version
Table 22 shows the five parameter-tuples that, according to the EdgeMoJo metric, produced
the best clusterings for version 7e (left) and 8a (right) of the Océ Controller. Recall that we
use the EdgeMoJo metric to compare the clustering result to the result of a manual
architecture reconstruction. So the parameter-tuples in Table 22 are those that produce

 106

decompositions that come closest to a manually reconstructed architecture. Table 32 and
Table 33 in Appendix 7 show the results for all forty tested parameter-tuples.

Version 7e Version 8a
pwa pwg pwd pc pi Edge

MoJo
MoJo

Quality
pwa pwg pwd pc pi Edge

MoJo
MoJo

Quality
4 6 1 true true 1.639,4 60,5% 4 6 1 true true 1.477,1 62,5%
1 4 1 true true 1.644,9 60,5% 2 1 2 true false 1.481,1 62,3%
1 5 5 true true 1.646,1 60,2% 6 3 4 true false 1.481,3 62,5%
1 1 5 true false 1.646,8 60,3% 1 4 3 false false 1.483,8 62,4%
2 5 5 false false 1.648,4 60,4% 2 3 5 false true 1.484,2 62,3%

Table 22: Best five clusterings for version 7e and 8a of the Océ Controller

As shown in Table 22 a MoJoQuality of 60,5% was achieved for version 7e of the Océ
Controller. The best clustering for version 8a had a MoJoQuality of 62,5%. Because in both
cases the MoJoQuality for the best parameter-tuples exceeds 60% we consider these
decompositions good starting points for manual refinement (see paragraph 7.1). Hence, these
results confirm hypothesis H3. For both versions the parameter tuple (4,6,1,true,true)
achieved the best clustering. Although it is tempting to conclude that this is the optimal
parameter-tuple, this is probably a coincidence. Recall from Table 20 that for Grizzly and the
RIP Worker different parameter-tuples led to the best clustering result.

To confirm hypothesis H4 the EdgeMoJo metric is used. This means that the addition of
information from older versions must produce decompositions with an EdgeMoJo value that is
lower than 1.639,4 for version 7e and lower than 1.477,1 for version 8a.

Figure 40: Example of a decomposition the clustering produced for version 8a

It is not possible to describe the produced decompositions completely in this thesis. To
illustrate them, Figure 40 shows an example of a decomposition the clustering produced for
version 8a with the parameter-tuple (4,6,1,true,true). This decomposition has a MoJoQuality

 107

of 62% and an EdgeMoJo value of 1489. This means that this decomposition has
approximately the same quality as the average shown in Table 22. In the view blue squares
denote classes and yellow ones subsystems. The red, blue and green edges denote
association, generalisation and dependency relations between classes respectively. Observe
that the edges, especially the dependencies, obfuscate the view slightly. In Shrimp users can
zoom in on subsystems to get a better view. In Figure 40 one subsystem is enlarged to mimic
this, which is illustrated by the dotted lines. In the figure the names of several classes are
shown in labels that refer to the class they are placed in. Labels that touch multiple classes
refer to the class in the upper left corner.

Figure 41 shows the expert decomposition of version 8a. Observe that this decomposition
contains fewer subsystems than the decomposition in Figure 40 but these are generally
larger. The subsystem that matches the one zoomed-in on in Figure 40 is also enlarged here.
Observe the differences between the two decompositions. For example ::Contradiction and
::JobState are placed in a separate subsystem.

Figure 41: Expert decomposition of version 8a of the Océ Controller

7.4.2 Result when clustering with multiple versions
The “Combining version information” section in paragraph 7.2.1 describes the class-relations-
intersection and class-relations-union operations for combining two models of different
versions of a system. Recall from the same section that the internal structure of software is
usually not decreasing monotonically. Refactorings that increase it again cause this. In order
to prevent basing our conclusions on a single case we decided to combine the two
reconstructed versions with two other versions, namely the first (version 1), and the version
released before the one of which the architecture is reconstructed. This leads to four different
version combinations for both the class-relations-union and the class-relations-intersection.
We leave the testing of other combinations as future work.

Class-relations-intersection

Class-relations-intersection with first version
Table 23 shows the five parameter-tuples that produced the best clusterings for the class-
relations-intersection of the two versions, 7e and 8a, with version 1. Table 34 and Table 35 in
Appendix 7 show the results for all forty parameter-tuples.

 108

Version 7e with 1 Version 8a with 1
pwa pwg pwd pc pi Edge

MoJo
MoJo

Quality
pwa pwg pwd pc pi Edge

MoJo
MoJo

Quality
0 0 2 false false 1.223,3 73,7% 0 0 6 true false 950,5 78,1%
0 0 1 true false 1.229,5 73,7% 0 0 1 true false 958,0 78,1%
0 0 6 true false 1.266,1 73,3% 0 0 2 false false 980,9 77,8%
1 5 6 false true 1.286,6 72,3% 0 1 1 true false 1.006,3 76,8%
1 5 5 true true 1.293,5 72,0% 1 6 4 true true 1.006,7 76,7%

Table 23: Best five clusterings for the class-relations-intersection with version 1

The class-relations-intersection of version 7e and 1 produced decompositions with an
EdgeMoJo between 1223,3 and 1398,0. The MoJoQuality varied between 73,7% and 70,9%.
For version 8a the EdgeMoJo varied between 950,5 and 1126,0, and the MoJoQuality
between 78,1% and 75,5%.
Compared to the clustering based on the versions alone this is a significant quality
improvement. The best tuple with the class-relations-intersection of version 7e and 1 has an
EdgeMoJo value that is 25% lower than the best tuple when clustering 7e alone (from 1.639,4
to 1223,3). For version 8a the EdgeMoJo improved with 36% (from 1477,1 to 950,5).
For the parameter-tuples that lead to the worst clustering result, the class-relations-
intersection with version 1 leads to a similar quality improvement, namely of 21% and 32% for
version 7e and 8a respectively.

From this we conclude that basing the clustering on the class-relations-intersection with
version 1 leads to a significantly better clustering. This confirms hypothesis H4 (see page 80).

Class-relations-intersection with previous version
Table 24 shows the five parameter-tuples that produced the best clusterings for the class-
relations-intersection of the two versions, 7e and 8a, with the version released before them
(7d and 7e respectively). Table 36 and Table 37 in Appendix 7 show the results for all forty
parameter-tuples.

Version 7e with 7d Version 8a with 7e
pwa pwg pwd pc pi Edge

MoJo
MoJo

Quality
pwa pwg pwd pc pi Edge

MoJo
MoJo

Quality
6 2 1 true true 1.642,6 60,2% 6 1 6 false true 1.642,6 59,1%
1 5 5 true true 1.644,8 60,3% 4 6 2 false true 1.644,7 59,0%
3 3 4 true true 1.646,9 60,4% 2 4 3 false true 1.649,1 59,1%
1 5 2 false true 1.651,3 60,3% 6 5 4 false true 1.651,2 59,0%
4 4 3 false false 1.652,0 60,1% 3 3 1 false false 1.652,3 58,9%

Table 24: Best five clusterings for the class-relations-intersection
with the previous version

The class-relations-intersection of version 7e and 7d produced decompositions with an
EdgeMoJo between 1.642,6 and 1.804,1. The MoJoQuality varied between 60,2% and
57,4%. For version 8a the EdgeMoJo varied between 1.642,6 and 1.811,8, and the
MoJoQuality between 59,1% and 56,0%.
These results are similar to the results achieved when using only information from the version
of which the architecture is reconstructed. Recall that in that case for version 7e the
EdgeMoJo value was 1.639,4 to 1.778,7, which is similar to the result achieved here.
Clustering version 8a with only information from that version achieves decompositions with an
EdgeMoJo value between 1.477,1 and 1.661,4, which is slightly better than the result
achieved here. The MoJoQuality metric shows the same pattern. This means that basing the
clustering on the class-relations-intersection with the previous version does not lead to a
better clustering result.

 109

Class-relations-union

Class-relations-union with first version
Table 25 shows the clustering results for the five best clusterings of the class-relations-union
of version 8a and 1. Table 38 in Appendix 7 shows all forty tested parameter-tuples.

pwa pwg pwd Pc pi Edge
MoJo

MoJo
Quality

3 3 4 true true 1.458,9 62,9%
4 4 3 false false 1.459,5 62,9%
3 6 1 false false 1.461,2 62,7%
1 4 3 false false 1.461,6 62,8%
6 5 4 false true 1.462,3 62,7%

Table 25: Best five clusterings for the
class-relations-union of version 8a and 1

The clustering of the class-relations-union of version 8a and 1 achieved an EdgeMoJo value
between 1458,9 and 1619,8. In the case where version 8a was clustered alone the
EdgeMoJo was between 1468,3 and 1661,4. This means that the class-relations-union does
not lead to an improvement of the quality of the clustering. The MoJoQuality for the class-
relations-union lies between 62,9% and 59,9%, which is also comparable to the result
achieved when clustering with version 8a alone (62,6% to 59,3%).

Class-relations-union with previous version
Table 26 shows the clustering results for the five best clusterings of the class-relations-union
of version 8a and 7e. Table 39 in Appendix 7 shows all forty tested parameter-tuples.

pwa pwg pwd pc pi Edge
MoJo

MoJo
Quality

4 4 3 false false 1.458,5 62,7%
6 3 4 true false 1.466,8 62,6%
4 6 1 true true 1.468,5 62,7%
6 1 6 false false 1.468,6 62,5%
3 6 1 false false 1.469,4 62,6%

Table 26: Best five clusterings for the
class-relations-union of version 8a and 7e

The clustering of the class-relations-union of version 8a and 7e achieved an EdgeMoJo value
between 1458,5 and 1622,2. Similar to the class-relations-union with version 1, this is
comparable to the results when clustering version 8a alone (EdgeMoJo between 1468,3 and
1661,4). The MoJoQuality metric confirms this. It now has a value between 62,7% and 59,8%,
which is similar to the value achieved when clustering with version 8a alone (62,6% to
59,3%).

This leads to the conclusion that combining two versions with the class-relations-union
operator does not lead to an improvement of the clustering result. We therefore decided not to
test other combinations of versions.

7.4.3 Observations
The quality of the decompositions our architectural clustering method produced is relatively
good in the sense that they approach the result of a manual architecture reconstruction
relatively well. In our experiments where the architecture of two versions of the Océ Controller
was reconstructed the produced decompositions had a MoJoQuality of 60,5% and 62,5%
respectively. This exceeds the goal of 60% set in paragraph 7.1 and hence confirms
hypothesis H3.

 110

Incorporating information from other versions in the clustering process improved the
clustering result in some cases:
• Class-relations-intersection:

o With the first version: improvement of about 20% to 35%.
o With the previous version: no improvement.

• Class-relations-union:
o With the first version: no improvement.
o With the previous version: no improvement.

This confirms hypothesis H4.

The architectural-clustering workbench uses Sniff+ to extract facts from the source code.
Sniff+ proved to be a reliable and stable fact extractor. The Sniff API caused some problems
but these could be circumvented in most cases. The only situation where this was not the
case was with associations that were based on C++ templates. Because of the low number of
these associations in the Océ Controller this had little impact on the clustering result however.

The workbench uses Bunch to cluster the classes that were extracted from the source code.
To our knowledge Bunch has not been used to cluster object-oriented software before.
Considering the quality of the decompositions our workbench produced we conclude that this
is no problem.

In the experiment the expert decomposition was constructed with a two-step approach:
1. Reconstruct an approximation of the expert decomposition based on the structure of the

source-tree.
2. Refine this approximation using architectural and design documentation, as well as

information from the system’s architects.

Recall that our approach assumes that an architect will manually refine the produced
decomposition, which is comparable to step 2 above. This raises the question if our clustering
method achieves better decompositions than the source-tree based architecture
reconstruction. The MoJoQuality of the latter decomposition is 91%, which is better than the
results our method achieved (best MoJoQuality was 78%). This indicates that the structure of
the source-tree provides valuable information for architecture reconstruction.
The ACDC clustering algorithm, which is described in paragraph 6.2.3, also uses information
from the source-tree in the clustering process. It clusters procedural code, using information
of relations between source code entities (e.g. files or procedures) and of the source-tree
itself. However, its decompositions have a MoJoQuality of around 60%, which is comparable
to the quality of the results our method achieved. The high quality of the decomposition
created from the source-tree of the Océ Controller can be explained in two ways; either the
algorithm we use to create a decomposition from the source-tree is much better than ACDC,
or the source-tree of the Océ Controller reflects the architecture relatively well. We speculate
that the latter is the case. Nevertheless, incorporating source-tree information in the clustering
process seems to have the potential to improve the quality of the clustering result. Due to time
limitations we cannot explore this further and have to leave this as future work.

