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A Abstract  
The architecture of a software system represents a blueprint of the system. Having an up to 
date architecture description is an important prerequisite for software maintenance, which 
represents a large portion of a software project’s total costs. In practice however such a 
description is often not available. 
 
This thesis focuses on reconstructing the as-built architecture of large object-oriented 
systems from their source code. In literature several types of methods for this are described, 
which are summarised in this thesis. After an extensive literature study this thesis describes 
two case studies that apply the two most prominent automatic methods, pattern detection and 
architectural clustering, to a large industrial object-oriented system called the Océ Controller.  
 
Pattern detection methods discover recurring solutions in a system’s implementation, for 
example design patterns in object-oriented source code. Usually this is done with a pattern 
library. This has the disadvantage that the precise implementation of the patterns must be 
known in advance. The method used in our first case study does not have this disadvantage. 
It uses a mathematical technique called formal concept analysis and is applied to find 
structural patterns in two subsystems of the Océ Controller. The case study shows that it is 
possible to detect frequently used structural design constructs without upfront knowledge. 
However, even the detection of relatively simple patterns in relatively small pieces of software 
takes a lot of computing time. Since this is due to the complexity of the applied algorithms, 
applying the method to large software systems like the complete Océ Controller is not 
practical. They can be applied to its subsystems though, which are about five to ten percent of 
its size. 
 
Architectural clustering uses mathematical clustering to group closely related source code 
elements into higher-level abstractions, usually for procedural software. In our second case 
study clustering is used to group classes of an object-oriented system into subsystems. The 
clustering process is based on the structural relations between the classes. More precisely, 
on associations, generalizations and dependencies. The clustering is performed with a third 
party tool called Bunch, which is a clustering tool for procedural software that, to our 
knowledge, has not been previously applied to object-oriented software. In the case study the 
clustering method has been used to reconstruct the architecture of the last two versions of the 
Océ Controller. Compared to other clustering methods the results come relatively close to the 
result of a manual reconstruction. However, some manual refinement is still needed. 
Performance wise the clustering takes a significant amount of time, but not too much to make 
it unpractical.  
 
The clustering is based on the structural relations between the classes. To our knowledge no 
work is published on the importance of the different relationship-types for the clustering result 
and how best to incorporate this information in the clustering process. We experimented with 
different combinations of relationships and different ways to use this information in the 
clustering process. The results clearly show that dependency relations are vital to achieve 
good clusterings.  
 
To our knowledge clustering methods reported in literature are always based on information 
of a single version. If multiple versions of a system have been released this leaves a lot of 
information unused. In our case study we based the clustering on information from multiple 
versions and compared the result to that obtained when basing the clustering on a single 
version. We experimented with several combinations of versions. If the clustering was based 
on relations that were present in both the reconstructed and the first version this led to a 
significantly better clustering result compared to that obtained when using only information 
from the reconstructed version.  
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B Preface 
In the summer of 2004 I was discussing the possibilities for a graduation assignment with 
various people at Océ. Most assignments were in the field of improving an existing system, or 
determining how a system has been implemented. The latter was necessary to facilitate the 
further evolution of these systems. Typically, the documentation was not up to date with the 
implementation, and the systems were relatively large and complex. Since an up to date 
description of a system’s essential parts is a prerequisite for successful evolution, we decided 
to focus on the reconstruction of software architectures.  
 
A software architecture represents a blueprint of a software system that describes its 
fundamental organisation. Architecture reconstruction recovers lost parts of this blueprint. The 
term “architecture” raises the analogy to construction architectures of, for example, buildings. 
When buildings require extensions or renovations, the builders need to understand the 
existing structure. For example they need to know the locations of pipes and support beams, 
and the strength of foundations. Otherwise they risk damaging the existing building during 
their work. Therefore the builders study the existing structure before making any changes. 
Architecture reconstruction of software systems does the same of software. It recovers the 
architecture of an existing software system with the aim to facilitate future changes.  
 
During the project we focussed on the reconstruction of the architecture of large software 
systems. The size of these systems places and extra burden on the reconstruction process. 
In two case studies we applied two automatic architecture reconstruction techniques to a 
large software system. The two techniques have in common that they reduce the amount of 
information given to developers, yet preserve the essence of the architecture. Initially we 
focussed on the detection of design patterns that are frequently used in the implementation. 
Knowledge of these design patterns can be used to understand systems more efficiently. 
After some disappointing results that were mainly due to the inherent complexity of the used 
algorithms, we shifted our focus to another frequently used reconstruction technique called 
architectural clustering. This technique groups the structural elements of a system into 
abstract entities. This is necessary to prevent developers from being overwhelmed by the 
sheer size of the system. The grouping process heuristically optimises generally accepted 
design criteria, similar to what a human would do. 
 
I want to express my gratitude to my advisor Eric Dortmans and my supervisor Lou Somers 
for their support and constructive comments during the assignment. Also, I want to thank 
Michel Chaudron and Teade Punter for taking place in my examination committee. 
Additionally, I want to thank Rob Kersemakers and Wim Couwenberg for their constructive 
comments on an early version of this document.  
Despite their busy work ten designers and architects made time to participate in an 
experiment in which the architecture of a small program is reconstructed. I want to thank 
Jacques Bergmans, Patrick Vestjens, Marvin Brunner, Erwin van der Linden, Wim 
Couwenberg, Michel de Groot, Peter Nacken, Jantinus Woering, Erik Scheppink and Eric 
Dortmans for their participation.  
This thesis completes my study at Eindhoven Technical University. I want to thank my family, 
my friends, and my colleagues at Océ Research & Development for their help and support 
during this period. 
 
Andreas Wierda 
 
Venlo, June 2005 
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1 Introduction 
This chapter discusses the assignment, the system that is analyzed in the two case studies 
described in this thesis, and the structure of this document. 

1.1 Context 
The subject system for the two case studies described in this thesis is an Océ Controller. 
Such a controller consists of general-purpose hardware on which software of Océ and third 
parties is running. Its main task is to control (physical) devices such as a print- and scan-
engine, and act as an intermediate between them and the customer network. This is 
illustrated in Figure 1, where the blocks represent systems in the environment of the controller 
and the lines some physical connection between two or more systems. 
 

Workstation

Print
Engine

Scan
Engine

Océ
Controller

Local User
Interface

Network

Océ functionality

 
Figure 1: Océ Controller context 

 
The Océ Controller handles the workflow within an Océ multi-functional device. Typical tasks 
of the Océ Controller are: 
• Reception of postscript files the user sent from a workstation and the conversion of these 

files to a bitmap format the Print Engine accepts. In this conversion the settings specified 
by the user are taken into account. 

• Initialise the Scan and Print Engine for a copy-job and control the workflow during the 
execution of the job. 

• Provide job- and queue-management functions to the Local User Interface. 
• Handling network connectivity to the network of the customer. For this task the controller 

supports various protocols, including TCP/IP, SMB, FTP, HTTP and SNMP. 
• Provide a remote user interface (web based). 

1.2 Software characteristics 
The software running on the Océ Controller has been written in multiple programming 
languages, but mostly in C++ [Stroustrup, 1997].  An as-designed architecture is available, 
but it is not complete and large parts of the architecture documentation are not consistent with 
the implementation [Lange, 2003].  
 
Table 1 shows the characteristics of the Océ Controller and two of its subsystems, Grizzly 
and RIP Worker. Because of performance limitations it was not feasible to apply the design 
pattern detection described in chapter 5 to the complete Controller. Instead, it has been 
applied to these two subsystems. The Grizzly subsystem [Delnooz and Vrijnsen, 2003] 
provides a framework for prototyping on the Océ Controller. The RIP Worker subsystem 
[DVRIP, 2002] transforms Postscript files into printable bitmaps, taking the print-settings the 
user specified into account (“ripping”). 
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The architectural-clustering described in chapter 6 has been applied to the complete Océ 
Controller. Because this process uses input from multiple versions, Table 1 gives the statistics 
for the first (1) and the last (8a) version of the Océ Controller. 
 

 Controller
(v. 1) 

Controller
(v. 8a) 

Grizzly RIP  
Worker 

Classes 1.545 2.661 234 108 
Header and source files 4.378 7.549 268 334 
Functions 21.711 40.449 2.037 1.857 
Lines of source code (*1000) 453 932 35 37 
Executable statements (*1000) 167 366 18 16 

Table 1: Software characteristics 

1.3 Assignment 
The research questions that led to this thesis were: 

1. Which methods are available for software architecture reconstruction? 
2. Can these methods be used to reconstruct the architecture of the Océ Controller? 
3. How good are the results? 
4. How can these methods be improved? 

 
[Kersemakers, 2005] reconstructs the architecture of the Océ Controller by detecting 
instances of architectural styles and design patterns in the source code. The implemented 
approach uses a pattern library that specifies the patterns searched for. The work described 
in this thesis builds on this work and complements it.  
 
The Océ Controller suffers from several of the typical legacy problems discussed in 
paragraph 2.2. In discussions with developers, issues like limited understanding of the 
system, obsolete documentation, unexpected dependencies and code smells are mentioned. 
The size of the system implies two important requirements for the reconstruction methods: 
• They must work automatic or semi-automatic, and not completely manual. 
• They must be scalable enough to handle large systems like the Océ Controller. 
Furthermore, the fact that multiple programming languages are used in the Océ Controller 
implies the requirement that the methods must be language independent. 
 
To answer the above questions the following research approach was used. We started with a 
literature study on architecture reconstruction. From this we concluded that pattern detection 
and architectural clustering seemed suitable for the recovery of the architecture of the Océ 
Controller. To validate this assumption both methods have been applied to the Océ 
Controller, leading to the conclusions in chapter 8. 

1.4 Report structure 
This report is structured as follows. After the introduction in chapter 1, chapter 2 elaborates on 
the background of architecture reconstruction. Architecture reconstruction is a form of reverse 
engineering that aims to describe a system in terms of higher-level abstractions beyond those 
obtained from the source-code itself. Reverse engineering techniques are often applied to 
legacy software, to reconstruct lost knowledge in order to ease maintenance. 
 
Chapter 3 describes several general approaches for architecture reconstruction reported in 
literature. The detection of design patterns and architectural clustering are the two most 
prominent approaches for automatic architecture reconstruction.  
 
Chapter 4 describes pattern detection methods reported in literature, after which chapter 5 
describes a case study that applies this theory. It attempts to reconstruct an architectural view 
of the Océ Controller by detecting frequently used design constructs in the source code. 
Unlike many other methods for detecting design pattern instances in source code, the method 
used in this case study does not require upfront knowledge on the expected patterns.  
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Chapter 6 describes architectural clustering methods reported in literature. This theory is 
applied in chapter 7, where a case study that uses clustering to reconstruct an architectural 
view of the Océ Controller from its source code is described. Clustering techniques discover a 
natural ordering of a set of elements. In the described case study, the elements are classes 
and the ordering is based on the structural relations between the classes.  
 
Finally, chapter 8 draws conclusions from the two case studies and describes future work.  
 
This thesis comes with several appendices. Appendix 1 lists the references. The next three 
appendices describe the output formats of the pattern detection prototype’s modules. This 
prototype was used during the case study described in chapter 5.  
Appendix 5 describes decompositions of a small sample application that are created by 
experienced architects. These are the result of the experiment described in paragraph 7.3.2. 
Appendix 6 and Appendix 7 describe results of the architectural clustering case study 
discussed in chapter 6. The first describes the results for two subsystems of the Océ 
Controller and the second for the complete Océ Controller. 
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2 Problem background 
This chapter discusses the role of architecture reconstruction in the software lifecycle. In this 
context subjects like software maintenance, legacy software, reverse engineering and 
software architecture are discussed. 

2.1 Software maintenance 
This paragraph discusses software maintenance, its costs, problems, and its role in the 
software lifecycle. 

2.1.1 Software maintenance in the software lifecycle 
Throughout the software lifecycle several processes can be distinguished. In the primary 
process1 of the software lifecycle [ISO 12207] distinguishes among others the following sub-
processes: 
1. Development  
2. Operation  
3. Maintenance  
 
Regardless of the precise lifecycle model that is used, maintenance is an integral part of the 
software lifecycle. Both in scientific and software engineering literature there is consensus 
that maintenance accounts for a large portion of the total costs of a software project. Based 
on case studies and research in industrial projects it is estimated that 50-90% of the total 
software costs is spent on maintenance. Table 2 lists the results of several studies on this 
subject. References marked with * are cited by [Koskinen, 2004]. Although definition 
differences make the figures hard to compare, it is clear that software maintenance costs 
represent a very large part of the total software costs. 
 

[Erlikh, 2000] software costs for system maintenance and 
evolution / total software costs 

85-90% 

[Chikovsky and Cross, 1990] software maintenance costs / total life-cycle 
costs 

50-90% 

[Moad, 1990]* software costs for system maintenance and 
evolution / total software costs 

>90% 

[McKee, 1984] software maintenance effort / total available 
software engineering effort. 

65-75% 

[Horowitz and Munson, 1984] software maintenance costs / total life-cycle 
costs 

72% 

[Lientz and Swanson, 1981]* staff time spent on maintenance / total time >50% 
[Nosek and Palvia, 1980] software costs for system maintenance and 

evolution / total software costs 
60-80% 

[Sommerville, 2004] software maintenance costs / total software 
engineering effort for long-lived systems 

75-80% 

[Zelkowitz et al, 1979]* maintenance costs / total software costs 67% 

Table 2: Proportional software maintenance costs 

2.1.2 Definition 
Software maintenance not only comprises of correcting faults, but also of performing 
adaptations to keep the software fit for use. The IEEE definition of software maintenance is 
"the process of modifying a software system or component after delivery to correct faults, 
improve performance or other attributes, or adapt to a changed environment" [IEEE 610]. 
 

                                                      
1 Besides the primary process [ISO/IEC 12207] also distinguishes supporting and 
organizational processes. 
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In software maintenance literature three types of software maintenance are commonly 
distinguished [Lientz and Swanson, 1981], [Swanson and Chapin, 1995]: 
• Corrective maintenance is concerned with fixing reported errors in the software. 

Empirical studies show that this accounts for 17% of the maintenance costs2. 
• Adaptive maintenance is concerned with adapting the software to changes in the 

operating environment (e.g. platform and operating system changes). Such changes can 
violate assumptions embedded in the design of the software, leading to unexpected 
behaviour. According to Lehman's law of continuing change these type of adaptations are 
unavoidable for software in real world applications: “an E-Type3 program that is used 
must be continually adapted else it becomes progressively less satisfactory” [Lehman, 
1996]. Adaptive maintenance accounts for 18% of the total maintenance costs2. 