Execution times
All performance figures described in this chapter are measured on the test platform of which
the characteristics are shown in Table 27.

Processor Pentium 4; 2,0 GHz
Memory 2 GB
Operating system Windows 2000 SP4
Java 1.4.2_06
Sniff+ 4.2 CP2
MySQL 4.1.8-nt
Bunch 3.3.6
Shrimp 2.0 build 2
Rigi 6.0, version 2-Oct-2003

Table 27: Test system characteristics

 111

To speed up the measurements, a second PC has been used for some calculations. During
the clustering of the Océ Controller for example, each of the two available PCs processed
about half the set of parameter-tuples. This second PC has the same characteristics as listed
in Table 27, but with a 2.8 GHz Pentium 4 processor instead.

The execution times to cluster Grizzly and the RIP Worker are described in the “Grizzly & Rip
Worker” section in paragraph 7.3.2. Table 28 shows some representative examples of the
time needed to execute the essential steps of the architectural clustering process for the Océ
Controller. All values are measured in wall-clock time.

Observe in Table 28 that the fact extraction and subsequent Sniff Import take a lot of time.
This confirms our assumption in paragraph 7.2.2 that led to the use of a database to store the
extracted facts. About half of this time is spent creating Sniff’s internal meta-data repository
and parsing the source code. The other half is spent importing this information in the
database. Both need to be done only once for every analysed version. Note that building the
complete Océ Controller from source code takes about one to two hours on our test platform,
which is about one order less.
Note also the times needed to cluster version 8a alone, and the class-relations-intersection
and -union (0:18, 0:11 and 0:58 respectively). These values are approximately proportional to
the size of the respective module dependency graphs.

Task Time
(hh:mm)

Fact extraction of version 8a
(Sniff+ parsing and import in database) 21:19

Clustering version 8a
(Bunch Export, Clustering and Bunch Import) 0:18

Clustering class-relations-intersection of version 8a and 1
(Bunch Export, Clustering and Bunch Import) 0:11

Clustering class-relations-union of version 8a and 1
(Bunch Export, Clustering and Bunch Import) 0:58

MoJo calculations for version 8a 0:05
Visualization version 8a
(RSF Export and loading in Shrimp) 0:05

Table 28: Execution times for the Océ Controller (wall-clock time)

The ten-clusterings cycle described in paragraph 7.3.2 combines several of these steps.
Table 29 shows the execution times of the executed ten-clusterings cycles. The class-
relations-union of version 7e with the first and the last version have not been measured.
These times are marked “n.m.”

Time (hh:mm) Task
7e 8a

One version 2:58 3:11
Class-relations-intersection with first version 1:01 1:02
Class-relations-intersection with previous version 3:03 2:42
Class-relations-union with first version n.m. 4:41
Class-relations-union with previous version n.m. 3:34

Table 29: Execution times of the ten-clusterings cycles (wall-clock time)

Problems encountered
The previous paragraphs mention several problems we encountered during this case study:
• The Sniff API does not export association relations defined with template-based variables.

Further, the Sniff API exports namespaces with or without the parent namespaces in an
unpredictable manner. Both issues are described in the “Sniff and Sniff Import” section in
paragraph 7.3.1.

 112

• The models extracted from the source code of the Océ Controller contain classes that are
not involved in any of the extracted relations. Because they are not connected to other
classes, the clustering algorithm cannot classify them. The workbench handles this by
placing these classes in a special subsystem for “unconnected classes”, as is described
in the “Bunch Export, Bunch & Bunch Import” section paragraph 7.2.2.

• The source-tree of the Océ Controller contains multiple classes with the same name and
namespace. Examples are stubs, test tools and experimental versions of subsystems. In
cases where no other identifiers are available to identify the classes this causes
problems. This is handled by using the class-name and source-file to identify classes, as
is described in the “Sniff+ & Sniff Import” section in paragraph 7.2.2.

The size of the Océ Controller caused several problems. First of all, MySQL could only
execute the queries after tuning it for large databases. Second, a complete cycle of fact
extraction, clustering and result assessment or visualization took a significant amount of time.
For one clustering cycle this is no problem, but when a large number of clustering cycles are
performed it is. Effectively, this limits the number of different clusterings that can be created,
and hence the number of different parameter-tuples that can be tested. Note that in practical
clustering-based architecture reconstruction cases only one, or a limited number of
clusterings are generated. Therefore this limitation applies mainly to projects experimenting
with different clustering approaches or parameters, and not to practical architecture
reconstruction cases.

7.5 Conclusions of the architectural-clustering case study
This case study aimed to investigate the following hypotheses:

H3: Automatic clustering-based architecture reconstruction methods can
reconstruct an architectural view of the Océ Controller from its source code
that is a good starting-point for manual refinement.

H4: Utilizing information obtained from source code of older versions can improve

the quality of the output of architectural clustering algorithms for more recent
versions of a system.

Paragraph 7.1 quantifies a decomposition architectural clustering produced as good if it has a
MoJoQuality of at least 60% relative to the result of a manual architecture reconstruction.

To confirm hypothesis H3 and H4 an architecture reconstruction workbench has been
constructed that implements clustering-based architecture reconstruction. The implemented
approach is based on information that is always available from object-oriented source code
and does not assume the availability of any other information.
The architecture of two versions of the Océ Controller has been reconstructed with this
workbench. The resulting decompositions have been compared to expert decompositions to
compare their quality.

This leads to the following conclusions:
• Architectural clustering based on structural relations between the classes can reconstruct

architectural views of object-oriented software that are useful for software maintenance.
• The execution time is such that clustering the complete Océ Controller is feasible in

practice.
• Sniff+ can be used to extract facts from the source code of the Océ Controller with

reasonable reliability and accuracy.
• Bunch can also cluster object-oriented software, and not just procedural software.

Further, Bunch can handle the use of different weights for different types of relations
instead of using the same weight for all relations.

• The weight of the relationship-types significantly affects the quality of the clustering result.
However, in our experiments there was no single combination of weights that produced
the best clusterings for all analysed pieces of software.

 113

• Dependency relations are very important for the quality of the clustering result. In all
experiments ignoring the dependencies led to a reduction of the clustering result’s quality,
regardless of the weight assigned to the other relationship-types.

• The quality of the clustering result improves if the clustering is based on those class-
relations that are also present in the first version of the software (class-relations-
intersection with version one). If instead of the first the previous version is used no
improvement is achieved. This might be due to the fact that in the previous version the
architecture is deteriorated much further than in the first version.

• Architectural clustering based on the class-relations present in the clustered version or
the first one (class-relations-union) does not lead to better clustering results. The same
holds for the combination with the previous version instead of the first.

From this case study we conclude that architectural clustering reconstructs an architecture
from the source code of the Océ Controller that is a good starting point for manual refinement.
In this refinement some small adjustments need to be made, such as the moving of some
classes to another subsystem. This confirms hypothesis H3. We further conclude that basing
the clustering on the class-relations that are also present in the first version of the system
leads to a better clustering result. This confirms hypothesis H4.

 114

8 Conclusions and future work

8.1 Conclusions
This thesis started with the following research questions:
1. Which methods are available for architecture reconstruction?
2. Can these methods be used to reconstruct the architecture of the Océ Controller?
3. How good are the results?
4. How can these methods be improved?

In literature several methods for architecture reconstruction are described, including manual
reconstruction, pattern detection, architectural clustering and architectural slicing. For large
software systems completely manual methods are not practical. Of the automatic methods,
pattern detection and architectural clustering are the most prominent ones. We have applied
these two methods to the Océ Controller in two case studies.

8.1.1 Pattern detection
In literature pattern detection methods that are based on a pattern library have been applied
frequently and their properties are relatively well known. A disadvantage is that they require
upfront knowledge on the used patterns and their precise implementation. Implementation
variations make the latter difficult to specify. The pattern detection method we applied is
based on mathematical Formal Concept Analysis and does not require a pattern library. It
detects structural patterns in two subsystems of the Océ Controller.

The method proved to be able to detect frequently used design structures in source code.
However, even the detection of relatively simple structures in relatively small pieces of source
code required a lot of calculations. Since this is inherent to the used algorithms, the
application of this technique to reconstruct architectural views of large object-oriented
systems, and more specific the Océ Controller, is not considered practical. It is possible to
detect design patterns in its subsystems though. These have a size of about five to ten
percent of the complete system. Note that the method detects structural constellations of
classes, and not named design patterns such as those [Gamma et al, 1995] described.

Besides performance issues, the reduction of the large number of similar patterns in the
output is also important. Based on the complexity of the patterns we filtered the output, but
the results show the more advanced filtering is necessary in order for the method to be useful.

8.1.2 Architectural clustering
Architectural clustering uses mathematical clustering techniques to group closely related
source code elements into suitable higher-level abstractions. In the context of architecture
reconstruction it has mainly been applied to procedural code and only occasionally to object-
oriented software like the Océ Controller.

In several experiments we have applied architectural clustering to reconstruct the architecture
of two versions of the Océ Controller, using the Bunch tool. To our knowledge this tool has
not yet been previously used to cluster object-oriented software. The experiments show that it
is possible to reconstruct architectural views of large object-oriented software systems such
as the Océ Controller with architectural clustering that are useful for software maintenance.
Based on experiences reported in literature for procedural code we expected that these views
required some manual refinement such as the relocation of some classes. Our experiments
confirmed this, but also showed that the reconstructed views are good starting points for this
process.

In our experiments the clustering groups classes based on the structural relations between
them. We distinguished three types of relations; associations, generalizations and
dependencies. To our knowledge no research has been performed on how these types
should be converted into the graph that is clustered, and which types are most important for
the quality of the clustering result. We have experimented with several combinations of

 115

relations, assigning different weights to each type. These experiments showed that the
weights have a significant effect on the quality of the clustering result. However, for each of
the analysed pieces of software a different combination of weights produced the clustering
that came closest to a manually reconstructed architecture. Despite this, all our experiments
clearly showed that the dependencies are more important for the quality of the clustering
result than associations and generalizations.

The execution time of the clustering process is reasonable, but still substantial for the Océ
Controller. On our test system it took about five to ten minutes. Extracting the structural
information from the source code on the other hand takes a lot of time. On our test system it
took over twenty hours. This is due to the creation of Sniff’s meta-data repository, parsing the
sources and transferring this information to the workbench’s database. Usually this is only
done once. If multiple fact extractions are necessary incremental fact extraction could reduce
the total time significantly. Note that this is a fully automatic process that does not require
user-interaction.

If multiple versions of a system have been released the clustering process can be based on
information from multiple versions. To our knowledge architectural clustering case studies
thus far only used information from a single version. We have experimented with several
ways to incorporate information from multiple versions in the clustering process. In these
experiments we observed the following behaviour:
• In cases where the clustering was only based on the structural relations that were also

present in the first version the clustering result had a better quality compared to when
only information from the reconstructed version was used.

• Basing the clustering on the relations that are present in the reconstructed version and
the version released before it did not lead to a better clustering result. This might be due
to the fact that in the previous version the architecture has deteriorated much more than
in the first version.

• The clustering can also be based on the relations that are present in the reconstructed
version or another version. However, neither the combination with the first version, nor
the combination with the previous version led to an improved clustering result compared
to the result obtained when using only information from the reconstructed version.

8.1.3 Concluding remarks
We therefore conclude that pattern detection without a pattern library is not practical for the
complete Océ Controller. Architectural clustering on the other hand appears to be a useful
technique for reconstructing architectural views of this system. Despite that this technique
works completely automatic, manual refinement of the results is still needed though.

8.2 Future work

8.2.1 Pattern detection
In the pattern detection case study described in chapter 5 many patterns have been found
that are highly similar to each other. This makes it difficult to use this information for program
understanding. In paragraph 5.2.4 we have described several filters to remove uninteresting
patterns from the output, but these are not sufficient. If the method is used in practice better
filtering is required. It might also be possible to group similar patterns into groups and show a
single pattern of each group to the user. The similarity of patterns could be based on the
number of edges that must be added and removed to transform them into each other, as is
suggested in the “Quality of the results” section in paragraph 5.4.3.

Finding frequently used design constructs in the source code essentially finds frequently
occurring subgraphs in the class graph. An alternative to the pattern detection used in chapter
5 might be to use graph compression algorithms that are based on the detection of recurring
subgraphs. We have built a small prototype that uses the Subdue algorithm [Jonyer et al,
2001]. This algorithm creates a list of recurring subgraphs and replaces all occurrences of
these subgraphs with references to this list. However, when this algorithm is used for pattern
detection the fact that the algorithm looks for perfectly identical subgraphs causes problems.

 116

The intertwining of structures often encountered in practice caused this prototype to find no
patterns at all in two subsystems of the Océ Controller36. Lossy graph compression algorithms
might introduce the required fuzziness, but due to time limitations we were not able to explore
this further. Note that the FCA-based approach described in chapter 5 does not have this
problem.

8.2.2 Architectural clustering
The clustering described in chapter 6 assigns names to subsystems that are based on the
cluster-names Bunch generated. These names have little meaning to humans and should be
replaced with meaningful names.

The clustering workbench reconstructs the architecture from scratch. Adapting the workbench
such that the clustering starts from a user-specified state allows users to incorporate their
knowledge of the architecture. This has the advantage that the workbench can more easily be
applied to software of which the architecture is partially known.

Our architectural clustering uses several user-specified parameters that affect the information
on which the clustering is based. As described in paragraph 7.3.2 and 7.4 our experiments
show that these have a significant effect on the quality of the clustering result for several
cases. It is not clear however which values in general achieve the best clustering results. We
have explored many different values, but leave many others unexplored. Further research is
required on this matter.

We experimented with combing structural information of multiple versions to improve the
quality of the clustering result. Although several version-combinations have been tested,
many more combinations are imaginable. Testing these other combinations might reveal
combinations that lead to even better clusterings.

Our clustering approach is based on structural information about relations between classes.
The approach does not use information about the structure of the source-tree in which the
classes are defined. In the case of the Océ Controller the structure of the source tree seems
to represent information that can be used to improve the quality of the clustering further, as is
suggested in paragraph 7.4.3. Besides this, dynamic information from for example traces
could also be beneficial.

In the “Simple-blackboard application” section in paragraph 7.3.2 an experiment is described
that aimed to find an expert decomposition of a small existing program. In the experiment ten
architects individually decomposed an architecture. Surprisingly all architects produced a
different decomposition, giving a set of decompositions from which the expert decomposition
needed to be derived. We have experimented with several methods to achieve this, but were
not able to explore this thoroughly due to time limitations. The “Simple-blackboard application”
section describes several ideas that seem worth investigating.

36 This refers to Grizzly and the RIP Worker subsystems.

Appendix 1 References
[Alexander, 1979] C. Alexander. The Timeless Way of Building. Oxford University

Press, New York, NY, 1997.
[Andritsos and Tzerpos, 2003]

P. Andritsos, V. Tzerpos. Software Clustering based on Information
Loss Minimization. In Proc. of the 10th Working Conference on
Reverse Engineering (WCRE’03), Nov. 2003, p. 334.

[Anquetil and Lethbridge, 1999]
N. Anquetil, T.C. Lethbridge. Experiments with Clustering as a
Software Remodularization Method. In Proc. of the Sixth Working
Conference on Reverse Engineering (WCRE’99), 1999, p. 235.

[Antoniol et al, 1998] G. Antoniol, R. Fiutem, L. Cristoforetti. Design Pattern Recovery in
Object-Oriented Software. In Proc. of the 6th International
Workshop on Program Comprehension, 1998, p. 153.

[Arévalo, 2003] G. Arévalo. Understanding Behavioral Dependencies in Class
Hierarchies using Concept Analysis. In Proc. of LMO 2003:
Languages et Modeles `a Objets, Jan. 2003, pp. 47-59.

[Arévalo and Mens, 2002]
G. Arévalo, T. Mens. Analysing Object-Oriented Application
Frameworks Using Concept Analysis. In J-M. Bruel and Z.
Bellahsène, editors, Advances in Object-Oriented Information
Systems - OOIS 2002 Workshops, number 2426 in LNCS, Springer,
2002, pp. 53-63.

[Arévalo et al, 2003] G. Arévalo, S. Ducasse, O. Nierstrasz. Understanding classes using
X-Ray views. In Proc. of 2nd International Workshop on MASPEGHI
2003 (ASE 2003), Oct. 2003, pp. 9-18.

[Armstrong and Trudeau, 1998a]
M.N. Armstrong, C. Trudeau. Evaluating Architectural Extractors. In
Proc. of the 1998 Working Conference on Reverse Engineering
(WCRE'98), p. 30.

[Armstrong and Trudeau, 1998b]
M.N. Armstrong, C. Trudeau. CS 746G Project: Evaluating
Architecture Extraction Tools. Apr. 1998.

[AutoIt, 2005] AutoIt v3 Home Page – AutoIt3. Apr. 2005.
http://www.hiddensoft.com/autoit3/

[Ball, 1999] T. Ball. The concept of Dynamic Analysis. In Foundations of
Software Engineering, Proc. of the 7th European software
engineering conference held jointly with the 7th ACM SIGSOFT int.
symposium on Foundations of software engineering, 1999, p. 216.

[Bär et al, 1999] H. Bär, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse, M. Lanza, R.
Marinescu, R. Nebbe, O. Nierstrasz, M. Przybilski, T. Richner, M.
Rieger, C. Riva, A.M. Sassen, B. Schulz, P. Steyaert, S. Tichelaar,
J. Weisbrod. The FAMOOS Object-Oriented Reengineering
Handbook. Oct., 1999.

[Bass et al, 2003] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice,
second edition. Pearson Education Inc., Boston, MA, USA. 2003.

[Bassil and Keller, 2001] S. Bassil, R.K. Keller. Software Visualization Tools: Survey and
Analysis. In Proc. of the 9th International Workshop on Program
Comprehension (IWPC’01), 2001, p. 7.

[Bauer and Trifu, 2004] M. Bauer, M. Trifu. Architecture-Aware Adaptive Clustering of OO
Systems. In Proc. of the eights European Conference on Software
Maintenance and Reengineering (CSMR’04), 2004.

[Beck, 1997] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

 118

[Beck and Eichmann, 1993]
J. Beck, D. Eichmann. Program and Interface Slicing for Reverse
Engineering. In Proc. of the 15th International Conference on
Software Engineering (ICSE’93), 1993, pp. 509-518.

[Beck et al, 1996] K. Beck, J.O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F.
Paulisch, J. Vlissides. Industrial Experience with Design Patterns. In
Proc. of the 18th International Conference on Software Engineering
(ICSE-18), 1996, pp. 103-114.

[Bellay and Gall, 1997] B. Bellay, H. Gall, An Evaluation of Reverse Engineering Tools.
Technical report TUV-1841-96-01, Technical University of Vienna,
Mar. 1997.

[Bennett and Rajlich, 2000]
K. H. Bennett, V.T. Rajlich. Software maintenance and evolution: a
roadmap. In Proc. of the Conference on the Future of Software
Engineering, June 2000, pp. 73-87.

[Berkhin, 2002] P. Berkhin. Survey of Clustering Data Mining Techniques. Technical
report, Accrue Software, San Jose, California, 2002.

[Bischofberger, 1992] W.R. Bischofberger. Sniff-A Pragmatic Approach to a C++
Programming Environment. In Proc. of the USENIX C++
Conference, Aug. 1992

[Booch, 1994] G. Booch. Object-Oriented Analysis and Design with Applications.
Benjamin/Cummins Publishing Company Inc, 2nd edition, 1994.

[Booch et al, 1999] G. Booch, J. Rumbaugh, I. Jackobson. The Unified Modeling
Language User Guide. Addison Wesley Longman Inc, 1999.

[Bordat, 1986] J.P. Bordat. Calcul pratique du treillis de Galois d’une
correspondance, Math. Sci. Hum., 96, 1986, pp. 31-47.

[Bowman and Holt, 1998] I.T. Bowman and R.C. Holt. Software Architecture Recovery Using
Conway's Law. In Proc. of CASCON'98, 1998, pp. 123-133.

[Bowman et al, 1999] I.T. Bowman, R.C. Holt, N.V. Brewster. Linux as a Case Study: Its
Extracted Software Architecture. In Proc. of the 21st Int. Conference
on Software Engineering (ICSE’99), 1999, pp.: 555-563.

[Buckley, 1989] J. Buckley. Some standards for software maintenance. Standards,
IEEE Computer, Nov. 1989.

[Bunch, 2005] Bunch homepage. Mar. 2005.
http://serg.cs.drexel.edu/projects/bunch/

[Buschmann et al, 1999] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal.
Pattern-Oriented Software Architecture: A System of Patterns. John
Wiley and Sons Ltd, Chichester, England, Apr. 1999.

[Casais, 1998] E. Casais. Re-engineering object-oriented legacy systems. In
Journal of Object-Oriented Programming (JOOP), 10(8), 1998, pp.
45-52.

[Chen et al, 1998] Y.R. Chen, E.R. Gansner, E. Koutsofios. A C++ Data Model
Supporting Reachability Analysis and Dead Code Detection. In
IEEE Transactions on Software Engineering, 24(9), Sept. 1998, pp.
682-694.

[Chikovsky and Cross, 1990]
E.J. Chikovsky, J.H. Cross. Reverse Engineering and Design
Recovery: A taxonomy. In IEEE Software, 7(1), Jan. 1990, pp. 13-
17.

[Choi and Scacchi, 1990] S.C. Choi, W. Scacchi. Extracting and Restructuring the Design of
Large Systems. In IEEE Software, 7(1), Jan. 1990, pp. 66-71.

[Columbus, 2003] Setup and User’s Guide to Columbus/CAN, Academic Version 3.5.
FrontEndART Ltd, Jan. 2003.

 119

[Conway, 1968] M.E. Conway. How Do Committees Invent? In Datamation
Magazine, 14(4), Apr. 1968, pp. 28-31.

[Dekel, 2002] U. Dekel. Applications of concept lattices to code inspection and
review. In The Israeli Workshop on Programming Languages and
Development Environments, chapter 6. IBM Haifa Research Lab,
IBM HRL, Haifa University, Israel, July 2002.

[Dekel and Gil] U. Dekel, J. Gil. Revealing Class Structure with Zoomable Concept
Lattices. Technion – Israeli Institute of Technology, Department of
Computer Science.

[Dekleva, 1992] S. Dekleva. The Influence of the Information Systems Development
Approach on Maintenance. In MIS Quarterly, Sept. 1992, pp. 355-
372.

[Delnooz and Vrijnsen, 2003]
C. Delnooz, L.J.G. Vrijnsen. The Caribou Project: a scenario-based
approach towards a prototyping framework. Graduation thesis,
Technische Universiteit Eindhoven, Stan Ackermans Instituut, 2003.

[Demeyer et al, 1998] S. Demeyer, S. Tichelaar, and P. Steyaert. Definition of a Common
Exchange Model. Technical report, University of Bern, July 1998.

[Demeyer et al, 2004] S. Demeyer, S. Ducasse, O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann Publishers, San
Francisco, CA, USA. 2004.

[Deursen, 2001] A. van Deursen. Software Architecture Recovery and Modelling
[WCRE 2001 Discussion Forum Report]. ACM SIGAPP Applied
Computing Review, 10(1), 2002.

[Ding and Medvidovic, 2001]
L. Ding, N. Medvidovic. Focus: A Light-Weight, Incremental
Approach to Software Architecture Recovery and Evolution. In Proc.
of the 2001 Working IEEE/IFIP Conference on Software
Architecture (WISCA'01), 2001.

[Doval et al, 1999] D. Doval, S. Mancoridis, B.S. Mitchell. Automatic Clustering of
Software Systems using a Genetic Algorithm. In Proc. of the
Software Technology and Engineering Practice, 1999 (STEP '99).
Feb. 1999, pp. 73-81.

[Ducasse, 2003] S. Ducasse. Reengineering Object-Oriented Applications. Insitut für
Informatik und Angewandte Mathematik, University of Bern,
Switzerland, Sept. 2003, IAM-03-008.

[Ducasse et al 2004] S. Ducasse, T. Girba, J.-M. Favre. Modeling Software evolution by
Treating History as a First Class Entity. In Proc. of the Workshop on
Software Evolution Through Transformations (SETra 2004).

[DVRIP, 2002] Design View of the RIP Worker. Océ Engineering Venlo: Product
Document. Apr. 2002.

[Eisenbarth et al, 2001] T. Eisenbarth, R. Koschke, D. Simon. Aiding Program
Comprehension by Static and Dynamic Feature Analysis. In Proc. of
the International Conference on Software Maintenance, Nov. 2001,
pp. 602-611.

[Ehrlich et al, 1990] W.K. Ehrlich, J.P. Stampfel, J.R. Wu. Application of software
reliability modeling to product quality and test process. In Proc. of
the 12th International Conference on Software Engineering, Mar.
1990, pp. 108-116.

[Erlikh, 2000] L. Erlikh. Leveraging legacy system dollars for E-business. IT
Professional, May/June 2000, 2(3), pp. 17-23.

[Fabry and Mens, 2003] J. Fabry, T. Mens. Language-Independent Detection of Object-
Oriented Design Patterns. In Proc. of the European Smalltalk User
Group 2003, Aug. 2003.