• Perfective maintenance is concerned with implementing new functional or non-
functional requirements. This accounts for 65% of the maintenance effort2. Lehman's law 
of continuing growth states that "the functional content of a program must be continually 
increased to maintain user satisfaction over its lifetime" [Lehman, 1996]. [Turski, 1981] 
pointed out that this is in fact an abuse of the term maintenance: the addition of a new 
wing to a building is never called maintenance of that building. Therefore the term 
evolution is actually more appropriate [Koschke, 2000]. 

 
[Baldo, 1995] identifies two other types of software maintenance; preventive and structural 
maintenance. Preventive maintenance is concerned with activities that prolong the 
effectiveness and reliability of the system. Structural maintenance is the modification of 
software with the aim to improve its future maintainability. 

2.1.3 Program understanding during maintenance 
From the above it is clear that software maintenance is an important part of the software 
lifecycle. The constant need for changes identified by Lehman's law of continuing change 
leads to continuous modification of a program throughout its lifetime. During this process the 
interactions and dependencies between system elements increase in an unstructured way, 
increasing the system entropy4. Lehman's law of increasing complexity states that “a 
program's complexity increases as it evolves, unless work is done to maintain or reduce it… If 
this growth in complexity is not constrained the program will take progressively more effort to 
maintain” [Lehman, 1996]. 
 
Developers performing maintenance usually start by understanding the problem and the 
concerned parts of the software. The gradual deterioration of the software’s internal structure 
Lehman identified makes this increasingly difficult. The reason for this is that it becomes more 
and more difficult to understand the structure of a program. [Fjeldstadt and Hamlen, 1984] 
showed that maintenance programmers performing adaptive or perfective maintenance spend 
47% of their time studying the program source code and the associated documentation. 
When performing corrective maintenance this increases to 62%. This means that a reduction 
of the effort needed to understand the internal structure of software directly affects the total 
costs of the project. 

2.2 Legacy software 
This paragraph discusses a specific type of software called “legacy software”. This is old 
software that is still used and maintained. The “legacy” aspect makes understanding and 
maintaining it more difficult than with non-legacy software. 

2.2.1 Definition 
Webster's Dictionary defines legacy as "anything handed down, or as from, an ancestor". In 
the context of software, legacy software refers to a piece of inherited software. In practice 
only valuable software is inherited, so legacy software refers to valuable software that has 
been inherited [Demeyer et al, 2004]. 
                                                      
2 [Sommerville, 2004]. 
3 An E-Type program denotes software that solves problems in the real world. 
4 A system’s entropy is the amount of disorder in it. 
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2.2.2 Legacy problems 
The mere fact that a piece of software is classified as legacy does not necessarily imply 
problems with it. The difficulties emerge when the software can no longer be maintained. 
However, in literature the term legacy software frequently implies the presence of 
maintenance difficulties.  
 
[Demeyer et al, 2004] describe symptoms that indicate maintenance difficulties, now or in the 
near future: 
• Obsolete or no documentation. The absence of up to date documentation is a clear 

warning sign that maintenance difficulties will arise. When systems have undergone many 
changes the documentation often no longer reflects the actual implementation. 

• Missing unit- and system-tests. If unit- and system-tests are not available further 
evolution of the system is very risky because it is not possible to determine if changes 
broke existing functionality. 

• Limited understanding of the system. This can concern the overall structure of the 
system or important implementation details. Both can seriously hinder system evolution. 
Reasons for a limited understanding of the system can be the departure of the original 
developers or users, or simply because important details have been forgotten. In 
combination with a lack of up to date documentation and missing tests, this can lead to a 
rapid decline of the system's quality when it evolves. 

• Too much time needed to make simple changes. If simple changes require 
disproportional development effort, complex changes are likely to be unfeasible. This 
means the system can no longer evolve to keep up with customer demands. 

• Unexpected dependencies. When a change is made, for instance to fix a bug, the 
software breaks in unexpected places. If this happens frequently the architecture might 
not be able to accommodate future needs. This is a clear warning that the structure of the 
system is not fully understood. 

• Too long before changes are available in the field. The process of adapting the 
system to changing needs stalls somewhere. It might be that it takes too long to decide 
which changes will be made, their implementation takes too long, or transferring them to 
operational use takes too long. 

• Big build times. If build times grow more than the system size this indicates that the 
internal complexity of the system has increased to a level where compiler tools can no 
longer do their work efficiently. This indicates that the architecture of the system has 
deteriorated. 

• Difficulties separating products. This can happen in situations where different clients or 
products use a system. Difficulties separating releases from each other indicate that the 
architecture is not able to accommodate these changes anymore. 

• Duplicate code. Duplicate code is created routinely when developers need nearly 
identical code in multiple places and there is no time for a structural solution. If the 
common parts of duplicate code are not refactored into suitable abstractions the 
duplicated code remains in place. Then changes to the system lead to the same code 
being updated in multiple places, quickly increasing the effort needed for maintenance. 

• Code smells. Duplicated code is an example of a code smell. Other examples are long 
method bodies, big classes, long parameter lists et cetera. Code smells can indicate that 
a system has been expanded repeatedly without adjusting its internal structure.  

 
Note that it is not so much the absolute age of software that makes it legacy software. 
Instead, the amount of changes to the software and its environment since the software was 
created are the determining factors [Demeyer et al, 2004]. Examples of such changes are 
new development methods, design paradigm shifts and project staffing changes. Legacy 
software is software that has undergone many of these changes without being refactored 
properly. 
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2.2.3 Rebuilding legacy software from scratch 
One might argue that legacy problems can simply be solved by throwing the software away 
and rebuilding it from scratch. [Ducasse, 2003] and [Finnigan et al, 1997] mention several 
reasons why this is not possible: 
• Size: Legacy systems are often very large and implement a lot of functionality. Much of 

the knowledge that drove their evolution has been lost and it is often impossible to 
overview the complete system. 

• Mature: Customers using the software are generally quite satisfied with it until they need 
a new feature. However, they do not want to pay for a complete re-development.  

• Value: Legacy systems constitute a significant asset for their owners and are often an 
important source of income.  

 
These factors, and the risks of failure associated with every new project, cause organisations 
to prolong the life of legacy software. Taking this one step further; in some domains of 
industry increasing functional demands and decreasing time-to-market make it impossible to 
develop each new product from scratch. According to [Krikhaar et al, 1999] this is already the 
case in the domain of high-volume electronics.  

2.2.4 Object-oriented legacy software 
Originally the term legacy software was used for programs written in languages like 
assembler, Cobol or Fortran. However legacy problems are not constrained to specific types 
of languages. Changing environments and requirements also affect object-oriented software. 
[Ducasse, 2003] mentions several projects where object-oriented legacy systems are 
reengineered. It turns out that legacy software even exists in relatively young programming 
languages such as Java [Java, 2005]. 
 
[Macl and Havanas, 1990] and [Kiran et al, 1997] both describe empirical studies comparing 
the maintenance effort for object-oriented software with that of traditional procedural software. 
They both conclude that for equivalent changes software maintenance in object-oriented 
software takes less effort than in traditional procedural software. However, this has had an 
interesting side effect. Based on an empirical study described in [Dekleva, 1992], [Grass, 
1998] states that modern development methods lead to:  
1. more reliable software, 
2. less frequent software repair and  
3. more total maintenance time. 
These statements are not contradictionary, neither with themselves nor with the conclusions 
of [Macl and Havanas, 1990] and [Kiran et al, 1997]. Because modern methods make 
software better maintainable and easier to enhance, software is changed more often [Grass, 
1998]. Following the classification described in paragraph 2.1, object-orientation has led to a 
reduction of corrective maintenance costs and an increase in adaptive and perfective 
maintenance costs. 
 
This increasing rate of change causes object-oriented software to become legacy much 
sooner than non-object-oriented software. [Demeyer et al, 2004] states that “it is not the age 
that turns a piece of software into a legacy system, but the rate at which it has been 
developed and adapted without having been reengineered”. [Casais, 1998] pointed out that 
reengineering is actually an essential element of iterative development processes. 
 
Besides the problems normally encountered with legacy software, inheritance and 
polymorphism cause new problems [Wilde and Huiit, 1992]: 
• Many traditional maintenance tools depend on dependency tracing. Polymorphism and 

dynamic binding makes this much more difficult, especially in dynamically typed 
languages. 

• The use of inheritance and incremental class definitions, together with the dynamic nature 
of "self" and "this", make understanding classes more difficult. The reason for this is that 
the ancestors of a class much also be examined when trying to trace which method will 
be executed. 
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• Object-oriented programming styles promote the use of many relatively small classes. 
This leads to domain models and functionality being spread over different classes, 
making it difficult to locate their implementation. 

• Understanding the high level structure of object-oriented systems is more difficult. In non-
object-oriented systems the calling hierarchy is often used as a starting point, but in 
object-oriented systems this has several disadvantages. First, dynamic binding makes it 
difficult to compute. Second, there may not be a real "main" method, so it is unclear 
where to start [Lanza, 2003a]. Third, in such a call graph the grouping of methods into 
objects is lost, which is usually an important design property. 

 
By the end of the 1990's early industrial adopters of object-orientation were already facing 
problems with the evolution of some large object-oriented systems [Casais, 1998]. Besides 
the difficulties inherent to the nature of object-oriented software, misuse and abuse of object-
oriented features are common problems too. Some examples are [Ducasse, 2003]: 
• Misuse of inheritance: the use of inheritance to achieve composition, or simply code 

reuse, instead of for defining abstractions. In his “Is-a” rule for inheritance [Meyer, 1998] 
states that a class B may only inherit from a class A if an argument can be made that 
every instance of B can also be viewed as an instance of A. If two classes are related by 
a “has-a” relation a client-server coupling must be used. In many cases where inheritance 
is applicable, a client-server coupling could also be used. In such cases inheritance must 
only be used if polymorphism is used also. 

• Missing inheritance: duplicated code and case statements where inheritance and 
dynamic binding would be more appropriate.  

• Misplaced operations: this can be caused by unexploited cohesion, or simply because 
operations are placed in the wrong class. 

• Violation of encapsulation: explicit typecasts, C++ friend classes. 
• Class abuse: lack of inner-class cohesion and the use of classes as namespaces. 

2.3 Reverse engineering 
Architecture reconstruction is a form of reverse engineering. This paragraph defines reverse 
engineering and discusses several important types of reverse engineering, including 
architecture reconstruction. Finally, several reverse engineering methods are introduced. 

2.3.1 Definition 
[Chikovsky and Cross, 1990] define reverse engineering as "the process of analyzing a 
subject system to identify the system's components and their interrelationships and create 
representations of the system in another form or at a higher level of abstraction". Reverse 
engineering does not involve changing a system or producing new systems based on existing 
systems, but is concerned with understanding a system.  
 
The counterpart of reverse engineering is forward engineering. Forward engineering is "the 
traditional process of moving from high-level abstractions and logical, implementation-
independent designs to the physical implementation of a system" [Chikovsky and Cross, 
1990]. 

2.3.2 Reverse engineering goals 
The main goal of reverse engineering is to increase the understanding of a system. 
Biggerstaff considers program understanding "a common, sometimes hidden part of many 
activities scattered throughout the software lifecycle". Any developer working on software that 
is new to him or her spends a lot of time trying to understand it. According to [Fjeldstadt and 
Hamlen, 1984] a maintenance programmer performing adaptive or perfective maintenance 
spends 47% studying the source code and the documentation. When performing corrective 
maintenance this increases to 62%.  

2.3.3 Reverse engineering types 
Redocumentation and design recovery are two widely known subareas of reverse engineering 
that both produce artefacts that help to understand a system. They can be distinguished by 
the abstraction level of their results and the used knowledge sources.  
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Redocumentation usually uses source code as input and produces equivalent representations 
of it within the same relative abstraction level. The results are often considered alternative 
views of the software. 
 
Design recovery combines different knowledge sources to produce abstractions of a subject 
system [Biggerstaff, 1989]. The goal is to "obtain meaningful higher-level abstractions beyond 
those obtained directly from the source code itself” [Chikovsky and Cross, 1990].  
 
[Mansurov and Campara, 2003] draw the analogy with archaeology. They use the term 
architecture excavation to refer to design recovery. [Koschke, 2000] prefers the term 
architecture recovery to refer to this process because it is considered more general.  
 
[Kazman et al, 2001] use the term architecture reconstruction to refer to the process of 
extracting the as-built architecture of an existing system. Since this clearly involves obtaining 
higher-level abstractions than those defined in the source code, the difference, if any, with 
design recovery has to be defined. [Buschmann et al, 1999] distinguish architecture and 
design based on abstraction level and scope. An architecture uses higher-level abstractions 
than a design and describes a complete system, whereas a design describes the interior of 
specific subsystems of the architecture. Note that this does not define a precise boundary 
between architecture and design. 
 
Considering the above definitions we will use the term design recovery for methods that can 
be used to reconstruct designs, but not architectures. Such methods construct abstractions at 
a higher level than that obtained directly from the source code, but do not reach the 
abstraction level used in the architecture. Architecture reconstruction will refer to methods that 
reconstruct architectures, producing elements of the associated abstraction level.  

2.3.4 Reverse engineering approaches 
There are many reverse engineering tools and techniques. They use a variety of information 
sources, including the ones below [Demeyer et al, 2004]: 
• Existing documentation, including manuals. 
• Source code and its directory structure. 
• Test runs of the software and execution traces. 
• Interviews with users and developers. 
• Test cases. 
• Version history information. 
 
In practice, source code is the most important information source for reverse engineering 
[Trevors and Godfrey, 2002], [Buckley, 1989]. The latter publication identifies two reasons for 
this: 
• Design documentation does not match the implementation. This gets worse as the 

system evolves because its structure deteriorates. 
• Design documentation is not designed for maintenance but for forward engineering. 
 
[Nelson, 1996] classified reverse engineering techniques into three distinct approaches, 
based on the type of input they use. This classification distinguishes methods based directly 
on the source code, methods based on an abstract graph representation of the source code 
and methods based on executions: 
• Textual, lexical and syntactic analysis methods are based directly on the source code. 

This includes producing cross-reference listings, abstract syntax trees and control flow 
graphs.  

• Graph-based methods are based on an abstract graph that represents the source code. 
Methods such as control- and data flow-analysis, and program dependence charts 
produce graphs considering the source code from a certain perspective. Slicing methods 
extract the part of the source code that affects a certain variable at a certain point in the 
source code. Pattern recognition methods search for recurring programming patterns. 
Clustering methods impose a new ordering on the software by partitioning the program 
graph into disjoint parts while optimising design trade-offs. 
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• Execution and testing methods are based on information obtained from full, partial or 
simulated executions. This includes profiling methods for analysing the performance, and 
testing methods for estimating the degree of correctness5 of the software. Abstract 
interpretation is a method that performs static testing by simulating the software’s 
dynamic behaviour. Finally, partial analysis can be used to isolate parts of the software 
for analysis purposes. 

 
This thesis describes two case studies that use graph-based reverse engineering methods. 
The first is based on detecting recurring design patterns. The second uses clustering 
techniques to find suitable system decompositions. According to [Sartipi and Kontogiannis, 
2003] these two approaches are the most prominent methods for semi-automatic architecture 
reconstruction. 
 
Pattern-based techniques are used to find common structures or solutions in the architecture 
of software systems. When considering the program as an abstract graph this amounts to 
finding frequently occurring subgraphs. This can be done by matching a library of known 
patterns with the program graph, or with algorithms that find frequently occurring subgraphs 
without a priori knowledge. In both cases the end result is a list of frequently used constructs, 
each with a list of instances. This result can be used to understand the system faster by 
abstracting common constructs. 
 
Clustering-based techniques impose an ordering on the system by grouping closely related 
program entities into subsystems. The algorithms usually start with an abstract graph 
representing the structure of the program, for example with the nodes representing classes 
and the edges inter-class relationships. Some similarity measure is then used to find groups 
of similar or closely related classes, which are grouped into subsystems. This is repeated until 
an optimal decomposition is found. The end result can be browsed top-down, helping to 
understand the complete program. 
 
In the context of architecture recovery, pattern detection and clustering are two 
complementary approaches; the first finds common abstractions embedded in the system, but 
in practice never covers all entities in the system [Quilici, 1995]. The second classifies all 
entities in the system, but imposes a new ordering instead of some hidden ordering. 

2.3.5 Software transformations 
As stated, reverse engineering does not involve changing the software. Restructuring, 
reengineering and refactoring on the other hand do. [Chikovsky and Cross, 1990] define 
reengineering as "the examination and alteration of a subject system to reconstitute it in a 
new form and the subsequent implementation of the new form". This generally involves some 
form of reverse engineering, followed by forward engineering to implement the desired 
changes. This may also include implementing new requirements (perfective maintenance). 
 
Restructuring improves the internal structure of the software, but does not involve 
implementing new requirements. According to Chikovsky and Cross, restructuring is "the 
transformation from one representation form to another at the same relative abstraction level, 
while preserving the subject system's external behaviour (functionality and semantics)". 
Examples of restructuring are source code translations (e.g. to remove “goto” statements) but 
also design changes. 
 
Restructuring refers to general source code translations. Restructuring in an object-oriented 
context is called refactoring [Demeyer et al, 2004]. [Fowler et al, 1999] define refactoring as 
“the process of changing a software system in such a way that it does not alter the external 
behaviour of the code yet improves its internal structure”. 

                                                      
5 Testing can never prove the correctness of a program, but it can be used to estimate the 
number of remaining errors. An example is described in [Ehrlich et al, 1990]. 



 11

2.4 Software Architecture 
Architecture reconstruction recovers an architecture from source code. This paragraph 
defines software architecture in general and methods to specify software architectures. 
Further, frequently used architectural blueprints called architectural styles are discussed.  

2.4.1 Definition 
As stated before, architecture reconstruction reconstructs the architecture of an existing 
system.  Before discussing this in more detail it is important to understand what an 
architecture is. There is no generally accepted definition of software architecture, but there is 
no shortage of definitions either. [SEI, 2003] presents a set of definitions, of which some of 
the more popular ones are presented in this paragraph. 
 
[IEEE 1471] defines architecture as “the fundamental organization of a system embodied by 
its components, their relationships to each other and to the environment and the principles 
guiding its design and evolution”. This definition captures the underlying elements of many 
definitions for the term architecture. The most important element is the need to understand 
and control the elements of the system that “capture the system’s utility, cost and risk” [IEEE 
1471]. Another important element are the design principles on which the system is based. 
 
[Booch et al, 1999] define architecture as “the set of significant decisions about: 
• The organization of a software system. 
• The selection of the structural elements and their interfaces by which the system is 

composed. 
• Their behavior, as specified in the collaborations among those elements. 
• The composition of these structural and behavioral elements into progressively larger 

subsystems. 
• The architectural style that guides this organization: the static and dynamic elements and 

their interfaces, their collaborations, and their composition”. 
 
[Bass et al, 2003] define the software architecture of a program or computing system as “the 
structure or structures of the system, which comprise software elements, the externally visible 
properties of those elements, and the relationships among them”. "Externally visible" refers to 
the assumptions that can be made about the elements of the system. Examples of these are 
the provided services, performance, fault handling and resource usage. The definition 
explicitly mentions multiple structures. This indicates multiple views of the same system can 
exist that collectively form the architecture. 

2.4.2 Architectural views 
A software architecture serves many different stakeholders, each having different needs. For 
example system engineers, end-users, programmers and integrators all need different 
information.  
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Figure 2: The "4+1" view model (from [Kruchten, 1995]) 
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To prevent architectures from becoming large, cluttered diagrams with obscure boxes and 
lines [Kruchten, 1995] proposed the use of multiple views to describe architectures of 
software intensive systems. In Kruchten’s 4+1 model the five views illustrated in Figure 2 are 
distinguished: 
• The logical view primarily supports the functional requirements of the end-user. In this 

view the system is decomposed into a set of key abstractions that are taken from the 
problem domain. In case of an object-oriented architecture these are usually modeled as 
classes and objects, and exploit the principles of abstraction, encapsulation and 
inheritance. Besides modeling the functional requirements, this view also serves to 
identify common design elements and mechanisms.  

• The process view describes the concurrency and synchronization aspects of the 
architecture, taking non-functional requirements concerning for example concurrency, 
performance, and availability into account. This view also describes how the elements of 
the logical view map to the process architecture, possibly at several abstraction levels.  

• The development view guides the development process. It describes the mapping of the 
elements of the logical view to the software development environment. The software is 
packaged in small chunks -libraries or subsystems- that are organized in a hierarchical 
structure. Besides this hierarchical relationship the chunks are related by import and 
export relationships.  

• The physical view describes how the elements of the logical, process and development 
views are mapped to the hardware. This mapping is mainly determined by non-functional 
requirements such as availability, reliability, performance and scalability.  

 
The scenarios represent the “+1” in “4+1”. This view describes the most important functional 
scenarios to demonstrate how the other four views work together. Like the logical view, the 
scenarios are an abstraction of the functional requirements. This view is redundant with 
respect to the other views. During the architecture construction process it serves as a driver 
to discover the architectural elements in the other views. When the architecture is completed 
it is used for validation and illustration. 
 
The “4+1” view model is part of the Unified Modelling Language (UML, [Booch et al, 1999]).  
[Hofmeister et al, 1999] describe an alternative model that provides better support for 
modelling dynamic aspects of the architecture. For more information on this model the 
interested reader is referred to [Hofmeister et al, 1999].  

2.4.3 Architectural styles and design patterns 
An architecture is usually based on knowledge and experience of the architects that 
constructed it. Patterns provide proven solutions to recurring design problems in a specific 
context. [Alexander, 1979] first described common problem/solution pairs in urban 
architecture. [Gamma et al, 1995] extend this idea to object-oriented software development. 
They describe a set of 23 design patterns in a common format. This format describes the 
design problem, its context, appropriate terminology, one or more solutions, and their 
properties.  
In practice the specific abstractions of data, function and interconnections introduced by the 
patterns serve as abstractions of common coding constructs [Beck et al, 1996].  
 
Design patterns are believed to be beneficial in several ways [Beck et al, 1996], [Gamma et 
al, 1995]: 
• A common design terminology improves communication. 
• The use of best practices can be promoted. 
• The essence of a design can be documented in a compact form. 
Knowledge transfer is the unifying element in all three points. Empirical evidence shows that 
developers indeed use design patterns to ease communication [Hahsler, 2003]. Considering 
the fact that program understanding is one of the most time consuming activities of software 
maintenance, knowledge about applied design patterns can be useful for software 
maintenance.  
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Controlled experiments with both inexperienced [Prechtelt et al, 2002] and experienced 
[Prechtelt et al, 2001] software developers support the hypothesis that awareness of applied 
design patterns reduces: 
• The time needed for software maintenance. 
• The number of errors introduced during maintenance. 
 
Because design patterns specify design constructs at a higher abstraction level than just 
single classes and instances, they are useful for documenting software designs [Gamma et 
al, 1995]. Furthermore, the choice of a specific design pattern captures the rationale behind 
the design and the tradeoffs that were made [Keller et al, 1999]. 
 
[Buschmann et al, 1999] classifies patterns in three categories: 
• Architectural patterns express fundamental system organisation schemes for software 

systems. They specify the system-wide structural properties of an application and affect 
the architecture of subsystems. Architectural patterns are also called architectural styles.  
[Buschmann et al, 1999] describe several architectural styles, including layers, pipes and 
filters, blackboard, brokers and model-view-controller. 

• Design patterns provide a scheme for refining the subsystems of a software system, or 
relationships between them. Design patterns are medium scale patterns that influence the 
structure of a particular subsystem, but not of the complete system.  
[Buschmann et al, 1999] describe several design patterns, including proxy, client-
dispatcher-server and publisher-subscriber. 

• Idioms are low-level, programming language specific patterns that describe how to 
implement particular aspects of components or component-relationships using the 
features of a given language. 
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3 Architecture Reconstruction 
This chapter discusses several architecture reconstruction methods and tools, starting with an 
overview of their general properties. The selection is not exhaustive, but enumerates a 
representative set of methods and tools. It is based on [O’Brien et al, 2002], [Deursen, 2001], 
[Hassan and Holt, 2004], [Sim and Koschke, 2001] and [Bassil and Keller, 2001]. 

3.1 Typical scenarios 
In an architecture reconstruction process (parts of) the architecture of an implemented system 
are recovered. This architecture is called the as-built architecture. In this process a model is 
extracted from the source code, after which the extracted entities are used to define higher-
level abstractions. Architecture reconstruction is typically performed because uncertainty 
exists about the architecture of an existing system.  
 
[O’Brien et at, 2002] describe some typical reconstruction scenarios encountered in practice: 
• View set covers the identification of a set of architectural views that sufficiently describe a 

system. 
• Enforced architecture covers the problem of consistency between the as-designed and 

the as-built architecture of a system. 
• Quality-attribute changes covers the question of how changes to quality-attribute 

requirements affect a system. Usually it is determined how architectural patterns are used 
to satisfy the quality requirements and the impact of changes. 

• Common and variable artefacts covers techniques and models for analysing the 
products in a domain with respect to their commonalities and differences. The aim is to 
find common parts in product-line systems to reduce costs. 

• Binary components addresses the need for architecture reconstruction of systems that 
include COTS (binary) components. In this case only the external interfaces of the 
components are available (black box). 

• Mixed language addresses the need for reconstruction methods that can analyse 
systems written in multiple languages or language types.  

 
The two case studies described in this thesis are examples of the view-set, enforced 
architecture and mixed language scenarios.  

3.2 Architecture Reconstruction Activities 
[Bass et al, 2003] identify four architecture reconstruction activities; information extraction, 
database construction, view fusion and reconstruction. For generality we combine the first 
two, because many approaches do not distinguish a separate database construction activity. 
Furthermore, we add an additional architecture analysis activity that uses the result of the 
reconstruction because it sets the requirements for the preceding activities. This leads to the 
following four activities that can generally be distinguished in architecture reconstruction 
approaches: 
I. View extraction. This activity comprises of analysing implementation artefacts such as 

source code and documentation, and extracting facts from them. In this context a fact is 
some piece of information about the as-built architecture that helps to understand the 
architecture [Ferenc et al, 2004]. Examples of facts are relations between classes (e.g. 
inheritance or association), information about classes (e.g. attribute and method lists), 
metrics (e.g. about size) and call traces.  

II. View fusion. During this activity the extracted views are reconciled, augmented and 
connections are established between the elements. The aim is to improve accuracy and 
completeness of the view. Ideally, in the view extraction phase several complementary 
extractors are used, whose results are combined in the view fusion phase. 

III. Architecture reconstruction6. The third activity creates architectural abstractions based 
on the fused view that collectively describe the as-built architecture. This can be done 
manually, possibly with tool support, or automatically. Because the reconciled views only 

                                                      
6 Where the possibility of confusion exists we shall refer to the architecture reconstruction 
process and the architecture reconstruction activity. 
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represent the results of decisions that led to the implemented architecture, information 
must be added as the reconstruction proceeds. In practice human knowledge plays an 
important role in this process [Bass et all, 2003]. In the latter publication two sub-activities 
of the architecture reconstruction activity are identified; visualisation & interaction and 
pattern definition & recognition. The first provides mechanisms for interactive view 
visualisation, exploration and manipulation. The second reconstructs the architecture by 
detecting the code manifestations of common architectural- and design-constructs. 

IV. Architecture analysis. During this activity the qualities of the architecture are analysed, 
for example to determine the conformance of the as-built architecture to the as-designed 
architecture, determine its scalability, or to search for reusable components. Depending 
on the goal, different tools may be used, varying from architecture browsers to metric 
extractors. Because architecture analysis is beyond the scope of this thesis it will not be 
discussed here further. For details the reader is referred to [Bass et all, 2003]. 

 
Some reverse engineering approaches implement all four of the above activities, but others 
only implement specific ones. In the remainder of this chapter approaches and tools for the 
architecture reconstruction process are described, starting with methods that address all four 
activities and followed by methods that are specialised in one specific activity. 
 
The two case studies described in this thesis apply specific approaches to the architecture 
reconstruction activity. The first case study automatically detects frequently used design 
constructs in source code. The second automatically combines source elements into higher-
level abstractions. Both implement view extraction and view fusion. 

3.3 Methods & tools covering all activities 
This paragraph discusses reconstruction methods and tools that cover the complete 
architecture reconstruction process. These methods and tools cover all four of the previously 
discussed architecture reconstruction activities. Subsequent paragraphs discuss methods and 
tools that focus on specific activities. 

3.3.1 FAMOOS 
FAMOOS is an acronym for Framework-based Approach for Mastering Object-Oriented 
Software and refers to ESPRIT project 21975. The goal of the FAMOOS project was to 
support the evolution of the first generation of object-oriented software with state of the art 
methods and tools. This is accomplished by developing a set of tools and working methods 
for object-oriented reengineering [Bär et al, 1999]. The developed tools are based on a 
common, language independent framework called Moose. Moose consists of a repository to 
store models for describing software systems, and facilitates access to this data.  
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Figure 3: FAMOOS tooling (from [Ducasse, 2003]) 
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Figure 3 shows Moose and the tooling built on top of it. The boxes represent the tools and the 
lines dependencies between them. The four tools that collectively form Moose are enclosed in 
the square labelled “Moose”. 
• Moose Finder offers a query interface on the stored models. 
• Moose Explorer is an application that can be used to browse through the stored models 

and analyse them in order to discover possible improvements. 
• Euler is a module that computes metrics. 
• The Refactoring Engine and Refactoring Browser implement language independent 

refactorings. These can be seen as transformations of a system’s implementation into a 
new form. 