 120

[Ferenc et al, 2001] R. Ferenc, J. Gustafsson, L. Müller, J. Paakki. Recognizing Design
Patterns in C++ programs with the integration of Columbus and
Maisa. In Proc. of the 7th Symposium on Programming Languages
and Software Tools (SPLST 2001), June 2001, pp. 58-70.

[Ferenc et al, 2004] R. Ferenc, Á. Beszédes and T. Gyimóthy. Extracting Facts with
Columbus from C++ Code. In Tool Demonstrations of the 8th
European Conference on Software Maintenance and Reengineering
(CSMR 2004), Mar. 2004, pp. 4-8.

[Finnigan et al, 1997] P.J. Finnigan, R.C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H.A.
Muller, J. Mylopoulos, S.G. Perelgut, M. Stanley, K. Wong. The
Software Bookshelf. In IBM Systems Journal, 36(4) (Nov. 1997), pp.
564-593.

[Fjeldstadt and Hamlen, 1984]
R.K. Fjeldstadt, W.T. Hamlen. Application Program Maintenance
Study: Report to Our Respondents. Proc. GUIDE 48, IEEE
Computer Society Press, Apr. 1984.

[Foote and Yooder, 2000]
B. Foote. and J. Yoder. Big ball of mud. In N. Harrison, B. Foote and
H. Rohnert, editors, Pattern Languages of Program Design 4,
Addison-Wesley, 2000, pp. 653-692.

[Fowler et al, 1999] M. Fowler, K. Beck. J. Brant. W. Opdyke, D. Roberts. Refactoring:
Improving the design of Existing Code. Addison-Wesley, 1999.

[Gamma et al, 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns:
elements of reusable object-oriented software, fifth edition. Addison-
Wesley, Dec. 1995.

[Galicia, 2005] Galicia Project. Feb. 2005, http://www.iro.umontreal.ca/~galicia/.
[Ganter, 1987] B. Ganter.Beiträge zur Begriffsanalyse, chapter Algorithmen zur

Formalen Begriffsanalyse. BI-Wissenschaftsverlag, 1987.
[Ganter and Wille, 1998] B. Ganther, R. Wille. Applied lattice theory: formal concept analysis.

In General Lattice Theory, G. Grätzer editor, Birkhäuser Verlag,
1998

[Gîrba and Lanza, 2004] T. Gîrba and M. Lanza. Visualizing and Characterizing the Evolution
of Class Hierarchies. In Proc. of the Fifth International Workshop on
Object-Oriented Reengineering (WOOR 2004), 2004.

[Godfrey and Lee, 2000] M.W. Godfrey and E.H.S. Lee. Secrets from the Monster: Extracting
Mozilla's Software Architecture. In Proc. of the Second International
Symposium on Constructing Software Engineering Tools
(CoSET00), June 2000, pp. 15-23.

[Graphviz, 2005] Graphviz - Graph Visualization Software. Feb. 2005,
http://www.graphviz.org/.

[Grass, 1998] Robert Grass. Software Maintenance: Less Is Not More. In IEEE
Software, July/Aug. 1998, pp. 67-68.

[Grizzly, 2003] Grizzly – Architecture Document. Océ Research Report, Aug. 2003.
[Guo et al, 1999] G.Y. Guo, J.M. Atlee and R. Kazman. A Software Architecture

Reconstruction Method. In Proc. of the First Working IFIP
Conference on Software Architecture (WICSA), Feb. 1999, pp 15-
33.

[Hassan, 2002] A.E. Hassan. Architecture Recovery of Web Applications. University
of Waterloo, Ontario, Canada, 2002.

[Hassan and Holt, 2004] A.E. Hassan, R. Holt. The Small World of Software Reverse
Engineering. In Proc. of the 2004 Working Conference on Reverse
Engineering (WCRE’04). Nov. 2004. pp. 278-283.

 121

[Herbsleb and Grinter, 1999]
J.D. Herbsleb, R.E. Grinter. Architectures, Coordination, and
Distance: Conway's Law and Beyond. IEEE Software, 16(5),
Sept./Oct. 1999, pp. 63-70.

[Heuzeroth et al, 2002] D. Heuzeroth, T. Holl, W. Löwe. Combining Static and Dynamic
Analyses to Detect Interaction Patterns. In Proc. of the Sixth
International Conference on Integrated Design and Process
Technology (IDPT), June 002.

[Heuzeroth et al, 2003] D. Heuzeroth, T. Holl, G. Högström, W. Löwe. Automatic Design
Pattern Detection. In Proc. of the 11th International Workshop on
Program Comprehension, 2003, co-located with 25th International
Conference on Software Engineering, 2003.

[Hofmeister et al, 1999] C. Hofmeister, R.L. Nord, D. Soni. Describing Software
Architectures with UML. In Proc. of the First Working IFIP
Conference on Software Architecture, 1999.

[Holt, 1997] R. Holt. Software Bookshelf: Overview and construction. Mar. 1997,
swag.uwaterloo.ca/pbs/papers/bsbuild.html

[Horowitz and Munson, 1984]
Horowitz, E. and Munson, J. B. An Expansive View of Reusable
Software. IEEE Transactions on Software Engineering, volume SE-
10, Sept. 1984, pp. 479-487.

[IEEE 1471] Recommended Practice for Architectural Description of Software
Intensive Systems. ANSI/IEEE Standard 1471-2000.

[IEEE 610] IEEE Standard Glossary of Software Engineering Terminology
(R2002). IEEE Standard 610.12-1990.

[ISO 12207] R. Singh. International Standard ISO/IEC 12207: Software Life
Cycle Processes. June 1998.

[Ivkovic and Godfrey, 2002]
I. Ivkovic, M.W. Godfrey. Architecture Recovery of Dynamically
Linked Applications: A Case Study. In Proc. of the 10th International
Workshop on Program Comprehension 2002 (IWPC 2002), Jun.
2002.

[Jahnke et al, 1997] J. Jahnke, W. Schäfer, A. Zündorf. Generic fuzzy reasoning nets as
a basis for reverse engineering relational database applications. In
Proc. of the 6th European Software Engineering Conference
ESEC/FSE, 1997.

[Jain et al, 1999] A.K. Jain, M.N. Murty, P.J. Flynn. Data Clustering: A Review. In
ACM Computing Surveys, 31(3), Sept. 1999, pp. 264-323.

[Java, 2005] Java Technology homepage. Mar. 2005. http://java.sun.com/
[Jonyer et al, 2001] Jonyer, I., Cook, D. J., Holder, L. B. Graph-Based Hierarchical

Conceptual Clustering. In Journal of Machine Learning Research, 2,
2001, pp. 19-43.

[Kannan et al, 2004] R. Kannan, S. Vempala, A. Vetta. On Clusterings: Good, Bad and
Spectral. In Journal of the ACM, 51(3), May 2004, pp. 497–515.

[Kersemakers, 2005] R. Kersemakers. Architectural Pattern Recovery. Master’s thesis,
Technische Universiteit Eindhoven, Jan. 2005.

[Klaus, 2002] M. Klaus. Simplifying Code Comprehension for Legacy Code
Reuse. Embedded Developers Journal, Apr. 2002, pp. 8-13.

[Klein et al, 1999] T. Klein, U. Nickel, J. Niere, and A. Zündorf. From UML to Java And
Back Again. Technical Report tr-ri-00-216, University of Paderborn,
Paderborn, Germany, Sept. 1999.

[Korn et al, 1999] J. Korn, Y. Chen, E. Koutsofios. Chava: Reverse Engineering and
Tracking of Java Applets. In Proc. of the sixth Working Conference
on Reverse Engineering, Oct. 1999, pp. 314-326.

 122

[Koschke, 2000] R. Koschke. Atomic Architectural Component Recovery for Program
Understanding and Evolution. Institut für Informatik, Universität
Stuttgart, 2000.

[Koskinen, 2004] J. Koskinen. Software Maintenance Costs. University of Jyväsklä,
Finland, Sept. 2004.

[Krämer and Prechtelt, 1996]
C. Krämer, L. Prechtelt. Design recovery by automated search for
structural design patterns in object-oriented software. In Proc. of the
Working Conference on Reverse Engineering, 1996, pp. 208-215.

[Krikhaar et al, 1999] R. Krikhaar, A. Postma, A. Sellink, M. Stroucken, C. Verhoef. A
Two-phase Process for Software Architecture Improvement. In
Proc. of the International Conference on Software Maintenance
(ICSM’99), Aug./Sept. 1999, p. 371.

[Kruchten, 1995] P. Kruchten. Architectural Blueprints – The “4+1” View Model of
Software Architecture. In IEEE Software, 12 (6), Nov. 1995, pp. 42-
50.

[Kuznetsov and Obëdkov, 2001]
S.O. Kuznetsov, S.A. Obëdkov. Comparing performance of
algorithms for generating concept lattices. In Proc. of the 9th IEEE
International Conference on Conceptual Structures (ICCS ’01), July
2001, pp. 35-47.

[Lange, 2003] C.F.J. Lange. Empirical Investigations in Software Architecture
Completeness. Master’s Thesis, Technische Universiteit Eindhoven,
Department of Mathematics and Computing Science, Sept. 2003.

[Lanza, 2003a] M. Lanza. Object-Oriented Reverse Engineering. Ph.D. thesis,
Universität Bern, May 2003.

[Lanza, 2003b] M. Lanza. CodeCrawler — Lessons Learned in Building a Software
Visualization Tool. In Proc. of CSMR 2003, 2003, pp. 409-418.

[Lehman, 1996] M. Lehman. Laws of Software Evolution Revisited. In Proc. of the
Fifth European Workshop in Software Process Technology
(EWSPT'96), 1996, pp. 108-124.

[Lentz, 2004] A. Lentz. MySQL Storage Engine Architecture, Part 2: An In-Depth
Look. Apr. 2004. http://dev.mysql.com/tech-
resources/articles/storage-engine/part_2.html

[Lientz and Swanson, 1981]
B.P. Lientz, E.B. Swanson. Software Maintenance Management.
Addison- Wesley, Reading, MA, USA, 1981.

[Lindig, 2002] C. Lindig. Fast Concept Analysis. In G. Stumme, editors, Working
with Conceptual Structures - Contributions to ICCS 2000, Shaker
Verlag, Aachen, Germany, 2000.

[Keller et al, 1999] R.K. Keller, R. Schauer, S. Robitaille, P. Pagé. Pattern-Based
Reverse-Engineering of Design Components. In Proc. of the 21st
International Conference on Software Engineering (ICSE'99), May
1999, pp. 226-235.

[Kiran et al, 1997] G. Aditya Kiran, S. Haripriya, Pankaj Jalote. Effect of Object
Orientation on Maintainability of Software. In Proc. of the Int.
Conference on Software Maintenance, 1997, pp. 114-121.

[Klocwork, 2005] Klocwork inSight. Jan. 2005,
http://www.klocwork.com/products/insight.asp

[Lakhotia, 1996] A. Lakhotia. A unified framework for expressing software subsystem
classification techniques. In Journal of Systems and Software, 36,
Mar. 1997, pp. 211-231.

 123

[Macl and Havanas, 1990]
D. Mancl, W. Havanas, A Study of the Impact of C++ on Software
Maintenance, In Proc. of the IEEE Conference on Software
Maintenance, Nov. 1990, pp. 63-69.

[Mancoridis et al, 1999] S. Mancoridis, B.S. Mitchell, Y. Chen, E.R. Gansner. Bunch: A
Clustering Tool for the Recovery and Maintenance of Software
System Structures. In Proc. IEEE International Conference on
Software Maintenance (ICSM'99), 1999, pp. 50-59.

[Mansurov and Campara, 2003]
N. Mansurov, D. Campara. Extracting high-level architecture from
existing code with summary models. Applied Informatics 2003,
pp.905-912.

[McKee, 1984] J.R. McKee. Maintenance as a function of design. In Proc. of AFIPS
National Computer Conference, 1984, pp. 187-193.

[Mens and Tourwé, 2004]
K. Mens and T. Tourwé. Conceptual Code Mining. To appear in
Computer Languages, Systems & Structures. Submitted in May
2004.

[Mendonça, 1999] N. C. Mendonça. Software Architecture Recovery for Distributed
Systems. PhD Thesis, Imperial College, Department of Computing,
London, Nov. 1999.

[Meyer, 1998] B. Meyer. Object-Oriented Software Construction, 2nd edition.
Prentice-Hall, NJ, 1998.

[Michaud et al, 2001] J. Michaud, M.A. Storey, H. Müller. Integrating Information Sources
for Visualizing Java Programs. In Proc. of the International
Conference on Software Maintenance (ICSM'01), 2001, p. 250.