• CodeCrawler is a tool for system understanding that uses polymetric views  to visualise 
the structure of a program [Gîrba and Lanza, 2004]. Polymetric views are based on 
graphs in which the nodes represent classes and the edges inter-class relationships. The 
node size, position and colour can be used to show up to five node characteristics. Edge 
width and colour can show up to two edge characteristics. The user can configure which 
specific characteristics are shown. Examples are the inheritance hierarchy combined with 
metrics like number of methods and number of different versions. 

• Gaudi supports program understanding by incorporating dynamic information in the form 
of method invocations into Moose. The combination of static and dynamic information 
allows the creation of multiple views of an architecture. 

• Duploc and Supremo implement functionality to identify and analyse duplicate code. 
• Soul [Wuyts, 1998] implements a hybrid logic programming language in which constraints 

and rules about architectures can be expressed. It uses a language similar to Prolog 
[Fabry and Mens, 2003]. The rules and constraints can be used to check, enforce or 
browse architectural styles and constraints, as well as programming conventions. 
[Arévalo and Mens, 2002] used Soul to apply formal concept analysis to gain insight in 
the coupling of classes in an inheritance hierarchy. For more details on this the reader is 
referred to paragraph 4.1.8. 

 
Moose uses external parsers, including Sniff+ and a Smalltalk parser. Furthermore, XMI and 
CDIF files can be imported from other extractors. Internally FAMOOS uses the FAMIX format 
(FAMoos Information eXchange Model) to store this information. Figure 4 shows the core of 
the FAMIX model in UML notation [Booch et al, 1999]. It consists of the main object-oriented 
entities, namely class, inheritance, method and attribute. Two types of relations between 
methods are expressed, namely invocation and accesses. An invocation represents one 
method calling another one, and access represents a method accessing an attribute of a 
class. [Demeyer et al, 1998] gives a complete description of FAMIX.  
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Figure 4: Core of the FAMIX model (from [Bär et al, 1999]) 
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3.3.2 Portable Bookshelf 
[Finnigan et al, 1997] introduces the concept of a "Software Bookshelf". A Software Bookshelf 
is a web-based system that provides easy access to large information bases that describes 
software systems. Distinguishing characteristics of a software bookshelf are: 
• The combination of multiple, heterogeneous information sources in one hierarchically 

structured repository. Tools produce the raw information, which is then combined by a 
human librarian. Besides information extracted from source code, this includes expert 
knowledge and documentation like test cases, performance analysis, future plans and 
historical information. 

• A web-based user interface that provides easy to use access with an off-the-shelf web-
browser. 

• An open architecture that allows integration of other reverse engineering tools. Standard, 
platform independent tools ensure easy integration and portability. 

 
The Portable Bookshelf (PBS) [PBS, 2005] is a toolkit for generating a software bookshelf that 
implements all four activities of the architecture reconstruction process. Figure 5 shows the 
information flow when PBS is used to generate a bookshelf [Holt, 1997]. Fact extractors are 
used to extract facts from source code and export them in Rigi Standard Format (RSF). [Holt, 
1997] mentions fact extractors for C, C++, Pascal and PLIX (an IBM internal language), but 
the generality of RSF allows easy integration of other extractors. Next, the Grok fact 
manipulator is used to combine the extracted facts with subsystem containment information 
obtained from interviews with the developers. This produces a hierarchical structure following 
the subsystem containment hierarchy. After the integration of the system facts automatic 
layout tooling is used to generate the web pages that will be shown to the user (the 
"shelves"). 
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Figure 5: Process steps for bookshelf construction 
 
PBS has been used in several case studies. [Bowman et al, 1999] describe the generation of 
a bookshelf for the Linux kernel. [Godfrey and Lee, 2000] describe the integration of the 
Acacia C and C++ fact extractors (see paragraph 3.4.2) in PBS, and its application to 
reconstruct the architecture of the Mozilla web browser and the VIM text editor. 
 
[Hassan, 2002] describes an extension to PBS that supports web applications. The variety of 
languages often found in web applications is handled by having individual fact extractors for 
each language. The results of the individual extractors are combined with scripts. The 
combined fact information is stored in a domain model for web applications and presented to 
the user. 
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[Ivkovic and Godfrey, 2002] describe a case study where PBS is combined with the Focus 
method to recover the architecture of systems that use middleware technology. The 
combination is called Dynamo-1. Focus [Ding and Medvidovic, 2001] does not recover the 
complete architecture, but only the parts affected by system evolution. The approach 
combines static, code based recovery techniques with analysis of key use cases. The static 
analysis starts with extracting a source model, and packaging related classes in components. 
Next, an appropriate architectural style is chosen, to which the components are subsequently 
mapped. The use case analysis starts with important end-user functions and analyses the 
interaction between the architectural components during the use cases.  

3.3.3 Rigi 
Rigi [Rigi, 2004] supports all four activities of the architecture reconstruction process. It is 
developed to "effectively represent and manipulate the building blocks of a software system 
and their myriad dependencies" [Müller and Klashinsky, 1988]. This is achieved by a graph-
based visualisation that supports abstraction mechanisms such as aggregation and 
generalisation. These mechanisms allow users to group elements and browse through the 
resulting structure. The grouping process is described in more detail in paragraph 6.2.2. 
Users can filter on arc- and node-types to display subsets of the system structure. The 
various operations can be automated with the Rigi Command Language.  
 
The storage format for Rigi graphs is called Rigi Standard Format (RSF) [Wong, 1998]. Rigi 
contains parsers for C, C++ and COBOL that export extracted facts to this format. The RSF 
format is relatively well documented. Coupled with its extensibility, this led to widespread use 
of Rigi in reverse engineering case studies [Lanza, 2003b]. Dali and Riva for example use 
Rigi for visualisation, as is described in paragraph 3.3.4 and 3.3.5. 

3.3.4 Riva 
[Riva, 2000] describes an approach that maps the implementation artefacts to the as-
designed architecture. The approach identifies six phases: 
1. Definition of architectural concepts: in the first phase the architectural building blocks 

the system is composed of are determined. This can be based on the as-design 
architecture but also on other sources.  

2. Extraction of the source code model: in the second phase the source code is analysed 
to produce a model of the source code. This may result in new architectural building 
blocks. 

3. Abstraction: in the third phase the source model is mapped to the architectural building 
blocks found in the first phase.  

4. Improvement of architecture documents: in the fourth phase the system’s architecture 
is documented and its understanding is improved. 

5. Analysis of extracted architecture: in the fifth phase an improvement plan for the 
architecture is produced. 

6. Architectural reorganisation of source code: in the last phase the system is changed 
according to the improvement plan. 

 
The implementation [Riva, 2000] reports uses Perl scripts to analyse C source files. The 
extracted information is written to RSF-files, after which Rigi is used to visualise the 
architecture and create abstractions.  

3.3.5 Dali 
Dali [Dali, 2005] is an architecture reconstruction framework in the form of a workbench that 
supports all four activities of the architecture reconstruction process. A workbench provides a 
lightweight framework in which other tools can easily be integrated [Bass et al, 2003]. This 
way support for new programming languages or visualisations can be added without affecting 
the existing tools or data. 
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Architecture reconstruction with the Dali framework comprises of four activities [Bass et al, 
2003], which roughly match with the four activities identified in chapter 3: 
• Information extraction is concerned with extracting information, mainly from source 

code or system traces. Dali uses a number of extraction tools, including parsers, abstract 
syntax tree analysers, lexical analysers, profilers and code instrumentation tools. 

• Database population involves converting the extracted information into a standard form. 
Together with the information extraction activity this implements view extraction. Dali uses 
the PostgreSQL relational database for fact storage. Usually the extraction tools produce 
RSF-files, which are converted into SQL commands with Perl scripts. 

• View fusion implements the corresponding architecture reconstruction activity. During 
this activity the facts the various extractors produced are combined to produce a coherent 
view of the architecture. View fusion is performed with SQL queries, producing a single 
view at an abstraction level just above that of the source code. 

• Reconstruction is the activity where architectural abstractions are created on top of the 
fused view. During this activity the actual architecture is reconstructed and analysed. Dali 
uses Rigi for visualisation, which offers visual grouping and manipulation possibilities. 

 
[Guo et al, 1999] describes the Architecture Reconstruction Method (ARM). ARM is a semi-
automatic architecture recovery method that can be applied to systems that were developed 
using design patterns. [Guo et al, 1999] use the Dali workbench to perform the actual 
architectural recovery.  
The ARM consists of four phases: 
1. Developing a concrete pattern recognition plan for a set of design patterns. These 

plans are based on abstract descriptions of the patterns, which are translated into SQL 
queries. Design documentation and other knowledge about the system are used as 
starting points for this phase. 

2. Extraction of a source model consists of extracting structural information from the 
source code and grouping elements into higher-level abstractions. The latter is necessary 
in cases where the patterns searched for are specified at a higher abstraction level than 
the information extracted from the source code. 

3. Detecting and evaluating pattern instances is an automatic phase in which the pattern 
recognition plans are evaluated against the source model. 

4. Reconstructing and analysing the architecture is the final phase. In this phase an 
analyst uses a visualisation tool such as Rigi to determine conformance of the as-built 
architecture to the as-designed architecture with respect to the documented design 
patterns. The instances of design pattern are used as indicators to form a judgment about 
the compliance of these two architectures. 

3.3.6 Sniff+ 
Sniff+ [SNIFF+, 2005] is a commercial code analysis tool that implements all four activities of 
the architecture reconstruction process. It provides various code navigation and analysis 
capabilities that help developers to understand large pieces of source code. By abstracting 
the logical structure from the source files, Sniff+ provides an abstraction layer over the source 
files [Klaus, 2002]. Users can browse through the extracted symbol information. Furthermore 
inheritance-, component-, include- and dependency-trees can be shown. 
 
Sniff+ supports various programming languages, including C/C++, Java, Ada 83/95, CORBA 
IDL and Fortran. The C/C++ compiler is designed to efficiently process large amounts of 
source code that can be syntactically incorrect.  For a description of this compiler the 
interested reader is referred to [Bischofberger, 1992].  
 
[Armstrong and Trudeau, 1998a] and [Armstrong and Trudeau, 1998b] compare the quality of 
various architectural extractors for software written in C, including Sniff+, Rigi, PBS, and CIA. 
They conclude that the parser of Sniff+ is the best of the tested parsers. It provides very few 
extraction errors and extracts facts with sufficient detail for architectural analysis.  
[Bellay and Gall, 1997] evaluate the parsing capabilities, report generators and browsing and 
editing possibilities of four reverse engineering tools for C software, namely Refine/C, 
Imagix4D, Sniff+ and Rigi. They conclude that each tool has its strengths and weaknesses. 
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Strengths of Sniff+ are its fast and fault tolerant parser, graphical cross-referencer and 
printing capabilities. The limited graphical reporting possibilities are a weakness of Sniff+.  
 
Because of its high quality parser, several other reverse engineering tools, including Dali and 
FAMOOS, use Sniff+ for fact extraction. 

3.3.7 InSight 
Klocwork InSight [Klocwork, 2005] is a commercial source code analysis tool that implements 
all four activities of the architecture reconstruction process. It can extract an architectural 
representation of source code written in C, C++ or Java. This information is presented in 
several views, both static and dynamic, which are shown in Figure 6. An arrow from view a to 
view b indicates b is based directly on a. Indirect dependencies between views are not 
shown. The straight arrows indicate automatic view construction by the fact extractor, 
whereas the dotted arrows indicate manual view construction with the clustering approach 
described in paragraph 6.2.7. 
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Figure 6: InSight architecture views 
 
The views in Figure 6 each have a different purpose [Mansurov and Campara, 2003]: 
• The code view describes how the source code, binaries and libraries are organised in 

the development environment. This view defines the basis of a “summary model”, which 
is discussed in paragraph 6.2.7. 

• In the package view elements of the code view are combined into abstract packages. 
This is done with three basic operations on the summary model, namely aggregation, 
detalization and trimming. These are also discussed in paragraph 6.2.7. 

• In the component view packages are combined to form abstract components. This is 
done with the same operations as with which the package view is constructed. 

• The functional view describes the functional relations between source code entities.  
• The scenario view shows scenarios that are important for the architecture in terms of 

event sequences. Examples of event sequences are procedure calls and inter-process 
messages.  

• The collaboration view projects scenarios onto component models. InSight identifies 
two types of collaboration views. First, collaboration diagrams integrate a structural view 
and a scenario by highlighting the edges that are involved in the scenario. Second, use 
case maps display a “time thread” through the structural view. 

• The process view describes the system’s dynamic structure in terms of processes, 
tasks, threads and events.  

• The conceptual view describes the system in terms of its major architectural elements 
and the relations between them.  

 
In terms of the 4+1 view model discussed in paragraph 2.4.2, InSight’s conceptual view maps 
to the logical view in the 4+1 model. InSight’s functional-, scenario- and collaboration-views 
map to the 4+1 scenarios and its process view maps to the 4+1 process view. InSight’s code-, 
package- and component-views finally map to the 4+1 development view.  
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3.3.8 X-ray architecture recovery 
X-ray is an architecture recovery approach for distributed applications [Mendonça, 1999]. It 
extracts the implemented executable components and their runtime interconnections. Instead 
of performing dynamic, runtime analysis, X-ray combines several static analysis techniques. 
This has the advantage that the difficulties of performing a runtime analysis are avoided 
[Deursen, 2001]. These include high costs, difficulties linking traces to entities in the sources, 
and the probe effect7 in real-time environments.  
 
X-ray combines three static analysis techniques: 
• Component module classification is used to map compilation modules to executable 

components.  
• Syntactic pattern matching is used to identify code fragments that implement typical 

component interaction features such as pipes. For each found feature this produces a set 
of code fragments. 

• Structural reachability analysis is used to associate the found features to individual 
components. Here features are assigned to one of the involved components. 

 
X-ray has been implemented with Prolog. Prolog facts are used to represent the information 
extracted from the source code, and Prolog predicates to implement the analysis techniques. 
The output is visualised using dotty [North and Koutsofios, 1994]. [Mendonça, 1999] reports 
the application of X-ray to two moderately sized distributed systems, called Samba and Field, 
that are both written in C. “The results were successful in that important runtime and physical 
allocation aspects could be recovered” [Mendonça, 1999]. 

3.4 Tools specific for view extraction activity 
This paragraph discusses several tools that primarily cover the view extraction activity of the 
architecture reconstruction process. Tools such as Sniff+ and InSight, that cover all 
architecture reconstruction activities, including view extraction, have already been discussed 
in the previous paragraph.  

3.4.1 Columbus/CAN 
Columbus/CAN is a reverse engineering framework for view extraction from C++ code 
[Ferenc et al, 2004]. It provides a general framework that combines a number of reverse 
engineering tasks, but mainly focuses on the view extraction activity. Columbus provides a 
common interface for plug-ins, some of which are shipped with the framework itself. With 
these plug-ins Columbus supports project handling, data extraction, data representation, data 
storage, filtering and visualisation [Ferenc et al, 2001]. Other plug-ins can be developed with 
the plug-in API. 
 
Three types of Columbus plug-ins can be distinguished: 
• Extractor plug-ins analyse a given input file and produce an output file that contains the 

extracted facts in Columbus’ internal representation. Columbus is shipped with an 
extractor for C++ called CAN (C++ ANalyser) [Columbus, 2003]. CAN has an embedded 
C++ processor, but can also wrap other C++ compilers for support of proprietary 
constructs. 

• Linker plug-ins build and merge the internal representations of the project. For more 
information on the schema Columbus uses for this representation the interested reader is 
referred to [Columbus, 2003]. 

• Exporter plug-ins convert the internal representation built by the linker to a specific 
output format. Columbus is shipped with exporter plug-ins for various formats, including 
GXL, UML XMI, Famix XMI and RSF [Ferenc et al, 2004]. The multitude of export formats 
is an important strength of Columbus [Kersemakers, 2005]. 

 

                                                      
7 The probe effect is the effect that by implementing points of observation in the software the 
timing-related behaviour of the software is influenced. 
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Columbus has been used in many reverse engineering projects. For example Alborz, Sart 
and Maisa all8 use Columbus/CAN to extract facts from source code to detect design pattern 
instances in the as-built architecture.  

3.4.2 Acacia 
[Chen et al, 1998] describe a C++ data model for reachability analysis and dead code 
detection. The Acacia system implements this model. Acacia uses the CCIA fact extractors to 
process C and C++ code, and the older CIA fact extractor for C code. A simple database is 
used to store the extracted facts, which are manipulated with a flat-file query language. 
Finally, Dot [Graphviz, 2005] is used to visualise the results. 
 
Acacia supports all four activities of the architecture reconstruction process, but in literature 
the fact extractors are most commonly referred to. These are used in several reverse 
engineering approaches, including PBS and Bunch, which are described in paragraph 3.3.2 
and 6.2.4 respectively. 

3.5 Approaches specific for architecture reconstruction 
activity 

Earlier in this chapter tools and methods implementing all architecture reconstruction activities 
have been discussed. All these support the architecture reconstruction activity. However, 
many specific tools and methods for the architecture reconstruction activity exist. This 
paragraph discusses a non-exhaustive selection of several approaches that are relevant to 
the case studies described in this thesis.  

3.5.1 Manual approaches 
Manual architecture reconstruction approaches use navigation and browsing tools to 
manually reconstruct an architecture. Shrimp is an example of such a tool, but many others 
exist. Shrimp is described here because it is used in the case studies described later in this 
thesis.  
 
Shrimp (Simple Hierarchical Multi-Perspective) is a visualisation and navigation tool for large, 
hierarchical, information spaces. In the context of architecture reconstruction it can be used to 
visualise and navigate through the architecture. Shrimp’s primary view is a zoom interface 
that combines the hypertext-browsing metaphor with animated zooming over nested graphs 
[Storey et at, 2001]. The hierarchical structure is visualised through a nested graph with the 
parent-child relationship visualising subsystem containment. Additional relationships are 
visualised with coloured arcs over the nested graph.  
 
Shrimp can show subsystems in graphical and textual views, which can be divided in four 
categories [Michaud et al, 2001]: 
• Source code artefacts and relationships. 
• Architectural abstractions and relationships. 
• Documentation. 
• Metrics and other analysis results. 
 
[Bassil and Keller, 2001] describe the results of a survey on software visualisation tools and 
the functionality in practice desired from these tools. Several of these tools are mentioned, 
including Shrimp, Sniff+, Rigi, Fujaba and PBS. Because it is beyond the scope of this thesis, 
the other visualisation tools are not discussed here. For more information on those the reader 
is referred to [Bassil and Keller, 2001]. 

3.5.2 Pattern detection based architecture reconstruction approaches 
Pattern-based architecture reconstruction approaches detect instances of common 
constructs, or patterns, in the implementation. By replacing these instances with an 
abstracted form a simplified view of the architecture is created. During reverse engineering, 

                                                      
8 These tools are described in paragraph 4.1.7, 4.1.9 and 4.1.4 respectively. 
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engineers quickly recognise these abstractions, which reduces the time needed for program 
understanding. Pattern-based reconstruction approaches are often based on structural 
information, thus searching for structural design patterns. Alternatively, behavioural patterns 
or repeated code fragments can be searched for.  
 
In practice pattern detection based approaches do not cover all entities in the software 
[Quilici, 1995]. The reason for this is that in practice software is never completely composed 
of repeated structures. So these approaches produce architectural views in which a subset of 
the program entities is converted to an abstract form, while the other entities remain at an 
abstraction level just above that of the code. 
 
According to [Sartipi and Kontogiannis, 2003], pattern detection based approaches are one of 
the prominent methods for automatic architecture reconstruction (together with clustering-
based approaches). This thesis describes a case study where instances of structural design 
patterns are detected in industrial software. Related work concerning pattern-based 
architecture reconstruction is discussed in more detail in chapter 4. 

3.5.3 Using clustering techniques for architecture reconstruction 
Clustering-based architecture reconstruction techniques use clustering techniques to find 
architectural components in source code. Clustering techniques find some natural ordering of 
data elements, in this case source code elements. 
 
The algorithms usually start with an abstract graph that represents the structure of the 
program, for example with the nodes representing classes and the edges inter-class 
relationships. Some similarity measure is then used to find groups of classes that belong 
together, which are grouped into subsystems. This is repeated until an optimal decomposition 
is found. The end result represents an architectural view with abstract entities that group 
multiple source code entities.  
 
The similarity measure determines the properties of the produced decomposition. Typically, 
similarity measures attempt to achieve high cohesion within modules and low coupling 
between modules. This is based the criteria used for the decomposition of software systems 
for which [Parnas, 1972] and [Parnas et al, 1984] laid the foundations. [Booch, 1994] extends 
this to object-oriented software, stating that systems should be composed of collaborating 
agents (objects). To simplify their understanding, objects should be organised into hierarchies 
that promote strong cohesion and loose coupling. [Sommerville, 2004] confirms that well 
designed systems exhibit high cohesion and low coupling. 
 
When reconstructing architectures with clustering techniques a ‘natural’ structure of the 
software is determined. There is a difference however, between discovering an architecture 
and imposing one. Clustering techniques impose a new ordering, instead of discovering some 
hidden ordering [Wiggerts, 1997]. This ordering must be evaluated on its usefulness for 
program comprehension [Tzerpos and Holt, 1998].  
 
According to [Sartipi and Kontogiannis, 2003], clustering-based approaches are one of the 
two prominent methods for automatic architecture reconstruction (together with pattern 
detection based approaches). This thesis describes a case study where the architecture of an 
industrial system is reconstructed with clustering techniques. Related work concerning 
clustering-based architecture reconstruction is discussed in more detail in chapter 6. 

3.5.4 Using Conway's law for architecture reconstruction 
Besides technical factors such as the functional and non-functional requirements, 
organisational factors also play an important role during the development of software 
systems. [Conway, 1968] states that "organisations which design systems are constrained to 
produce designs which are copies of the communication structures of these organisations". 
This has become known as Conway's law [Brooks, 1995], [Demeyer et al, 2004] [Herbsleb 
and Grinter, 1999]. Conway’s law can be used during the architecture reconstruction activity 
to choose suitable abstractions. 
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[Bowman and Holt, 1998] describe experiments where the ownership architecture is 
compared to the as-built and as-designed architecture. These experiments used three large 
software systems as input; Linux (800 KLOC of C code), Mozilla (1500 KLOC of C and C++ 
code) and Aleph, a commercial software development system (3500 KLOC of C and C++ 
code). The experiments showed that the ownership architecture predicts the as-built 
architecture very well, and is closely correlated with the as-designed architecture. In fact, the 
ownership architecture predicts subsystem dependencies in the as-built architecture at least 
as good as the as-designed architecture. The as-designed architecture tends to 
underestimate dependencies in the as-built architecture. The ownership architecture on the 
other hand tends to overestimate them. This makes it difficult to perform architecture 
reconstruction solely based on the ownership architecture, but in conjunction with the as-
designed architecture it provides a good starting point. 

3.5.5 Slicing based architecture reconstruction approaches 
Program slicing is a technique that extracts those program elements from the source code 
that affect the behaviour of the program at a certain point. In this context a point is for 
example a certain line of the code, or an interface. Together the extracted elements form a 
specific view of the program that is called a program slice. A program slice consists of those 
parts of the program that affect the behaviour of the program at the chosen point, either 
directly or indirectly.  
 
According to [Beck and Eichmann, 1993] slices are usually generated by first building a 
program representation that contains a program dependence chart. This is done using data- 
and control-flow analysis. In this graph the nodes represent the entities in the program and 
the edges dependencies. Usually program statements are chosen as entities. A disadvantage 
of this choice is that these entities have a relatively low abstraction level. [Beck and 
Eichmann, 1993] use interface entities such as procedures and global variables to achieve a 
slightly higher abstraction level.  
After the program dependence graph is constructed the generation of the slices is 
straightforward. Starting with the entities of interest, which are specified in the slicing criterion, 
the edges in the graph are followed to generate their transitive closure. 
 
In the context of reverse engineering slicing is often used to extract reusable components 
from an implementation or specification. [Beck and Eichmann, 1993] for example use slicing 
to detect which parts of a component affect some subset of its interface. 
 
Slicing is a very useful technique for reverse engineering. But because it is not related to the 
two methods applied in the case studies described in this thesis, we shall not discuss it in 
more detail. For more information the interested reader is referred to [Beck and Eichmann, 
1993] and [Zhao, 2000]. 
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4 Pattern detection in source code 
One of the two case studies described in this thesis aims to detect design pattern instances in 
source code. This chapter discusses similar approaches reported in literature. The discussed 
approaches are divided in two categories; approaches in the first category need upfront 
knowledge of the expected patterns, whereas those in the second do not have this limitation. 
The approach used in the case study falls in the second category. 

4.1 Detecting known patterns 
This paragraph describes approaches that detect instances of known patterns in source code. 
These approaches generally use a pattern library. In this library the patterns are specified in 
some specification language. These specifications are matched against a model extracted 
from the design documentation or source code to find the patterns.  
Although not exhaustive, this paragraph gives a representative overview of these approaches. 
It is based on references found in literature, using [Kersemakers, 2005] as a starting point. 

4.1.1 Pat 
[Krämer and Prechtelt, 1996] describe the Pat system, which treats pattern detection as a 
constraint satisfaction problem. In Pat patterns are described with a set of propositions. The 
fundamental idea is to check which propositions hold for a model of the system. More 
precisely; let S = {s1,s2,…,sn} be a set of predicates modelling the system under 
investigation (siªtrue, 1§i§n) and P = {p1,p2,…,pm} a set of propositions expressing 
design patterns. Pattern pj (1§j§m) is present in the software if and only if pj can be inferred 
from S. The Prolog Engine performs this inference. The instantiated values for the variables in 
pj specify the entities involved in the pattern expressed by pj. 
 
Figure 7 illustrates how this process is implemented in Pat. The Code Analysis module 
extracts S from C++ header files and converts it to Prolog facts automatically. The Pattern-to-
Prolog module accepts a set of patterns as input and produces the Prolog rules that express 
P. This is done in two steps; first the patterns are expressed as static OMT diagrams 
[Rumbaugh, 1990] manually, after which they are translated to Prolog rules automatically. 
The Prolog Engine uses the output of these two modules to calculate the set of pattern 
candidates C. 
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Figure 7: Dataflow in Pat 

 
[Krämer and Prechtelt, 1996] expressed five structural design patterns as Prolog rules, 
namely Adapter, Bridge, Composite, Decorator and Proxy [Gamma et al, 1995]. An important 
limitation of the method is that behavioural patterns are difficult to detect. This is caused by 
the fact that their distinguishing characteristics are difficult to extract from source code alone, 
or are simply not extracted by the chosen extractor. For similar reasons some structural 
design patterns cannot be detected reliably either; there is not enough semantic information 
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available to achieve this. These limitations lead to false positives in the list of pattern 
candidates. [Krämer and Prechtelt, 1996] applied Pat to four C++ programs, consisting of 9 to 
343 classes. They report a precision between 14 and 50 percent and 100 percent recall. The 
false positives in the result must be sorted out manually. 

4.1.2 AOL Graphs 
[Antoniol et al, 1998] describe a method for to find design patterns that uses metrics and 
delegation constraints to filter out false positives. It takes both code and design documents as 
input, as is shown in Figure 8. Both are translated to an intermediate representation called 
AOL (Abstract Object Language). The Pattern Recogniser uses these together with the AOL 
pattern descriptions from the AOL Pattern Library as input. After parsing the AOL graph it 
calculates various metrics from it, for example the number of methods and operations of a 
class, or the number of associations a class is involved in. The Constraint Evaluator then 
executes three matching operations: 
1. The metrics are used to filter out classes that cannot be involved in the searched 

patterns. This is done before matching the AOL pattern specifications to reduce the 
search space for operation 2. 

2. The AOL pattern specifications are matched against the input graphs. 
3. Delegation constraints are evaluated against the pattern candidates. A delegation 

constraint specifies call delegation behaviour for classes. 
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Figure 8: Pattern detection process 
 
[Antoniol et al, 1998] describe a Java implementation of the described method that searches 
for five structural design patterns, namely Adapter, Bridge, Proxy, Decorator and Composite 
[Gamma et al, 1995]. This application has been applied to fourteen programs written in C++, 
including both public domain and industrial code. The programs varied in size between 4 and 
50 KLOC.  On average the precision of the result is about 55 percent and recall 100 percent. 
The use of the metrics and checking of delegation constraints reduced the number of false 
positives indeed. This conclusion is mainly based on the experience with the public domain 
code. In the industrial code only a few pattern instances are found. 
In some cases the authors found differences between the patterns detected in the design 
documentation and in the source code. This is attributed to deviations between the as-
designed and the as-built architecture. In case of the industrial code the sets of patterns 
detected from the design and from the code are disjoint, indicating large differences between 
these two architectures. 

4.1.3 Spool 
[Keller et al, 1999] are the first to explicitly link design pattern detection to reverse 
engineering. They state that design patterns capture the rationale and trade-offs in a software 
design. This way knowledge about applied design patterns helps to understand a design.  
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An important problem when searching for design patterns in existing software is that “patterns 
can be implemented in many different ways” [Keller et al, 1999]. This is handled by utilising 
the cognitive strength of a human analyser.  
 