[Mitchell, 2002] B.S. Mitchell. A Heuristic Search Approach to Solving the Software
Clustering Problem. PhD thesis, Drexel University, Mar. 2002.

[Mitchell and Mancoridis, 2001]
B.S. Mitchell, S. Mancoridis. Comparing the Decompositions
Produced by Software Clustering Algorithms Using Similarity
Measurements. In Proc. of the International Conference on
Software Maintenance (ICSM'01), Nov. 2001.

[Mitchell and Mancoridis, 2002]
B.S. Mitchell, S. Mancoridis. Using Heuristic Search Techniques to
Extract Design Abstractions from Source Code. In Proc. of the
Genetic and Evolutionary Computation Conference (GECCO'02),
Jul. 2002.

[Moad, 1990] J. Moad. Maintaining the competitive edge. Datamation 61, 62, 64,
66, 1990.

[MSVC, 2005] Microsoft Visual C++ Developer Center. Apr. 2005,
http://msdn.microsoft.com/visualc/

[Müller et al, 1993] H. Müller, M. Orgun, S. Tilley, J. Uhl, A Reverse Engineering
Approach To Subsystem Structure Identification. In Journal of
Software Maintenance: Research and Practice, 5, 1993, pp. 181-
204.

[Müller and Klashinsky, 1988]
H.A. Müller, K. Klashinsky. Rigi - A System for programming-in-the-
large. In Proc. of the 10th International Conference on Software
Engineering (ICSE'88), 1988, pp. 80-86.

[Müller and Uhl, 1990] H.A. Müller, J.S. Uhl. Composing Subsystem Structures using (k,2)-
partite Graphs. In Proc. of the Conference on Software
Maintenance, Nov 1990, pp. 12-19.

[MySQL, 2005a] MySQL: The world's most popular open source database. Mar.
2005. http://www.mysql.com/

 124

[MySQL, 2005b] MySQL Connector/J. Mar. 2005,
http://www.mysql.com/products/connector/j/

[Naur and Randell, 1968] P. Naur, B. Randell Editors, Software Engineering: Report on a
Conference by the NATO Science Committee. NATO Scientific
Affairs Division, Brussels, Belgium, 1968.

[Nelson, 1996] M.L. Nelson. A Survey of Reverse Engineering and Program
Comprehension. In ODU CS 551 – Software Engineering Survey,
1996, p. 2.

[Niere et al, 2001] J. Niere, J.P. Wadsack, L. Wendehals. Design Pattern Recovery
Based on Source Code Analysis with Fuzzy Logic. Technical Report
tr-ri-01-222, University of Paderborn, 2001.

[Niere et al, 2003] J. Niere, J.P. Wadsack, L. Wendehals. Handling Large Search
Space in Pattern based Reverse Engineering. In Proc. of the 11th
IEEE International Workshop on Program Comprehension
(IWPC’03), 2003, p. 274.

[North and Koutsofios, 1994]
S. North, E. Koutsofios. Applications of Graph Visualization. In Proc.
Graphics interface, 1994, pp. 235-245.

[Nosek and Palvia, 1980] J. T. Nosek, P. Palvia. Software Maintenance Management:
Changes in the Last Decade. In Journal of Software Maintenance,
2(3), Sept. 1990, p. 157-174.

[O’Brien et at, 2002] L. O’Brien, C. Stoermer, C. Verhoef. Software Architecture
Reconstruction: Practice Needs and Current Approaches. SEI
Technical Report CMU/SEI-2002-TR-024, Software Engineering
Institute, Carnegie Mellon University, Aug. 2002.

[Paakki et al, 2000] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, A.I. Verkamo.
Software Metrics by Architectural Pattern Mining. In Proc. of the
International Conference on Software: Theory and Practice (16th
IFIP World Computer Congress), Beijing, China, Aug. 2000, pp.
325-332.

[Pal and Mitra, 2004] S.K. Pal, P. Mitra. Patterns Recognition Algorithms for Data Mining.
Chapman & Hall/CRC, 2004.

[Parnas, 1972] D.L. Parnas. On the Criteria To Be Used in Decomposing Systems
into Modules. In Communications of the ACM, 15(12), Dec. 1972,
pp. 1053-1058.

[Parnas et al, 1984] D.L. Parnas, P.C. Clements, D.M. Weiss. The Modular Structure of
Complex Systems. In Proc. of the 7th International Conference on
Software Engineering (ICSE’84), Mar. 1984, pp. 408-417.

[PBS, 2005] Portable Bookshelf. Feb. 2005, http://swag.uwaterloo.ca/pbs.
[Prechtelt et al, 2001] L. Prechtelt, B. Unger, W.F. Tichy, P. Brössler, L.G. Votta. A

Controlled Experiment in Maintenance Comparing Design Patterns
to Simpler Solutions. In IEEE Transactions on Software
Engineering, 27(12), Dec. 2001, p. 1134-1144.

[Prechtelt et al, 2002] L. Prechtelt, B. Unger-Lamprecht, M. Philippsen, W.F. Tichy. Two
Controlled Experiments Assessing the Usefulness of Design Pattern
Documentation in Program Maintenance. In IEEE Transactions on
Software Engineering, June 2002, pp. 595-606.

[Pressman, 1992] R.S. Pressman. Software Engineering: A Practitioner's Approach.
Third edition. McGraw-Hill International Editions, 1992.

[Quilici, 1995] A. Quilici. Reverse Engineering of Legacy Systems: A Path
Towards Success. In Proc. of the 17th International Conference on
Software Engineering (ICSE’95), Apr. 1995, pp. 333-336.

[Rigi, 2004] Rigi: A visual tool for understanding legacy systems. Dec. 2004,
http://www.rigi.csc.uvic.ca/.

 125

[Riva, 2000] C. Riva. Reverse Architecting: An Industrial Experience Report. In
Proc. of the Seventh Working Conference on Reverse Engineering
(WCRE'00), Nov. 2000, pp. 42-50.

[Rumbaugh, 1990] J.R. Rumbaugh, M.R. Blaha, W. Lorensen, F. Eddy, W. Premerlani.
Object-Oriented Modeling and Design. Prentice Hall, 1st edition Oct.
1990.

[Sartipi, 2001] K. Sartipi. Alborz: A query-based tool for software architecture
recovery. In Proc. of the IEEE International Workshop on Program
Comprehension, May 2001, pp. 115-116.

[Sartipi and Kontogiannis, 2002]
K. Sartipi, K. Kontogiannis. A user-assisted approach to component
clustering. In Journal of Software Maintenance: Research and
Practice (JSM), Jul./Aug. 2003, vol. 15, issue 4, pages 265-295.

[Sartipi and Kontogiannis, 2003]
K. Sartipi, K. Kontogiannis. Pattern-based Software Architecture
Recovery. In Proc. of the Second ASERC Workshop on Software
Architecture, Feb. 2003.

[Schwanke, 1991] R.W. Schwanke. An Intelligent Tool for Re-engineering Software
Modularity. In Proc. of the 13th International Conference on
Software Engineering, 1991, pp. 83-92.

[SEI, 2003] Software Engineering Institute. How Do You Define Software
Architecture? Jan. 2005,
http://www.sei.cmu.edu/architecture/definitions.html

[Shokoufandeh et al, 2004]
A. Shokoufandeh, S. Mancoridis, T. Denton, M. Maycock. Spectral
and meta-heuristic algorithms for software clustering. In Journal of
Systems and Software, accepted Mar. 2004, published online.

[Shtern and Tzerpos, 2004]
M. Shtern, V. Tzerpos. A Framework for Comparison of Nested
Software Decompositions. In Proc. of the 11th Working Conference
on Reverse Engineering (WCRE’04), Nov. 2004.

[Shull et al, 1996] F. Shull, W.L. Melo, V.R. Basili. An Inductive Method for
Discovering Design Patterns from Object-Oriented Software
Systems. Technical Report CS-TR-96-10, University of Maryland,
Computer Science Department, Oct 1999.

[Siff and Reps, 1997] M. Siff, T. Reps. Identifying Modules via Concept Analysis. In Proc.
of the International Conference on Software Maintenance (ICSM
'97), 1997, pp. 170-179.

[Siff and Reps, 1998] M. Siff, T. Reps. Identifying Modules via Concept Analysis. In
Technical Report TR-1337, Computer Sciences Department,
University of Wisconsin, Madison, WI, USA, 1998.

[Silberschatz et al, 2002] A. Silberschatz, H. Korth, S. Sudarshan. Database System
Concepts, 4th edition. McGraw-Hill Higher Education, 2002.

[Sim and Koschke, 2001] S. Elliott Sim, R. Koschke. WoSEF: Workshop on Standard
Exchange Format. In ACM SIGSOFT Software Engineering Notes,
26, Jan. 2001, pp. 44-49.

[Snelting] G. Snelting. Concept Lattices in Software Analysis. Universität
Passau.

[Snelting, 1996] G. Snelting. Reengineering of Configurations Based on
Mathematical Concept Analysis. In ACM Transactions on Software
Engineering and Methodology, 5(2), Apr. 1996, pp. 146-189.

[Snelting, 2000] G. Snelting. Software Reengineering Based on Concept Lattices. In
Proc. of the European Conference on Software Maintenance and
Reengineering (CSMR 2000), Mar. 2000, pp. 1-8.

 126

[SNIFF+, 2005] SNiFF+. Feb. 2005,
http://www.windriver.com/products/development_tools/ide/sniff_plus

[Sommerville, 2004] I. Sommerville. Software Engineering. 7th edition. Addison-Wesley,
2004.

[Storey et al, 2001] M.A. Storey, C. Best, J. Michaud. SHriMP Views: An Interactive
Environment for Exploring Java Programs. In Proc. of the Ninth Int.
Workshop on Program Comprehension (IWPC'01), 2001, p. 111.

[Stroustrup, 1997] B. Stroustrup. The C++ Programming Language, 3rd edition.
Addison-Wesley, 1997.

[Sun, 2005] Sun Microsystems Inc. Products and Technologies: Java
Technology. June 2005, http://java.sun.com/.

[Swanson and Chapin, 1995]
E.B. Swanson, N. Chapin. Interview with E. Burton Swanson. In
Journal of Software Maintenance 1995, 7(5), pp. 303-315.

[Tewari] R. Tewari. Empirical Investigation of Software Reuse in Object-
Oriented Systems. Temple University, Philadelphia, USA.

[Tilley et al, 2003] T. Tilley, R. Cole, P. Becker , P. Eklund. A Survey of Formal
Concept Analysis Support for Software Engineering Activities. In
Proc. of the First International Conference on Formal Concept
Analysis - ICFCA'03}, G. Stumme, Feb. 2003, Springer-Verlag.

[Tonella and Antoniol, 1999]
P. Tonella, G. Antoniol. Object Oriented Design Pattern Inference.
In Proc. of the International Conference on Software Maintenance
(ICSM’99), Sept. 1999, pp. 230-238.

[Tonella and Antoniol, 2001]
P. Tonella, G. Antoniol. Inference of Object Oriented Design
Patterns. In Journal of Software Maintenance and Evolution:
Research and Practice, 13(5), published online Oct., 2001, pp. 309-
330.

[Trevors and Godfrey, 2002]
A. Trevors, M.W. Godfrey. Architectural Reconstruction in the Dark.
Position paper, Workshop on Software Architecture Reconstruction
collocated with WCRE '02, Oct. 2002.

[Trifu, 2003] M. Trifu. Architecture-Aware, Adaptive Clustering of Object-Oriented
Systems. Diploma thesis, Forschungszentrum Informatik, Karlsruhe,
Germany, Sept. 2003.

[Turski, 1981] W. Turski. Software Stability. In Proc. of the 6th ACM Conference
on Systems Architecture.

[Tzerpos, 2005] Homepage of V.B. Tzerpos, Mar. 2005. http://www.cs.yorku.ca/~bil/
[Tzerpos and Holt, 1997] V. Tzerpos, R.C. Holt. The orphan adoption problem in architecture

maintenance. In Proc. of the fourth Working Conference on Reverse
Engineering (WCRE’97), Oct. 1997, pp.76-84.

[Tzerpos and Holt, 1998] V. Tzerpos, R. C. Holt. Software Botryology: Automatic Clustering of
Software Systems. In Proc. of the International Workshop on Large-
Scale Software Composition, Aug. 1998.

[Tzerpos and Holt, 1999] V. Tzerpos, R.C. Holt. MoJo: A distance metric for software
clusterings. In Proc. of the 6th Working Conference on Reverse
Engineering (WCRE’99), Oct. 1999, pp. 187-193.