The presented environment, called Spool, supports automatic, semi-automatic and manual 
searching. It stores facts extracted from source code in the Poet object-oriented database, 
using a schema based on the UML meta-model. Design pattern candidates are presented in a 
graphical user interface with which a human analyst can check them. The layouts in this user 
interface are generated with Dot and Neato [Graphviz, 2005]. The detection of three design 
patterns is implemented, namely Template Method, Factory Method and Bridge [Gamma et 
al, 1995]. The analysis of three C++ programs ranging in size between 70 and 472 KLOC is 
described. Although the detection results are described, no figures are presented for precision 
and recall. This is done because the strength of the Spool environment is not so much the 
quality of the automatic detection, but the integration of the human in the recovery process. 
[Keller et al, 1999] state that this is the only way to find interesting patterns. 

4.1.4 Maisa 
Maisa is a tool for the analysis of software architectures that is based on the detection of 
design pattern instances. It predicts the quality of designs by searching design-level UML 
diagrams [Booch et al, 1999] for a set of design patterns and anti-patterns that are expressed 
as Prolog facts [Paakki et al, 2000]. The tool matches these with the facts extracted from UML 
designs. The resulting set of patterns is then used to extract quality-relevant metrics. Besides 
these metrics, conventional metrics about the entire architecture (e.g. number of classes) are 
also used. A human analyst can use the produced metrics, together with the properties of the 
patterns, to determine the quality of the architecture.  
 
[Paakki et al, 2000] have applied Maisa to a large telecommunications system. The approach 
was able to detect design patterns efficiently and reliably and was able to find several known 
design problems.  
 
[Ferenc et al, 2001] describes the integration of Columbus/CAN and Maisa. Columbus is used 
to extract a set of UML class diagrams from C++ code. These are then imported into Maisa 
and analysed. For more information on Columbus/CAN the reader is referred to paragraph 
3.4.1. The multitude of implementation variants is handled with partial satisfyability, which 
means that the Prolog inference engine also accepts rules that do not match the propositions 
completely.  
 
[Ferenc et al, 2001] report that a lack of information in the design diagrams caused problems 
for the pattern identification. Possible solutions are to search for the patterns using less 
information or to use partial satisfyability. However, both would increase the number of false 
positives. The lack of information also made it impossible to distinguish patterns with a similar 
structure, but different behaviour, such as Bridge and Command [Gamma et al, 1995].  

4.1.5 Idea 
[Bergenti and Poggi, 2000] describe the Idea tool (Interactive DEsign Assistant), an 
interactive design assistant that automatically searches for design pattern instances and 
produces critiques about their implementation. Idea takes an UML design exported in XMI 
format as input and detects instances of the following design patterns [Gamma et al, 1995]: 
 

Proxy  Factory Method 
Adapter  Abstract Factory
Bridge  Iterator 
Composite  Observer 
Decorator  Prototype 

 
These patterns are expressed as Prolog rules, which are matched with facts extracted from 
the input file. Information extracted from collaboration diagrams is used to check if a detected 
pattern instance has the required object interactions. If this is the case, the instance is shown 
to the user. For each pattern a set of design rules is stored in the knowledge base, with the 



 28

corresponding critiques. If a certain rule is violated the corresponding critique is fired and 
presented to the user.  

4.1.6 Fujaba 
Fujaba (From UML to Java And Back Again) is a public domain research prototype of a CASE 
tool [Klein et al, 1999]. Fujaba supports both forward- and reverse engineering for UML class- 
and behaviour-diagrams. This means that Java code can be generated from these diagrams, 
and that these diagrams can be generated from source code.  
 
[Niere et al, 2001] and [Niere et al, 2003] describe a design pattern recognition method for the 
Fujaba environment. Like other methods, this method uses a pattern library. The problem of 
having many design variants is handled by composing the stored patterns of smaller sub-
patterns. These capture the generic parts of the pattern. The individual design pattern 
variants are composed of these sub-patterns. This reduces the total number of different 
patterns that must be detected. [Niere et al, 2001] describe an implementation that detects 
the Composite pattern [Gamma et al, 1995]. 
Implementation differences are handled with fuzzy reasoning. The sub-patterns are specified 
by a set of detection rules, each of which is associated with a fuzzy belief f (0≤f≤1). During 
the detection phase a design pattern is only detected if the accumulated fuzzy beliefs of the 
matching rules exceed a user-specified threshold. Besides detection rules, contra indications 
can also be specified to improve the detection process. The actual detection is implemented 
with Generic Fuzzy Reasoning Nets [Jahnke et al, 1997], which are expanded into Fuzzy 
Petri Nets. The detection rules are implemented as graph rewrite rules.  
 
The above pattern detection cannot check if the reported instances implement the dynamic 
behaviour the design pattern prescribes. This causes false positives, especially if behavioural 
patterns are searched for. [Wendehals, 2003] and [Heuzeroth et al, 2002] independently 
report extensions to Fujaba that use dynamic analysis to reduce the number of false 
positives. In both cases the dynamic analysis is applied to the output of the static analysis. 
 
[Heuzeroth et al, 2002] consider a design pattern’s protocol as a set of state transitions. When 
a node n is detected to be involved in a state transition it is checked whether or not n is part 
of any pattern instance the static analysis reported. The pattern library is extended with a set 
of specific rules that specify the protocol of each pattern. If n is part of a pattern instance the 
appropriate rules are checked.  
When the analysis is complete pattern candidates are partitioned into four groups: 
• Full match: all rules in the protocol of the pattern candidate are completely executed. 
• May match: at least one, but not all of the rules of the protocol are executed. 
• Mismatch: the protocol requirements are violated. 
• No decision: none of the monitored nodes of the candidate are executed. 
 
The dynamic information is gathered using an on-line debugger and automatic code 
instrumentation. The first method causes severe performance problems, which makes it 
impossible to use in practice. The second has the disadvantage of requiring an extra 
compilation, but this is considered acceptable. Note that both methods are vulnerable to the 
choice of the execution scenario. A pattern that is not executed cannot be detected. 
[Heuzeroth et al, 2002] reports the results of an experiment in which the Observer pattern is 
searched for in two medium sized Java programs. [Heuzeroth et al, 2003] report a case study 
where the Observer, Composite, Mediator, Chain of Responsibility and Visitor patterns are 
searched. In both cases the addition of the dynamic analysis removed almost all false 
positives.  
A disadvantage of the previously described method is the need to specify the detection rules 
manually. [Heuzeroth et al, 2003] describe a specification language in which the constraints 
that define a design pattern can be expressed. The part of the language expressing the static 
constraints is based on predicate calculus. The part expressing the dynamic constraints 
defines pre- and post-conditions. From such a specification, the detection rules are generated 
automatically.  
 



 29

[Wendehals, 2003] describes a different method to reduce the number of false positives with 
dynamic information. The proposed method expresses a design pattern’s protocol as graph 
rewrite rules, similar to the static analysis. These rules are extracted from message sequence 
diagrams. The dynamic information is retrieved from method traces. 

4.1.7 Alborz 
Alborz is a prototype toolkit for recovering the architecture of systems written in procedural 
languages [Sartipi, 2001]. The tool provides two techniques for architecture recovery; pattern 
recognition and clustering. In this paragraph the pattern detection is described, whereas 
paragraph 6.2.5 describes the clustering method.  
 
The pattern recognition of Alborz represents the analysed software with an attributed 
relational graph in which the nodes represent files, functions, datatypes and variables [Sartipi 
and Kontogiannis, 2003]. The edges represent “call” and “use” relationships. The patterns are 
expressed as AQL queries (Architectural Query Language). These are translated to relational 
graphs too, after which a graph-searching algorithm is used to find pattern instances. The 
found instances are visualised with Rigi. 

4.1.8 Using Soul 
[Fabry and Mens, 2003] describe the use of the Soul language to detect patterns in Java and 
Smalltalk code. Soul is a programming language for logic reasoning, similar to Prolog. Like 
Prolog, Soul has a logical inference engine. The method is similar to that of Pat, but uses 
more information. Besides header information, the proposed method also takes method 
bodies into account. This includes method invocations and variable accesses. 
 
[Fabry and Mens, 2003] applied the described method to two applications written in Java and 
Smalltalk (38 to 377 classes). In the reported case study the Double Dispatch and Getting 
Method patterns [Beck, 1997] are searched for. The results were validated manually, which 
revealed neither false positives nor false negatives. 

4.1.9 Sart 
[Kersemakers, 2005] describes a case study where design pattern are detected in a way 
similar to the method used in Pat. This method is implemented in the Sart tool (Software 
Architecture Recovery Tool). Design patterns are expressed as Prolog rules and the facts that 
are extracted from the source code as Prolog facts. Detection rules were implemented for the 
Observer, Interceptor, Pipe-and-Filter and Blackboard patterns [Gamma et al, 1995], 
[Buschmann et al, 1999].  
 
To reduce the number of false positives, behavioural information is extracted from the code. 
More specific, the set of methods S that can be called from the scope of each method m is 
extracted. S is called the reach of m. Each design pattern has a specific sequence of method 
calls. The reach is used to determine if a potential pattern instance can implement the 
method-calling sequence the pattern prescribes. [Kersemakers, 2005] reports that adding the 
reach-based filtering significantly reduced the number of false positives. 
 
The multitude of pattern implementation variants is handled by introducing a set of relaxation 
strategies for each pattern. These represent the variants typically used in practice. 
 
[Kersemakers, 2005] uses Columbus/CAN for fact extraction. Difficulties are reported with the 
extraction of associations based on attributes, which made it more difficult to reduce the 
number of false positives. Rigi is used to visualise pattern instances.  
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4.1.10 Backdoor 
[Shull et al, 1996] present an inductive method to help discover custom, domain specific 
design patterns in existing object-oriented code. The proposed method uses a knowledge 
base of existing patterns and a six-step process to check if a suspected pattern instance 
really matches an instance in the knowledge base [Shull et al, 1996]:  
1. Review the problem specification and design documents. This provides insight in the 

problem at hand, and incorporates existing knowledge. 
2. Using the class declarations, develop a preliminary model of the system. 
3. Refine the preliminary model with information from class implementations. 
4. Identify candidate patterns in the refined model based on inheritance and communication 

links between classes. In this step the actual pattern detection takes place.  
5. Analyse the detected pattern candidates to find useful design patterns. This is the most 

labour-intensive step and requires a skilled analyst.  
6. Interview designers and implementers to check the suspected architecture and obtain 

information about the rationale. 

4.2 Detecting unknown patterns with FCA 
The use of a pattern library requires upfront knowledge about the implemented patterns. This 
paragraph describes the use of a mathematical technique called Formal Concept Analysis 
(FCA) to detect various types of patterns. The selection of methods and tools is based on 
[Snelting, 2000], [Snelting] and [Tilley et al, 2003]. Because one of the case studies described 
later in this thesis uses FCA for pattern detection, the approaches in this chapter are 
described in more detail than the earlier ones.  

4.2.1 Formal Concept Analysis introduction 
Formal Concept Analysis (FCA) is a mathematical technique to identify “sensible groupings of 
formal objects9 that have common formal attributes” ([Siff and Reps, 1998] citing [Wille, 
1981]). FCA is also known as Galois lattices ([Arévalo et al, 2003] citing [Wille, 1981]). The 
analysis starts with a formal context, which is a triple C=(O,A,R) in which O is the finite set 
of formal objects and A the finite set of formal attributes. R is a binary relation between 
elements in O and A, hence RŒOµA. If (o,a)œR it is said that object o has attribute a.  
 
Let XŒO and YŒA. Then the common attributes s(X) of X and common objects t(Y) of Y 
are defined as [Ganter and Wille, 1998]: 
 ( ) ( ){ }: ,X a A o X o a Rσ = ∈ ∀ ∈ ∈  (1) 

 ( ) ( ){ }: ,Y o O a Y o a Rτ = ∈ ∀ ∈ ∈  (2) 

 
The following derivation operators hold for any X,X1,X2ŒO and Y,Y1,Y2ŒA [Ganter and Wille, 
1998]: 
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A formal concept of the context (O,A,R) is a pair of sets (X,Y), with XŒO and YŒA, such 
that [Ganter and Wille, 1998]: 
 ( ) ( )Y X X Yσ τ= ∧ =  (5) 

                                                      
9 Be aware that formal objects and formal attributes are not the same as objects and 
attributes in object-oriented programming.  
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Informally a formal concept is a maximal collection of objects sharing common attributes. X is 
called the extent and Y the intent of the concept. 
 
For example consider the following six sports: swimming, soccer, waterpolo, icehockey, 
triathlon and bobsledding. These sports are characterised with five properties: the fastest 
wins, water/ice involved, players running on foot, ball used and teamsport or individual sport. 
Suppose the sports must be organised according to their properties. Then in FCA terms the 
sports are the formal objects and their properties the formal attributes. Table 3 shows the 
relation between the objects and the attributes. For example soccer is a teamsport where the 
players run on foot and a ball is used. Further, the only teamsports where a ball is used are 
soccer and waterpolo. 
 

Formal Attributes  
Fastest Water Running Ball Team 

Swimming ◊ ◊    
Soccer   ◊ ◊ ◊ 
Waterpolo  ◊  ◊ ◊ 
Icehockey  ◊   ◊ 
Triathlon ◊ ◊ ◊   Fo
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Bobsledding ◊ ◊ ◊  ◊ 

Table 3: A characterisation of sports 
In the example ({soccer, waterpolo},{ball, team}) is an example of a concept, but ({triathlon, 
bobsledding},{fastest, water}) is not because swimming also has these attributes. ({soccer, 
waterpolo},{running, ball, team}) is not a valid concept either because waterpolo does not 
have the running attribute. 
 
The extents and intents can be used to relate formal concepts hierarchically. For two formal 
concepts (X0,Y0) and (X1,Y1) [Ganter and Wille, 1998] define the subconcept relation ≤ as: 
 ( ) ( )0 0 1 1 0 1 1 0, ,X Y X Y X X Y Y≤ ⇔ ⊆ ⇔ ⊆  (6) 
If p and q are formal concepts and p≤q then p is said to be a subconcept of q and q is a 
superconcept of p. For example ({soccer}, {running, ball, team}) is a subconcept of ({soccer, 
waterpolo},{ball, team}). The subconcept relation enforces an ordering over the set of 
concepts that is captured by the supremum �  and infimum ∏  relationships. They define the 
concept lattice L of a formal concept C with a set of concepts I [Ganter and Wille, 1998]: 
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where I is the set of concepts to relate. To calculate the supremum� (or smallest common 
superconcept) of a set of concepts their intents must be intersected and their extents joined. 
The latter set must then be enlarged to fit to the attribute set of the supremum. The 
infimum ∏ (or greatest common subconcept) is calculated in a similar way.  
For example the supremum c7 of c1=({soccer},{running, ball, team}) and 
c2=({waterpolo},{water, ball, team}) is calculated as follows: 
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[Siff and Reps, 1997] describe a simple bottom-up algorithm that constructs a concept lattice 
L from a formal context C=(O,A,R) using the supremum relation. It starts with the concept 
with the smallest extent, and constructs the lattice from that concept onwards. The algorithm 
utilises that for any concept (X,Y) [Snelting, 1996]: 

 ( ) { } { }( )
o X o X

Y X o oσ σ σ
∈ ∈

 
= = = 

 
∪ ∩  (9) 

 
This equation enables calculating the supremum of two concepts by intersecting their intents. 
(10) gives a formalised description of the lattice construction algorithm. This description is 
based on the informal description by [Siff and Reps, 1997].  
Stated informally, the algorithm starts with the calculation of the smallest concept cb of the 
lattice. The set of atomic concepts, together with cb, is used to initialise L. Next the algorithm 
initialises a working-set W with all pairs of concepts in L that are not subconcepts of each 
other. A hash table is used to store L and allow efficient checking for duplicates later on. The 
algorithm subsequently iterates over W to build the lattice using the supremum relation for 
each relevant concept-pair. The supremum of two concepts is calculated using (9). Recall that 
in this calculation the intents of the concepts c1 and c2 are intersected, after which t is applied 
obtain the extent. If the calculated concept is new it is added to L and the working-set is 
extended with relevant new concept pairs.  
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Figure 9 and Table 4 show the result of applying algorithm (10) to the sports example. cb and 
ct are the bottom and top concepts respectively.  
 

ct ({swimming, soccer, waterpolo, icehockey, triathlon, bobsledding}, «) 
c0 ({swimming, triathlon, bobsledding}, {fastest, water}) 
c1 ({soccer}, {running, ball, team}) 
c2 ({waterpolo}, {water, ball, team}) 
c3 ({icehockey, waterpolo, bobsledding}, {water, team}) 
c4 ({triathlon, bobsledding}, {fastest, water, running}) 
c5 ({bobsledding}, {fastest, water, running, team}) 
c6 ({swimming, triathlon, bobsledding, icehockey, waterpolo}, {water}) 
c7 ({soccer, waterpolo}, {ball, team}) 
c8 ({soccer, waterpolo, icehockey, bobsledding}, {team}) 
c9 ({soccer, triathlon, bobsledding}, {running}) 
c10 ({soccer, bobsledding}, {running, team}) 
cb («, {fastest, water, running, ball, team}) 

Table 4: Extents and intents of the sports example 
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ct

c6c8 c9

c10 c3c7

c0

c5c2

c4

c1

cb  
Figure 9: Concept lattice for sports example 

 
The time complexity of algorithm (10) depends on the number of lattice elements. If the 
context contains n formal objects and n formal attributes, the lattice contains 2n concepts 
[Snelting, 1996]. This means the worst case running time of the algorithm is exponential in n. 
In practice however, the size of the concept lattice typically10 is O(n2), or even O(n). This 
results in a typical running time for the algorithm of O(n3) [Snelting, 1996]. 
 
Algorithm (10) is a very simple lattice construction algorithm that does not perform very well. 
[Ganter, 1987] presents the “NextConcept” algorithm. The computational complexity of this 
algorithm is linear with the size of the concept lattice, but more difficult to understand. A 
disadvantage of the NextConcept algorithm is that it only produces the concepts, and not the 
relations between them. For cases where the lattice is needed, [Lindig, 2002] presents the 
“Lattice” algorithm. This algorithm produces both the concepts and the relations between 
them. Worst case it has a quadratic complexity, but since the quadratic component is 
relatively small, the algorithm’s time complexity can be considered O(n). For more lattice 
construction algorithms the interested reader is referred to [Kuznetsov and Obëdkov, 2001]. 

4.2.2 Early uses of FCA for reverse engineering 
[Snelting, 1996] first described the use of FCA in the context of reverse engineering. He 
describes the application of concept analysis to the problem of reengineering compile-time 
configurations in procedural code. These configurations are defined by means of 
preprocessing instructions (#if…#endif) in the source files. The formal context C=(O,A,R) is 
used with: 
• O: set of source-code fragments. 
• A: set of used preprocessor symbols 
• R: usage of the preprocessor symbols in the source-code fragment. 
A concept lattice is used to provide insight in the configurations and their relations. 
 
[Siff and Reps, 1997] and [Siff and Reps, 1998] describe the application of FCA to modularise 
procedural programs into classes. The formal context C=(O,A,R) is used in the following 
way: 
• O: set of functions in the source code. 
• A: set of datatype definitions. 
• R: uses-datatype and does-not-use relations. The following datatype usages are 

considered: return type, argument type and global variable type usage. 
The algorithm generates the concept lattice and calculates concept partitions. A concept 
partition is a grouping of the concepts such that every atomic concept in the lattice appears 

                                                      
10 This is based on [Snelting, 1996], [Tonella and Antoniol, 1999] and [Ball, 1999]. 
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precisely once in the concept partition. Each partition represents a possible modularisation. It 
is up to the user to select the appropriate partition. 
 
In the following paragraphs several other uses of FCA for program understanding are 
discussed. For more applications the interested reader is referred to [Tilley et al, 2003] and 
[Snelting, 2000]. 

4.2.3 Design pattern detection 
[Tonella and Antoniol, 1999] describe the use of FCA to find recurring design constructs in 
object-oriented code. The key idea is that a design pattern amounts to a set of classes and a 
set of relations between them. Two different instances of a pattern have the same set of 
relations, but different sets of classes.  
Let D be the set of classes in the design and T be the set of relationship-types between 
classes. For example T={e,a} defines the relationship types “extends” and “association”. 
Then the set of inter-class relations P is typed PŒDµDµT. To find pattern instances of k 
classes the formal context Ck=(Ok,Ak,Rk) is used with: 
• Ok: set of k-sized sequences of classes in the design. More precisely 

( ) [ ]{ }1, , | 1..k k iO x x x D i k= ∈ ∧ ∈… where k is called the order of the sequence. 

• Ak: set of inter-class relations within the sequences in Ok. Each is a triple11 (xi,xj)t, where 
xi and xj are classes and t is a relationship-type. Ak is defined by 

( ) ( ) [ ]{ }, | , , 1..k i jt t
A i j x x P i j k= ∈ ∧ ∈ . 

• Rk: “possesses” relation between the elements in Ok and in Ak. 
 
Figure 10 gives an example of a class diagram, for which Table 5 shows the corresponding 
set of labelled class relations (P) and a legend. 
 

E

F G

U

V

W

K

L

M

 
Figure 10: Example of a class diagram 

 
   

(E,F)a (U,V)a (M,K)e
(G,F)e (W,U)e (M,L)e 

 (W,V)e  

α β (α,β)e

α β (α,β)a
   

Table 5: Set of labelled class relations P 
 
A formal concept (X,Y) consists of a set of class-sequences X and a set of inter-class 
relations Y. Thus the intent Y specifies the pattern and the extent X specifies the set of 
pattern-instances found in the code.  
 
Before the lattice can be constructed from the context this context must be generated from 
the class diagram. [Tonella and Antoniol, 1999] describe a simple inductive algorithm, which 
is shown in (11). Recall that D is the set of classes and P the set of class-relations. 
 
The initial step generates an order two context. This is done by collecting all pairs of classes 
that are related by a tuple in P; the set O2 of formal objects of the order two context consists 
                                                      
11 We use the same notation as [Tonella and Antoniol, 1999]. 
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of all pairs of classes related by a tuple in P. This means that for all formal objects in O2 a 
relation of type t exists from the first to the second class. Therefore, the set A2 of formal 
attributes of the order two context consists of the tuples (1,2)t for which a tuple in P exists 
that relates two arbitrary classes by a relation of type t.  
In the inductive step, the order of the context is increased with one. The construction of Ok 
appends one component, xk, to the tuples in Ok-1. This xk is defined as any class for which a 
tuple in P exists that relates xk to some other class xj that is present in the tuple of Ok-1. Next, 
Ak is constructed by extending Ak-1 with two sets of tuples. The first set consists of the tuples 
(k,j)t, for which j equals the index of the class xj that allowed the addition of xk during the 
construction of Ok, and a relation of type t exists in P from xk to xj. The second set is similar, 
with k and j exchanged. 
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Note that in (11) the order n context contains the order n-1 context in the sense that all lower-
order sequences are initial subsequences of the objects in the order n context, and that all 
attributes are retained. Note also that the algorithm assumes that design patterns consist of 
connected graphs. This assumption holds for all of the patterns in [Gamma et al, 1995], so 
provided that sufficient relationships between classes are extracted it does not impose a 
significant restriction. 
 
Table 6 shows the order 3 context algorithm (11) generated for the example. The order 2 
context contains for example the formal object (E,F). In the inductive step the tuple (G,F)e 
causes the extension to (E,F,G), and leads to the creation of a new formal attribute, (3,2)e. 
Observe that the number of different formal objects is much less than the possible number of 
class combinations of length 3 (which is 93=729). This is due to the very low connectivity of 
the class-graph of the example (compared to a fully connected graph).  
 

Formal attributes A3  
(1,2)a (1,2)e (3,2)e (3,2)a (3,1)e (2,3)a (1,3)e 

(E,F,G) ◊  ◊     
(G,F,E)  ◊  ◊    
(U,V,W) ◊  ◊  ◊   
(W,U,V)  ◊    ◊ ◊ 
(W,V,U)  ◊  ◊   ◊ 
(M,K,L)  ◊     ◊ Fo
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(M,L,K)  ◊     ◊ 

Table 6: Order three context for pattern example 
 
[Tonella and Antoniol, 1999] use algorithm (10) to construct the lattice. For the example this 
produces the concepts in Table 7 and the lattice in Figure 11. 
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ct ({(E,F,G),(G,F,E),(U,V,W),(W,U,V),(W,V,U),(M,K,L),(M,L,K)}, «) 
c0 ({(E,F,G),(U,V,W)}, {(1,2)a,(3,2)e}) 
c1 ({(G,F,E),(W,V,U)}, {(1,2)e,(3,2)a}) 
c2 ({(U,V,W)}, {(1,2)a,(3,2)e,(3,1)e}) 
c3 ({(W,U,V)}, {(1,2)e,(2,3)a,(1,3)e}) 
c4 ({(W,V,U)}, {(1,2)e,(3,2)a,(1,3)e}) 
c5 ({(M,K,L),(M,L,K),(W,U,V),(W,V,U)}, {(1,2)e,(1,3)e}) 
c6 ({(G,F,E),(W,U,V),(W,V,U),(M,K,L),(M,L,K)}, {(1,2)e}) 
cb («, {(1,2)a,(1,2)e,(3,2)e,(3,2)a,(3,1)e,(2,3)a,(1,3)e}) 

Table 7: Extents and intents of the pattern example 
 

ct

c6

c3

c0

c5

c2 c4

c1

cb  
Figure 11: Concept lattice of the pattern example 

 
The concepts in Table 7 directly represent patterns, but some redundancies are present. For 
example c0 and c1 represent the same pattern. [Tonella and Antoniol, 1999] informally define 
the notions of equivalent patterns and equivalent instances to remove redundancies from the 
lattice. (12) and (13) define these notions formally. 
 
Definition 1 (Equivalent patterns): Let (X1,Y1) and (X2,Y2) be two concepts representing 
design patterns that are generated from the same order k context. (X1,Y1) and (X2,Y2) are 
equivalent patterns if an index permutation f on the index set {1..k} exists such that: 

 ( ) ( )( ) ( ){ } ( ) ( )( ) ( ){ }1 12 1 1 1 1 21 1
,..., ,..., ,..., ,...,k kf f k f f k

X x x x x X X x x x x X− −= ∈ ∧ = ∈  (12) 

(X1,Y1) @ (X2,Y2) denotes that (X1,Y1) and (X2,Y2) are equivalent patterns. 
 
According to Definition 1 two patterns (X1,Y1) and (X2,Y2) are equivalent when X2 can be 
obtained by reordering the classes in (some of) the elements of X1 and vice versa. 
Consequently, each formal attribute in Y1 can be transformed into one in Y2 and vice versa 
also.  
In the example c0 and c1 are equivalent because the index permutation12 {1→3, 3→1} 
transforms {(E,F,G),(U,V,W)} into {(G,F,E),(W,V,U)} and vice versa. 
 

                                                      

12 We use the informal notation {1→3, 3→1} to refer to the index permutation 
1 2 3
3 2 1

 
 
 

. 
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Definition 2 (Equivalent instances): Let (x1,1,…,x1,k) and (x2,1,…,x2,k) be two formal 
objects in the extent X of an order k concept (X,Y) that represents a design pattern. These 
formal objects represent equivalent instances within that concept if an index permutation g on 
the index set {1..k} exists such that: 

 
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ){ }
1 12,1 2, 1,1 1,1, 1 1, 2, 1 2,

1 2 1 2

,..., ,..., ,..., ,...,

, ,

k kg g k g g k

tt

x x x x x x x x

Y g y g y y y Y t T

− −= ∧ =

∧ = ∈ ∧ ∈
 (13) 

(x1,1,…,x1,k) @ (x2,1,…,x2,k) denotes that (x1,1,…,x1,k) and (x2,1,…,x2,k) are equivalent 
instances. 
 
According to Definition 2 two formal objects in the extent X of a concept (X,Y) are equivalent 
within that concept if an index permutation exists that transforms them into each other, and 
when applied to the formal attributes in Y produces attributes that are also part of Y.  
In the example the set of formal objects of c5 contains two pairs of equivalent instances 
because the index permutation {2→3, 3→2} transforms (M,K,L) and (W,U,V) into 
(M,L,K) and (W,V,U) respectively, and {(1,2)e,(1,3)e} into {(1,3)e,(1,2)e}. 
 
If in the concepts in Table 7 all sets of equivalent patterns and equivalent instances are 
replaced with one representative element, and concepts with empty extents or intents (cb and 
ct) are removed, the concepts in Table 8 remain. Observe that concept c6 is trivial; it 
represents the inheritance relation. 
 

c0 ({(E,F,G),(U,V,W)}, {(1,2)a,(3,2)e}) 
c2 ({(U,V,W)}, {(1,2)a,(3,2)e,(3,1)e}) 
c5 ({(M,K,L), (W,U,V)}, {(1,2)e,(1,3)e}) 
c6 ({(G,F,E),(W,U,V),(W,V,U),(M,K,L),(M,L,K)}, {(1,2)e}) 

Table 8: Extents and intents of the pattern example 
 
[Tonella and Antoniol, 2001] describe three case studies that apply the proposed method. 
Besides the static inter-class relations (inheritance and association), two other attributes are 
taken into account: 
• Dynamic inter-class relations, for example the call and delegates relations. 
• Class attributes such as member function definitions. 
 