[Tzerpos and Holt, 2000] V. Tzerpos, R.C. Holt. ACDC: An Algorithm for Comprehension-
Driver Clustering. In Proc. of the seventh Working Conference On
Reverse Engineering (WCRE’00), 2000, pp. 258-267.

 127

[Valtchev et al, 2003] P. Valtchev, D. Grosser, C. Roume, M.R. Hacene. Galicia: an open
platform for lattices. In Using Conceptual Structures: Contributions
to the 11th Intl. Conference on Conceptual Structures (ICCS'03), pp.
241-254, Shaker Verlag, (21-25 July) 2003.

[Viljamaa, 2002] J. Viljamaa. Automatic Extraction of Framework Specialization
Patterns. Licentiate thesis, Report C-2002-47, Department of
Computer Science, University of Helsinki, 2002.

[Viljamaa, 2003] J. Viljamaa. Reverse Engineering Framework Reuse Interfaces. In
Foundations of software Engineering, Proc. of the 9th European
Engineering Conference held jointly 10th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
2003, pp. 217-226.

[Wen and Tzerpos, 2003] Z. Wen. V. Tzerpos. An optimal algorithm for MoJo distance. In
Proc. of the 11th International Workshop n Program Comprehension
(IWPC’03), May 2003, pp. 227-235.

[Wen and Tzerpos, 2004a]
Z. Wen, V. Tzerpos. Evaluating similarity measures for software
decompositions. In Proc. of the International Conference on
Software Maintenance (ICSM’04), Sept. 2004, pp. 368-377.

[Wen and Tzerpos, 2004b]
Z. Wen, V. Tzerpos. An effectiveness measure for software
clustering algorithms. In Proc. of the 12th International Conference
on Program Comprehension (IWPC’04), Jun. 2004, p. 194

[Wendehals, 2003] L. Wendehals. Improving Design Pattern Instance Recognition by
Dynamic Analysis. In Proc. of the ICSE 2003 Workshop on Dynamic
Analysis (WODA), May 2003.

[Wiggerts, 1997] T.A. Wiggerts. Using Clustering Algorithms in Legacy Systems
Remodularization. In Proc. of the Fourth Working Conference on
Reverse Engineering (WCRE '97), 1997, p. 33.

[Wille, 1981] R. Wille. Restructuring lattice theory: An approach based on
hierarchies of concepts. In I. Rival, editor, Ordered Sets, pp. 445-
470. NATO Advanced Study Institute, Sept. 1981.

[Wong, 1998] K. Wong. Rigi User’s Manual, version 5.4.4, Jun. 1998.
[Wuyts, 1998] R. Wuyts. Declarative Reasoning about the Structure Object-

Oriented Systems. In Proc. of the TOOLS USA ’98 Conference,
1998, pp. 112-124.

[XDR, 2005] XML Standards Reference. Feb. 2005,
msdn.microsoft.com/library/default.asp?url=/library/en-
us/xmlsdk/html/xmconXDR.asp.

[XML, 2005] Extensible Markup Language (XML). Apr. 2005,
http://www.w3.org/XML/

[XSLT, 2005] XSL Transformations (XSLT). W3C Recommendation 16 Nov.
1999, http://www.w3.org/TR/xslt.

[Zelkowitz et al, 1979] M. Zelkowitz, A. Shaw, J. Gannon. Principles of Software
Engineering and Design. Prentice-Hall, 1979.

[Zhao, 2000] J. Zhao. A Slicing-Based Approach to Extracting Reusable Software
Architectures. In Proc. of the 4th European Conference on Software
Maintenance and Reengineering, Feb. 2000, pp. 215-223.

 128

Appendix 2 Schema of fact extraction output
This appendix describes the XDR schema [XDR, 2005] of the output of the “fact extraction”
module of the pattern detection prototype. The “context generation” module takes XML
satisfying this schema as input.

<?xml-stylesheet type="text/xsl" href="xdr-schema-NoSource.xsl"?>

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="Model" content="eltOnly" order="one">
 <element type="Classes"/>
 <element type="Relations"/>
</ElementType>

<ElementType name="Classes" content="eltOnly" order="one">
 <element type="Class"/>
</ElementType>

<ElementType name="Class" order="many">
 <attribute type="xmi.id"/>
 <attribute type="name"/>
</ElementType>

<ElementType name="Relations" content="eltOnly" order="one">
 <element type="A"/>
 <element type="I"/>
 <element type="C"/>
</ElementType>

<ElementType name="A" order="many">
 <attribute type="C1"/>
 <attribute type="C2"/>
</ElementType>

<ElementType name="I" order="many">
 <attribute type="C1"/>
 <attribute type="C2"/>
</ElementType>

<ElementType name="C" order="many">
 <attribute type="C1"/>
 <attribute type="C2"/>
</ElementType>

<AttributeType name="C1" dt:type="string"/>

<AttributeType name="C2" dt:type="string"/>

<AttributeType name="xmi.id" dt:type="string"/>

<AttributeType name="name" dt:type="string"/>

</Schema>

 129

Appendix 3 Galicia import schema
This appendix describes the import format of Galicia for binary contexts. The “context
generation” module of the pattern detection prototype produces XML that satisfies this XDR
schema [XDR, 2005].

<?xml-stylesheet type="text/xsl" href="xdr-schema-NoSource.xsl"?>

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="BIN" content="eltOnly" order="one">
 <element type="OBJS"/>
 <element type="ATTS"/>
 <element type="RELS"/>
</ElementType>

<ElementType name="OBJS" content="eltOnly" order="one">
 <element type="OBJ"/>
</ElementType>

<ElementType name="OBJ" order="many" content="textOnly">
 <attribute type="id"/>
</ElementType>

<ElementType name="ATTS" content="eltOnly" order="one">
 <element type="ATT"/>
</ElementType>

<ElementType name="ATT" order="many" content="textOnly">
 <attribute type="id"/>
</ElementType>

<ElementType name="RELS" content="eltOnly" order="one">
 <element type="REL"/>
</ElementType>

<ElementType name="REL" order="many">
 <attribute type="idObj"/>
 <attribute type="idAtt"/>
</ElementType>

<AttributeType name="id" dt:type="number"/>

<AttributeType name="idObj" dt:type="number"/>

<AttributeType name="idAtt" dt:type="number"/>

</Schema>

 130

Appendix 4 Galicia export schema
This appendix describes the XML export format Galicia uses for concept lattices with an XDR
schema [XDR, 2005].

<?xml-stylesheet type="text/xsl" href="xdr-schema-NoSource.xsl"?>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="LAT" content="eltOnly" order="one" model="closed">
 <attribute type="Desc"/>
 <attribute type="type"/>
 <element type="MINSUPP"/>
 <element type="OBJS"/>
 <element type="ATTS"/>
 <element type="NODS"/>
</ElementType>

<ElementType name="MINSUPP" order="one" content="textOnly">
 <attribute type="id"/>
</ElementType>

<ElementType name="OBJS" content="eltOnly" order="one">
 <element type="OBJ"/>
</ElementType>
<ElementType name="OBJ" order="many" content="textOnly">
 <attribute type="id"/>
</ElementType>

<ElementType name="ATTS" content="eltOnly" order="one">
 <element type="ATT"/>
</ElementType>
<ElementType name="ATT" order="many" content="textOnly">
 <attribute type="id"/>
</ElementType>

<ElementType name="NODS" content="eltOnly" order="one">
 <element type="NOD"/>
</ElementType>
<ElementType name="NOD" order="many">
 <attribute type="id"/>
 <element type="EXT"/>
 <element type="INT"/>
 <element type="SUP_NOD"/>
</ElementType>

<ElementType name="EXT" content="eltOnly" order="one">
 <element type="OBJ"/>
</ElementType>

<ElementType name="INT" content="eltOnly" order="one">
 <element type="ATT"/>
</ElementType>

<ElementType name="SUP_NOD" content="eltOnly" order="one">
 <element type="PARENT"/>
</ElementType>

<ElementType name="PARENT" content="eltOnly" order="one">
 <attribute type="id"/>
</ElementType>

<AttributeType name="id" dt:type="number"/>
<AttributeType name="Desc" dt:type="string"/>
<AttributeType name="type" dt:type="strng"/>

</Schema>

 131

Appendix 5 Architect decompositions
This appendix describes the decompositions produced by ten architects and designers of the
simple-blackboard application, which is described in paragraph 7.3.2. The decompositions are
shown in a simplified version of the class diagram, which places the classes in the same way
as Figure 39. The boxes around groups of classes denote the subsystems. In case a
hierarchical decomposition was produced, the hierarchy is visualised through containment of
the boxes. Besides the actual decomposition, the considerations that led to the decomposition
are also described.

1 Project organisation and class

functionality were the primary
criteria. Each team represents a
subsystem that is testable in
isolation (drivers/stubs).

First split in blackboard and clients.
Three client-subsystems are
identified, S1, S2, S3. Blackboard
split in data and control part, S4
and S5. Content1 and Content2
are not part of a specific client, so
they were added to S4.

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1

S5S4

S3 S2

 No hierarchy needed. Only generalisation and inheritance are considered; no
dependencies.

2 Class functionality was the primary
criterion. Three client subsystems
are identified that are conceptually
equivalent (S1, S2, S3). Each is an
object KSx with helper objects.

Blackboard is split in data and
control part (S5 and S4).
Content1 and Content2 are not part
of a specific client. Because they
are not related they are not placed
together in a subsystem. Since
they are small a separate
subsystem for each is not

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1 S2

S5

S4

S3

 necessary. Since they are related to the data they were added to S5.

3 Inter-class relations and class
functionality were the primary
criteria. The priority of the relations,
sorted from very important to
unimportant, is: composition,
inheritance, association,
dependency. The last two were not
considered while building the
decomposition.

Composition relations led to S1
and S2. S3 implements
comparable functionality. All client-
related classes together form S4.

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1

S7S6

S5 S4

S3

S2

 S6 is formed because of the inheritance relation with BlackboardContent. For functional
reasons S6 and Blackboard together form S7. S5 contains the remaining class.

 132

4 Initially a client-server view was
applied and the role of the classes
was considered. The blackboard
classes represent the server and
the others the clients. This led to
S4 and S5.

Next, all three clients are clients of
the blackboard, and are not directly
related to each other. Therefore S4
is decomposed further into S1, S2,
S3.

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1

S4

S3

S2

S5

5 Main decomposition criteria were

functionality, exchangeability and
allocation to development teams.

Initially a data (passive, S5),
processing (active, S4) and
remaining part (S6) are
distinguished. Functional
arguments led to S1, S2 and S3.
These are exchangeable
processing components.

S5 is not split further.

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2

S6

S5

S4

S3

S2S1

6 Class functionality was the main

decomposition criterion.

At the top level a division in generic
(S8) and specific classes (S5) is
made. S8 is split in a data (S7) and
a processing part (S6). S5 is split in
an I/O (S4) and a processing part
(S2). S4 is further split in an input
(S3) and an output part (S1).

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1

S8
S7

S6

S5
S4

S3

S2

7 The decomposition criteria were

functional differences, generality,
volatility and to a lesser extent size.
Initial division in generic and
specific parts. Volatile classes are
placed together to isolate change.
Small non-volatile parts that do not
justify a separate subsystem are
placed with generic parts. This led
to S4 and S1, S2 and S3.
S2 is not split because it is not very
complex. S1 is split into S5 and S6
because of the inheritance
relationship; S5 apparently is a
generic part

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S6

S5

S4

S3S2S1

 133

8 Development considerations and
functional arguments were the
main criteria. Subsystem
boundaries are placed where well-
defined interfaces are desired. All
three relation-types are considered
equally important, but execution-
dependencies are more important
than the other dependencies.

A client (S5) and a data part (S6)
are distinguished. Clients have
relationships with almost
everything except each other,

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S2S1

S4

S3

S6

S5

 giving S1, S2 and S3. Content is simple, so part of S6. Clients have much interaction with
KnowledgeSource, so separate subsystem (S4). Control could be part of S6 or S4. S4 is
chosen.

Alternative that was considered but not chosen: KSA, KSB and KSC form an interface to
the data. If they are generic A1, A2, B1, B2. C1, C2 and C3 could be placed in a library.

9 Functionality was the main
criterion, together with the
blackboard style. Subsystem
decomposition in data, control and
algorithm parts (S9 and S5, no
division algorithm-control found).

Three clients of data part found,
S1, S2 and S3. In case of a client-
server relation the server defines
the interface (unless there are
many servers), so Content1 and
Content2 are added to their
producers (S1 and S2). S4 is put

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2

S1

S8

S7S6

S5

S4

S3

S2

S2

S9

 separate since it contains a generic interface that is implemented by KSA, KSB and KSC.
If its classes are large, S9 is split into S6, S7 and S8.

10 Initial division in a generic (S6) and
a specific (S5) part with
KnowledgeSource and
BlackboardContent as re-use
interfaces. A blackboard structure
with clients is recognised.

Functional dependencies for clients
led to three clients, S1, S2 and S3.
All three relationship-types were
taken into account.
Content1 and Content2 are not
associated with a single client, so
they are added to special
subsystem (S4).

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1 S2

S6

S5
S4

S3

 134

Appendix 6 Clustering results for Grizzly & RIP Worker
This appendix gives the fifty parameter-tuples that produced the best clustering results for
Grizzly and the RIP Worker (see paragraph 7.3.2). Note that this does not necessarily include
the optimal parameter-tuple because a subset of the search-space has been investigated.

The columns labelled “pwa“,“pwg“,“pwd“,“pc“ and “pi“ contain the five user-specified parameters
of the Bunch Export module. The values of the boolean parameters, pc, pi, are denoted as “T”
and “F” for true and false respectively. The “MQ” and “EM” columns refer to the MoJoQuality
and EdgeMoJo metrics respectively. The column labelled “AV” contains the average value of
the metric for ten different clusterings. The column labelled “SD” contains the standard
deviation for these clusterings. The parameter-tuples are sorted ascending according to the
EdgeMoJo value. The left side of the table contains the best 25 tuples, and the right side the
other ones.

Grizzly
MQ (%) EM MQ () EM pwa pwg pwd pc pi

AV SD AV SD
 pwa pwg pwd pc pi

AV SD AV SD
2 5 5 F F 69 1,5 102 8,0 1 1 6 T F 69 1,2 104 6,7
1 3 2 F F 69 1,3 102 6,4 3 1 4 T T 68 1,6 104 8,4
0 0 6 T F 70 1,8 102 8,9 3 1 6 T T 68 0,9 104 3,8
2 3 5 F T 68 1,5 102 8,5 1 6 6 F F 68 0,9 104 4,8
1 4 3 F F 69 1,1 103 6,0 4 4 1 T F 68 1,7 104 8,7
3 6 5 F T 68 1,4 103 8,0 6 2 6 F T 69 1,2 104 6,4
4 4 3 F F 68 1,2 103 7,6 4 1 4 T F 69 1,7 104 6,1
3 2 4 F T 69 1,0 103 5,7 4 5 2 T T 68 1,4 104 6,7
6 5 4 F T 69 0,9 103 6,7 5 6 2 F F 68 1,5 104 6,6
1 2 3 F T 68 1,5 103 7,3 5 5 5 T F 69 1,1 104 4,2
3 3 1 F F 68 1,3 103 6,3 5 6 2 T T 68 1,6 104 7,5
6 2 5 F T 69 1,6 103 7,3 5 5 4 T T 68 1,5 104 7,4
3 6 1 F F 69 1,0 103 3,7 6 4 3 F T 69 1,3 104 4,5
0 0 2 F F 70 1,2 104 5,1 1 1 3 T F 69 1,5 105 6,8
6 2 1 T T 69 0,9 104 6,3 6 4 1 T T 68 1,5 105 6,3
1 5 5 T T 69 1,2 104 4,1 6 3 6 T F 68 1,5 105 7,5
4 2 5 F F 69 0,9 104 5,8 4 6 6 T T 69 1,0 105 3,8
6 1 6 F T 68 0,8 104 5,6 1 6 6 T F 68 1,1 105 8,6
0 0 1 T F 70 1,3 104 5,4 6 1 2 T T 68 1,2 105 3,0
2 1 2 T F 68 0,9 104 5,9 1 4 5 T T 69 1,7 105 5,3
1 3 6 T F 69 1,5 104 4,7 5 2 5 T F 69 1,3 105 4,5
2 1 2 F F 68 1,3 104 6,7 3 4 4 T T 68 1,6 105 6,3
1 5 3 T F 69 1,3 104 6,9 2 1 5 T F 69 1,1 105 3,1
2 6 3 T F 68 1,6 104 6,7 2 6 5 F F 69 0,9 105 3,1
4 4 4 T T 68 1,1 104 5,0 1 1 6 F F 68 1,5 105 7,7

Table 30: The fifty parameter-tuples that give the best clustering of Grizzly

 135

RIP Worker
MQ (%) EM MQ () EM pwa pwg pwd pc pi

AV SD AV SD
pwa pwg pwd pc pi

AV SD AV SD
0 5 2 F F 66 2,1 43 1,6 5 5 4 T T 66 1,7 43 1,6
2 4 3 F T 66 2,2 43 1,7 3 5 1 F F 66 2,4 43 2,1
1 6 4 T T 67 2,6 43 2,0 0 4 1 F F 66 2,1 43 1,6
1 5 2 F T 67 2,0 43 1,3 1 1 6 F T 66 2,3 43 1,9
2 4 1 T F 66 2,9 43 1,8 5 2 3 T T 65 2,7 43 1,9
1 4 1 T T 66 2,8 43 1,7 3 1 1 T F 66 2,7 43 2,0
0 1 1 T F 66 2,3 43 2,3 3 2 4 T T 65 1,9 43 2,5
1 5 6 F T 65 1,9 43 1,0 5 6 5 F F 65 1,8 43 1,2
6 3 4 T F 66 2,0 43 1,4 5 3 3 F T 67 2,3 43 1,8
1 1 5 T F 66 2,0 43 1,7 5 3 4 T F 66 1,7 43 1,2
3 3 2 T T 66 2,3 43 2,2 2 5 2 T T 65 2,3 43 1,5
3 3 4 T T 66 2,0 43 1,1 0 2 6 T F 65 2,1 43 1,3
4 1 1 T F 66 2,5 43 1,9 2 4 2 T T 65 2,6 43 1,7
4 4 4 T F 67 1,6 43 1,5 0 6 4 F F 66 1,9 43 2,6
5 1 6 T T 65 2,4 43 1,4 2 4 4 F F 66 2,4 43 2,4
6 1 6 F F 65 2,2 43 1,5 3 2 6 T F 66 3,1 43 3,7
4 6 1 T T 66 2,0 43 1,3 4 4 2 T T 66 3,1 43 4,2
4 5 4 T F 67 1,9 43 1,9 1 5 4 F F 66 2,4 43 2,1
3 1 2 F T 66 3,0 43 2,6 3 3 3 T T 65 2,2 43 1,9
4 6 2 F T 65 2,3 43 1,2 2 3 3 T T 66 2,6 43 2,3
1 4 1 T F 66 2,6 43 1,7 3 6 6 F F 66 1,9 43 2,0
0 1 3 T F 67 2,6 43 2,7 4 3 4 F T 66 2,3 43 2,4
4 4 5 F F 67 2,4 43 3,0 0 2 4 T F 65 2,4 43 2,0
2 1 2 F F 65 1,7 43 1,7 2 5 1 F T 65 1,8 43 1,2
1 1 6 T F 66 1,8 43 1,2 0 2 5 F F 65 2,1 44 1,6

Table 31: The fifty parameter-tuples that give the best clustering of the RIP Worker

 136

Appendix 7 Clustering results for Océ Controller
This appendix gives the clustering results for the Océ Controller (see paragraph 7.4), using
the same notation as in Appendix 6. Note that this does not necessarily include the optimal
parameter-tuple because a subset of the search-space has been investigated.

MQ (%) EM MQ (%) EM pwa pwg pwd pc pi AV SD AV SD
pwa pwg pwd pc pi AV SD AV SD

4 6 1 T T 61 0,6 1.639 18 4 6 2 F T 60 0,4 1.655 10
1 4 1 T T 61 0,5 1.645 17 3 3 2 T T 60 0,2 1.655 7
1 5 5 T T 60 0,6 1.646 24 4 1 1 T F 60 0,4 1.656 11
1 1 5 T F 60 0,5 1.647 23 3 1 2 F T 60 0,5 1.656 20
2 5 5 F F 60 0,5 1.648 17 4 4 4 T F 60 0,5 1.656 13
1 5 6 F T 60 0,5 1.649 18 4 4 3 F F 60 0,4 1.657 12
3 3 4 T T 60 0,4 1.649 23 6 2 1 T T 60 0,4 1.657 13
5 1 6 T T 60 0,3 1.650 8 2 1 2 T F 60 0,3 1.657 19
3 6 5 F T 60 0,6 1.650 17 2 3 5 F T 60 0,5 1.658 13
6 5 4 F T 60 0,4 1.652 13 1 6 4 T T 60 0,5 1.659 16
6 1 6 F T 60 0,6 1.652 15 1 4 3 F F 60 0,4 1.659 10
3 2 4 F T 60 0,5 1.652 18 1 5 2 F T 60 0,4 1.660 14
6 2 5 F T 60 0,3 1.653 10 4 2 5 F F 60 0,9 1.670 51
2 4 3 F T 60 0,6 1.653 16 3 6 1 F F 60 1,4 1.670 63
1 3 2 F F 60 0,5 1.653 18 3 3 1 F F 60 1,2 1.671 61
6 3 4 T F 60 0,5 1.653 12 0 5 2 F F 59 2,3 1.721 97
1 2 3 F T 60 0,4 1.654 8 0 1 1 T F 59 1,6 1.730 79
2 4 1 T F 60 0,5 1.654 19 0 0 6 T F 58 0,3 1.773 15
4 5 4 T F 60 0,5 1.654 16 0 0 1 T F 58 0,4 1.775 21
6 1 6 F F 60 0,3 1.655 13 0 0 2 F F 58 0,4 1.779 15

Table 32: Clustering result for version 7e of the Océ Controller

MQ (%) EM MQ (%) EM pwa pwg pwd pc pi AV SD AV SD
pwa pwg pwd pc pi AV SD AV SD

4 6 1 T T 62 0,5 1.477 30 3 3 1 F F 62 0,3 1.495 11
2 1 2 T F 62 0,5 1.481 17 6 5 4 F T 62 1,7 1.500 84
6 3 4 T F 62 0,5 1.481 18 3 6 5 F T 62 1,3 1.501 62
1 4 3 F F 62 0,5 1.484 17 4 4 1 T F 62 0,9 1.502 57
2 3 5 F T 62 0,4 1.484 13 1 1 5 T F 62 1,4 1.503 73
1 5 6 F T 62 0,5 1.484 17 3 1 2 F T 62 1,1 1.504 66
3 6 1 F F 62 0,5 1.484 13 1 6 4 T T 62 1,0 1.506 67
3 3 2 T T 62 0,6 1.486 19 4 5 4 T F 62 1,6 1.513 89
4 2 5 F F 62 0,7 1.486 17 2 4 1 T F 62 1,6 1.513 75
6 2 5 F T 62 0,3 1.486 8 3 3 4 T T 62 1,2 1.514 73
4 4 4 T F 62 0,6 1.486 17 6 1 6 F T 62 1,6 1.517 86
4 6 2 F T 62 0,4 1.489 18 4 4 3 F F 62 1,5 1.518 90
1 5 5 T T 62 0,4 1.489 21 1 4 1 T T 62 1,4 1.523 78
5 1 6 T T 62 0,3 1.490 8 1 5 2 F T 61 2,2 1.530 125
1 3 2 F F 62 0,3 1.490 12 0 5 2 F F 61 0,7 1.536 21
3 2 4 F T 62 0,4 1.491 15 2 4 3 F T 61 1,8 1.540 97
2 5 5 F F 62 0,5 1.492 17 0 1 1 T F 60 2,2 1.594 111
1 2 3 F T 62 0,4 1.493 16 0 0 2 F F 60 0,3 1.631 14
6 2 1 T T 62 0,4 1.493 14 0 0 6 T F 60 0,4 1.637 11
6 1 6 F F 62 0,5 1.493 11 0 0 1 T F 59 1,5 1.661 83

Table 33: Clustering result for version 8a of the Océ Controller

MQ (%) EM MQ (%) EM pwa pwg pwd pc pi AV SD AV SD
pwa pwg pwd pc pi AV SD AV SD

0 0 2 F F 74 1,1 1.223 107 2 4 1 T F 71 1,3 1.357 108
0 0 1 T F 74 1,0 1.229 107 6 1 6 F F 71 1,2 1.358 95
0 0 6 T F 73 0,5 1.266 59 6 1 6 F T 71 0,4 1.359 44
1 5 6 F T 72 2,1 1.287 152 3 3 4 T T 71 0,7 1.361 72
1 5 5 T T 72 1,3 1.293 107 3 3 1 F F 71 1,5 1.365 120
0 1 1 T F 72 0,8 1.302 74 6 2 1 T T 71 1,0 1.366 86
2 4 3 F T 72 1,2 1.311 99 3 2 4 F T 71 0,8 1.367 72
1 4 1 T T 72 0,9 1.311 72 4 4 4 T F 71 0,4 1.372 44
2 3 5 F T 72 1,4 1.315 121 1 3 2 F F 71 0,5 1.372 49

 137

1 6 4 T T 72 1,4 1.315 119 4 6 1 T T 71 0,5 1.373 49
1 2 3 F T 72 1,1 1.316 96 6 3 4 T F 71 0,4 1.374 46
0 5 2 F F 72 1,2 1.335 111 4 1 1 T F 71 0,7 1.376 70
6 5 4 F T 72 1,2 1.335 111 3 6 1 F F 71 0,8 1.377 67
4 4 3 F F 72 1,4 1.340 114 1 4 3 F F 71 0,5 1.379 48
4 6 2 F T 71 0,7 1.345 65 5 1 6 T T 71 0,4 1.380 42
3 6 5 F T 71 0,7 1.346 64 3 1 2 F T 71 0,8 1.380 71
2 1 2 T F 71 1,0 1.347 86 1 1 5 T F 71 0,4 1.381 42
2 5 5 F F 71 0,4 1.347 43 1 5 2 F T 71 0,6 1.383 55
3 3 2 T T 71 0,9 1.353 85 4 2 5 F F 71 0,3 1.393 40
6 2 5 F T 71 0,5 1.354 46 4 5 4 T F 71 0,9 1.398 85

Table 34: Clustering result for class-relations-intersection of version 7e and 1

MQ (%) EM MQ (%) EM pwa pwg pwd pc pi AV SD AV SD
pwa pwg pwd pc pi AV SD AV SD

0 0 6 T F 78 0,7 950 75 6 1 6 F T 76 0,8 1.072 73
0 0 1 T F 78 0,5 958 46 5 1 6 T T 76 0,4 1.075 40
0 0 2 F F 78 0,5 981 64 6 1 6 F F 76 0,7 1.075 57
0 1 1 T F 77 1,0 1.006 87 4 2 5 F F 76 0,6 1.076 48
1 6 4 T T 77 0,7 1.007 70 3 3 1 F F 76 0,7 1.077 59
2 4 3 F T 77 0,9 1.016 84 2 1 2 T F 76 0,8 1.077 65
4 6 1 T T 77 1,0 1.022 97 2 3 5 F T 76 0,7 1.079 57
3 2 4 F T 76 1,2 1.031 104 2 4 1 T F 76 0,9 1.079 80
1 5 5 T T 76 1,0 1.033 91 1 2 3 F T 76 0,7 1.080 64
3 1 2 F T 76 1,2 1.038 107 6 3 4 T F 76 0,6 1.083 54
0 5 2 F F 76 0,9 1.039 83 1 4 3 F F 76 0,7 1.085 61
3 3 2 T T 76 0,7 1.039 63 4 4 3 F F 76 0,5 1.085 40
6 2 1 T T 76 1,0 1.040 89 1 1 5 T F 76 0,5 1.086 45
6 5 4 F T 76 0,8 1.041 85 3 6 1 F F 76 0,7 1.091 58
3 3 4 T T 76 0,7 1.043 66 1 5 6 F T 76 0,5 1.093 43
1 5 2 F T 76 0,9 1.046 84 4 1 1 T F 76 0,6 1.102 51
4 6 2 F T 76 0,9 1.046 78 3 6 5 F T 76 0,2 1.105 29
6 2 5 F T 76 0,8 1.051 65 4 4 4 T F 76 0,3 1.115 27
4 5 4 T F 76 0,8 1.059 65 1 4 1 T T 75 0,2 1.122 21
2 5 5 F F 76 0,7 1.062 68 1 3 2 F F 75 0,4 1.126 31

Table 35: Clustering result for class-relations-intersection of version 8a and 1

MQ (%) EM MQ (%) EM pwa pwg pwd pc pi AV SD AV SD
pwa pwg pwd pc pi AV SD AV SD

6 2 1 T T 60 0,7 1.643 28 3 3 1 F F 60 0,4 1.659 16
1 5 5 T T 60 0,3 1.645 23 1 5 6 F T 60 0,4 1.660 12
3 3 4 T T 60 0,6 1.647 30 3 6 1 F F 60 0,3 1.661 19
1 5 2 F T 60 0,5 1.651 17 6 2 5 F T 60 0,5 1.661 12
4 4 3 F F 60 0,5 1.652 23 6 1 6 F T 60 0,4 1.662 13
1 1 5 T F 60 0,5 1.652 25 2 3 5 F T 60 0,5 1.663 13
4 5 4 T F 60 0,5 1.654 16 6 3 4 T F 60 0,6 1.663 21
4 6 2 F T 60 0,6 1.654 14 2 1 2 T F 60 0,4 1.663 9
2 5 5 F F 60 0,5 1.655 24 3 3 2 T T 60 0,4 1.664 18
3 1 2 F T 60 0,5 1.655 14 1 4 3 F F 60 0,6 1.665 17
3 6 5 F T 60 0,3 1.655 9 1 3 2 F F 60 0,5 1.667 14
1 4 1 T T 60 0,4 1.656 17 3 2 4 F T 60 1,5 1.672 65
1 6 4 T T 60 0,4 1.656 14 2 4 3 F T 60 1,0 1.684 81
4 6 1 T T 60 0,3 1.656 14 2 4 1 T F 60 1,0 1.684 57
5 1 6 T T 60 0,4 1.657 23 4 2 5 F F 59 1,3 1.686 77
6 5 4 F T 60 0,4 1.657 8 0 5 2 F F 59 0,6 1.707 17
4 1 1 T F 60 0,5 1.657 18 0 1 1 T F 59 0,6 1.707 17
1 2 3 F T 60 0,5 1.658 15 0 0 2 F F 58 0,4 1.787 27
6 1 6 F F 60 0,4 1.659 14 0 0 6 T F 58 0,3 1.788 18
4 4 4 T F 60 0,4 1.659 10 0 0 1 T F 57 1,0 1.804 51

Table 36: Clustering result for class-relations-intersection of version 7e and 7d

MQ (%) EM MQ (%) EM pwa pwg pwd pc pi AV SD AV SD
pwa pwg pwd pc pi AV SD AV SD

6 1 6 F T 59 0,3 1.643 26 6 2 1 T T 59 0,4 1.662 22
4 6 2 F T 59 0,4 1.645 27 6 1 6 F F 59 0,4 1.663 15
2 4 3 F T 59 0,4 1.649 10 4 4 3 F F 59 0,4 1.663 10

 138

6 5 4 F T 59 0,4 1.651 12 1 4 1 T T 59 0,3 1.664 16
3 3 1 F F 59 0,3 1.652 16 1 3 2 F F 58 0,6 1.665 17
1 6 4 T T 59 0,4 1.653 17 1 5 6 F T 59 0,5 1.666 16
1 2 3 F T 59 0,3 1.653 14 4 4 4 T F 59 0,5 1.666 19
1 5 5 T T 59 0,4 1.654 16 3 1 2 F T 59 0,5 1.666 19
6 2 5 F T 59 0,5 1.655 18 4 6 1 T T 59 0,3 1.669 15
3 6 1 F F 59 0,5 1.655 12 6 3 4 T F 58 1,3 1.669 55
2 5 5 F F 59 0,4 1.657 15 4 5 4 T F 58 1,4 1.674 68
1 1 5 T F 59 0,6 1.657 13 3 3 2 T T 58 1,7 1.675 69
4 1 1 T F 59 0,4 1.657 14 5 1 6 T T 58 1,3 1.679 54
2 1 2 T F 59 0,2 1.657 13 1 4 3 F F 58 1,3 1.682 64
2 4 1 T F 59 0,4 1.658 11 2 3 5 F T 58 1,4 1.689 73
4 2 5 F F 59 0,4 1.658 13 0 1 1 T F 58 0,6 1.704 18
1 5 2 F T 59 0,5 1.659 20 0 5 2 F F 57 0,6 1.718 18
3 3 4 T T 59 0,5 1.659 13 0 0 2 F F 56 0,6 1.799 28
3 2 4 F T 59 0,3 1.659 11 0 0 1 T F 56 0,4 1.801 26
3 6 5 F T 59 0,5 1.660 14 0 0 6 T F 56 0,5 1.812 18

Table 37: Clustering result for class-relations-intersection of version 8a and 7e

MQ (%) EM MQ (%) EM pwa pwg pwd pc pi AV SD AV SD
pwa pwg pwd pc pi AV SD AV SD

3 3 4 T T 63 0,6 1.459 19 4 6 2 F T 63 0,3 1.471 10
4 4 3 F F 63 0,4 1.460 14 1 6 4 T T 63 0,4 1.471 11
3 6 1 F F 63 0,3 1.461 9 2 3 5 F T 62 0,5 1.472 17
1 4 3 F F 63 0,3 1.462 12 2 1 2 T F 63 0,4 1.473 9
6 5 4 F T 63 0,4 1.462 9 6 3 4 T F 62 0,6 1.476 23
6 1 6 F F 63 0,4 1.462 10 4 4 4 T F 62 0,5 1.478 16
1 5 5 T T 63 0,5 1.463 18 3 6 5 F T 63 1,0 1.480 47
4 2 5 F F 63 0,7 1.463 18 1 2 3 F T 63 1,6 1.483 96
2 4 1 T F 63 0,4 1.463 13 3 3 1 F F 62 1,2 1.488 76
2 5 5 F F 63 0,4 1.464 10 1 5 2 F T 62 1,1 1.488 60
4 5 4 T F 63 0,3 1.464 11 1 3 2 F F 62 1,1 1.492 69
1 4 1 T T 63 0,4 1.465 10 3 3 2 T T 62 1,2 1.500 65
5 1 6 T T 63 0,4 1.465 13 6 1 6 F T 62 1,3 1.501 93
6 2 5 F T 63 0,4 1.465 14 1 5 6 F T 62 1,0 1.501 77
3 1 2 F T 63 0,5 1.466 11 0 1 1 T F 62 0,5 1.513 21
4 1 1 T F 63 0,5 1.468 14 4 6 1 T T 62 1,7 1.524 114
2 4 3 F T 62 0,5 1.469 16 0 5 2 F F 61 1,5 1.535 85
6 2 1 T T 63 0,5 1.469 17 0 0 1 T F 60 1,3 1.605 79
3 2 4 F T 63 0,4 1.470 12 0 0 6 T F 60 1,4 1.613 73
1 1 5 T F 63 0,5 1.470 20 0 0 2 F F 60 1,3 1.620 74

Table 38: Clustering result for class-relations-union of version 8a and 1

MQ (%) EM MQ (%) EM pwa pwg pwd pc pi AV SD AV SD
pwa pwg pwd pc pi AV SD AV SD

4 4 3 F F 63 0,4 1.459 25 6 2 1 T T 63 0,5 1.478 19
6 3 4 T F 63 0,4 1.467 15 6 1 6 F T 62 0,4 1.482 13
4 6 1 T T 63 0,4 1.468 15 3 3 2 T T 62 0,4 1.483 14
6 1 6 F F 62 0,2 1.469 21 1 5 5 T T 62 0,3 1.483 9
3 6 1 F F 63 0,3 1.469 8 3 1 2 F T 62 0,3 1.484 15
6 5 4 F T 63 0,4 1.471 16 5 1 6 T T 62 0,3 1.485 9
2 1 2 T F 63 0,4 1.471 30 4 6 2 F T 62 0,5 1.486 16
6 2 5 F T 62 0,3 1.472 14 1 5 2 F T 62 0,4 1.487 12
2 5 5 F F 63 0,5 1.472 15 1 3 2 F F 62 0,7 1.487 24
3 3 1 F F 63 0,4 1.473 13 1 6 4 T T 62 1,2 1.495 64
1 4 3 F F 63 0,5 1.473 16 2 3 5 F T 62 1,4 1.497 91
3 3 4 T T 63 0,3 1.474 9 4 1 1 T F 62 1,2 1.501 72
1 5 6 F T 62 0,4 1.474 14 0 1 1 T F 62 0,5 1.502 35
1 1 5 T F 62 0,3 1.475 15 3 2 4 F T 62 1,3 1.504 86
2 4 1 T F 62 0,3 1.475 12 4 4 4 T F 62 1,7 1.505 87
2 4 3 F T 62 0,4 1.476 13 4 2 5 F F 62 1,5 1.507 87
1 2 3 F T 63 0,4 1.476 21 0 5 2 F F 61 1,9 1.558 102
1 4 1 T T 62 0,2 1.477 10 0 0 6 T F 60 0,2 1.595 19
3 6 5 F T 62 0,4 1.477 13 0 0 2 F F 60 0,3 1.600 19
4 5 4 T F 63 0,6 1.477 15 0 0 1 T F 60 1,0 1.622 68

Table 39: Clustering result for class-relations-union of version 8a and 7e