The method is applied to three public domain applications written in C++ (20-100 KLOC). 
[Tonella and Antoniol, 2001] report the detection of several recurring design constructs, 
including the Adapter pattern [Gamma et al, 1995] in several variants. The order of the 
context was chosen between two and four, typically three. Higher-order patterns did not prove 
to be a good starting point because “they impose an increasing number of constraints on the 
involved classes and are therefore matched by few instances (typically just one)” [Tonella and 
Antoniol, 2001]. For the order three context the number of formal objects was 1721 to 34147. 
The number of formal attributes was 10 in all cases. The construction of the concept lattice 
took between 1.8 and 85.8 seconds on a Sun SPARC 20 workstation13. 

4.2.4 Class structure analysis 
[Dekel, 2002] describes the use of FCA to gain insight in the internal structure of a complex 
class. The method is based on the design heuristic that classes should have maximal field-
access class-cohesion. The strongest version of field-access class-cohesion prescribes that 
all methods of a class should use all of its fields. The proposed method is based on the 
hypothesis that deviations from this rule represent a potential error in the internal structure.  
In FCA terms, the context C=(O,A,R) is used with: 
• O: set of class member variables (“fields”). 
• A: set of class methods. 
• R: method-uses-uses-field relation. 
                                                      
13 The time to construct the context was not described in the paper. 
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In the lattice, the concepts represent groups of classes. A method-call graph is superimposed 
on the concept lattice to visualise the interactions between the methods. 
 
The proposed method has been applied to Java classes. [Dekel and Gil] report its application 
to the Molecule class of the Java Chemistry Development Kit (75 public methods, 1500 LOC). 
[Dekel, 2002] describes the application to several versions the Graph class of the VGJ toolkit 
(Visualising Graphs with Java), which contained 43 to 69 methods and 5 to 9 fields. In all 
cases the methods provided insight in the structure of the class without overwhelming the 
user with the details typically found in source files. 

4.2.5 Inheritance hierarchy analysis 
[Arévalo and Mens, 2002] propose to use FCA to analyse how inheritance and interfaces 
relationships couple methods and classes in an inheritance hierarchy. The method takes the 
calling & delegation behaviour into account, but only within the inheritance hierarchy. Let c 
and d be classes and s a method signature. Then, in FCA terms the formal context 
C=(O,A,R) is used with: 
• O: set with method invocations from classes; (c,s)œO ‹ some method in c calls s. 
• A: set with classifications of the message sending behaviour [Arévalo and Mens, 2002]:  

• ConcreteSuperCaptureIn:d. (c,s) satisfies this predicate if s is called via a super send 
in some method of c and the receiver method is implemented in d, which is an 
ancestor of c. 

• ConcreteSelfCaptureLocally:c. (c,s) satisfies this predicate if s is called via a self-
send in some method of c and the receiver method is a concrete method in c. 

• AbstractSelfCaptureLocally:c. (c,s) satisfies this predicate if s is called via a self-send 
in some method of c and the receiver method is defined as an abstract method in c. 

• ConcreteSelfCaptureInAncestor:d. (c,s) satisfies this predicate if s is called via a self-
send in some method of c and the receiver method is defined as a concrete method 
in d that is an ancestor of c. 

• ConcreteSelfCaptureInDecendant:d. (c,s) satisfies this predicate if s is called via a 
self send in some method of c and the receiver method is defined as a concrete one 
in d that is an descendant of c. 

• R: applicability of the message classifications in A to the invocations in O. 
 
[Arévalo and Mens, 2002] describe the application of the proposed method to the Magnitude 
hierarchy (Smalltalk, 29 classes). The formal context was extracted from the code with the 
Soul logic programming language (part of FAMOOS). This produced 248 formal objects and 
73 formal attributes. The application of FCA unveiled several common constructs.  
 
The experiment also revealed a weakness of the approach; instead of only the receiver, the 
sender of a self-send should also be taken into account. [Arévalo, 2003] describes an 
improvement to the method that achieves this. If c is a class, m a method and s a method 
selector then (c,m,s)œO ‹ method m in c calls s. The formal attributes are adapted 
accordingly. For details the interested reader is referred to [Arévalo, 2003].  
 
The modified method has been applied in several case studies, which led to three important 
conclusions: 
• The method is suitable to find unpredictable relationships. 
• The method can be used to find behavioural patterns in inheritance hierarchies. 
• The quality of the results depends on the chosen formal attributes. If the properties are 

too generic the method produces a few concepts that are not interesting enough. If the 
properties are too specific the method produces a lot of concepts with small extents. 

4.2.6 X-Ray views 
[Arévalo et al, 2003] describe the use of FCA to gain insight in the collaborations within a 
single class, similar to [Dekel, 2002]. The main difference between the two is that [Arévalo et 
al, 2003] incorporate dynamic behaviour into the concept lattice, whereas [Dekel, 2002] 
superimposes a call-graph on a concept lattice that is based on member-accesses.  
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The described approach uses FCA to gain insight in the elementary collaborations between 
class attributes and methods. Three types of relations are extracted from the source code, 
namely read-attribute, write-attribute and calls-method. Further, several indirect relationships 
are inferred from these: 
• Attribute-access (read or write). 
• Transitive versions of calls-method, reads-attribute, writes-attribute and accesses-

attribute. The latter three consist of a sequence of calls-method relations, followed by a 
read-attribute, write-attribute and accesses-attribute relation.  

• The complements of the preceding relationships. 
 
The sets of extracted and inferred relationships are used to create two formal contexts 
C1=(O,A1,R1) and C2=(O,A2,R2) where: 
• O: set of class methods. 
• A1: set of possible read or write accesses to class attributes. For example A1={reads-x, 

reads-y, writes-y}, in which x and y are class attributes. 
• R1: method-accesses-attribute relation between methods in O and elements of A1. 
• A2: set of possible class-method invocations. 
• R2: method-calls-method relation between methods in O and elements of A2. 
 
After extending the above definitions to sets [Arévalo et al, 2003] define a number of high-
level collaborations, which in turn are used to define three x-ray views of a class. The class 
and attribute relationships are extended to sets in two ways: 
• F R G: R relates each entity in F to each one in G. 
• F R G: R exclusively relates each entity in F to each in G. This means that no pair of 

entities f,g exists such that f œ F ⁄ f R g ⁄ g – G and inversely. 
 
With these notions the following high-level collaborations are defined. For the sake of 
compactness they are described informally here. A more precise description can be found in 
[Arévalo et al, 2003]. 
• Direct accessors: set of methods with non-exclusive access to class attributes. 
• Exclusive direct accessors: set of methods with direct access to class attributes by 

exclusive relationships. 
• Exclusive indirect accessors: set of methods that call direct accessors.  
• Collaborating attributes: sets of attributes that are used exclusively by a set of methods. 
• Statefull core methods: set of methods that access all the state-defining attributes. 
• Collaborating methods: set of methods that use the behaviour defined in the class. 
• Interface methods: set of methods that are not used by the class itself. 
• Externally used state: subset of the interface methods that directly access class 

attributes. 
• Stateless methods: complement of the set of collaborating methods, i.e. set of methods 

that provide a service without calling other methods or accessing class attributes. 
 
Using the above collaborations [Arévalo et al, 2003] define three x-ray views. Each view 
shows a different set of inner-class collaborations: 
• State usage focuses on how methods access the state of classes. This view shows the 

exclusive direct accessors, exclusive indirect accessors, collaborating attributes and 
statefull core methods collaborations. 

• External/internal categorises class methods according to their usage; internal or 
external. This view shows interface methods and externally used state collaborations. 

• Behavioural skeleton focuses on how methods invoke each other within the class. This 
view shows the collaborating methods and stateless methods collaborations. 

 
The proposed approach has been implemented in the ConAn tool, which is built on top of the 
FAMOOS framework. To validate the approach it has been applied to three Smalltalk classes 
from the VisualWorks distribution, namely OrderedCollection, UIBuilder and Scanner (3-18 
attributes, 24-122 methods). [Arévalo et al, 2003] conclude that the approach allows “iterative 
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application of the defined views and opportunistic code reading”. The fact that inheritance 
relationships are not taken into account is an important limitation of the approach. 

4.2.7 Feature allocation analysis 
[Eisenbarth et al, 2001] use a combination of FCA and static analysis techniques to build a 
mapping between functional, externally visible features of a program and relevant parts of the 
source code. FCA is used to locate the most feature-specific subprograms among a set of 
executed subprograms. The static analysis is used to retrieve a dependency graph of the 
program. Subprograms in this graph that are called by the subprograms found with FCA are 
added to the set of subprograms involved in the features. 
 
More precisely, the method works are follows: 
1. A set of relevant features F={f1,…,fn} is identified. 
2. A set of scenarios A={S1,…,Sq} is identified such that the features in F are covered. 
3. For each scenario in A execution summaries are collected that list all subprograms 

executed during a run. This yields a set of required subprograms O={s1,…,sp} for each 
scenario. 

4. A relation table R is created such that (S1,s1), (S2,s2), …, (Sq,sp)œR. 
5. Concept analysis is applied to the context (O,A,R), producing a set of subprograms P 

that are associated with the features.  
6. Dominance analysis and strongly connected component analysis is used to eliminate 

general-purpose subprograms that do not contain any feature-specific logic.  
7. Static dependency analysis techniques such as program slicing are used to extract the 

code implementing the feature and all necessary variable and type declarations. 
 
The proposed method is implemented using the Bauhaus toolkit and has been applied to two 
web browsers, Mosaic and Chimera (51 and 38 KLOC respectively). These two programs 
consisted of 701 and 928 subprograms respectively. The parts of the architecture relevant to 
two use cases were recovered, successfully unveiling a view of the architecture. 

4.2.8 Framework usage analysis 
[Viljamaa, 2002]  describes the use of FCA to recover the reuse interfaces of object-oriented 
frameworks. The method searches for specialisation patterns, which are program structures 
that can be instantiated in several contexts. A specialisation pattern defines a set of roles that 
are played by structural elements of an instantiation. Knowledge about the most important 
specialisation patterns of a framework helps developers use the framework efficiently. 
 
The types of roles that are chosen to analyse determine the formal context to which FCA is 
applied. If for example class roles are extracted the classes and their interfaces are selected 
as formal objects, and class features (e.g. inheritance relationships, declared methods and 
data fields) are used as formal attributes. To reduce the size of the context and prevent 
performance problems, the relevancy of program elements is checked before they are added 
to the context. A relevancy function r is associated with each program element v. Only those 
elements where r(v)≥0 are used as formal objects. FCA is then applied to the produced 
context, producing a concept lattice from which the specialisation patterns are extracted. This 
is accomplished by looking for contexts in which each program element plays precisely one 
role. This means each formal object must belong to one exactly extent. The context selection 
is implemented by calculating concept partitions from the lattice and selecting the appropriate 
one(s). A concept partition is a set of concepts whose extents form a partition of all formal 
objects in the formal context. So in the concept partition each formal object is part of one 
concept.  
 
The proposed method is implemented in the Fred (FRamework EDitor) programming 
environment [Viljamaa, 2002] and is applied to reverse engineer the interface of the JUnit 
framework. The sources of the framework (50 classes) and a set of sample applications are 
used as input. [Viljamaa, 2003] reports that Fred found about half of the specialisation 
patterns used in the samples. The scalability of the used algorithms was reported to be a 
major obstacle.  
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4.2.9 Delfstof: detecting source code regularities 
[Mens and Tourwé, 2004] propose the use of FCA to detect source code regularities in object-
oriented code based on naming conventions. The formal context C=(O,A,R) is used with: 
• O: set of instances of source code entities like classes, methods and parameters. 
• A: set of substrings of the names of the source code entities. Method- and class-names 

are split according to the capitals and other separators occurring in them. Small 
substrings and substrings with little conceptual meaning are discarded. 

• R: containment relation between the entities in O and the substrings in A. 
The substring comparison is case-insensitive, ignores colons, and reduces plurals to 
singulars. 
 
[Mens and Tourwé, 2004] give an informal description of a filter that is applied to the 
produced concept lattice. (14) formally defines this filter. Let c : O Ø {true,false} be a 
function such that c(x)ª trueñ x is a class (for every xœO). Further, let h(x) be the 
hierarchy entity x is part of. Then all concepts (X,Y) that satisfy  
 ( ) ( ) ( ) ( )2 1 , :X Y x y X c x c y h x h y≤ ∨ = ∨ ∀ ∈ ∧ ∧ =  (14) 
are discarded from the lattice. So the filter discards all concepts that are too small to be of 
interest or only contain classes in the same hierarchy.  
 
After the filter has been applied the concepts in the lattice are classified into three categories: 
• Single class concepts group concepts from which all elements belong to a single class. 
• Hierarchy concepts group entities that belong to multiple classes in a single class 

hierarchy. 
• Crosscutting concepts group entities from at least two class hierarchies. 
Within the groups the lattice ordering is preserved whenever possible.  
 
The proposed method is implemented in the Delfstof tool, which has been applied to five 
Smalltalk programs (52-271 classes). Several cases of copy-paste code reuse were detected, 
as well as several design pattern instances (detected through naming conventions).  
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5 Case study: Pattern detection 
This chapter describes one of the two case studies discussed in this thesis. This case study 
investigates the detection of unknown structural design patterns in source code, using the 
method described in paragraph 4.2.3. 

5.1 Case study goals 
Design patterns capture design experience in the form of frequently used and proven design 
constructs for a certain context [Alexander, 1979]. Knowledge of applied design patterns 
helps maintainers understand the structure of a program and its rationale [Gamma et al, 
1995], and is therefore useful for software maintenance14. 
 
[Kersemakers, 2005] used a pattern library to detect instances of structural design patterns in 
the source code of two subsystems of the Océ Controller. This way a view of the as-built 
architecture of these subsystems was reconstructed. A disadvantage of this approach is that 
it requires upfront knowledge on the implemented patterns. Furthermore, it suffers from 
variations in the implementation of the patterns.  
 
The work described in paragraph 4.2.3 suggests that Formal Concept Analysis (FCA) can be 
used to find frequently used design constructs in source code without requiring upfront 
knowledge. Based on this, and the experiences of [Kersemakers, 2005], we formulate the 
following hypothesis: 
 

H1: With Formal Concept Analysis frequently used structural design constructs in 
the source code of the Océ Controller can be detected without upfront 
knowledge on the expected structures. 

 
The confirmation of H1 does not imply that the found design constructs represent a useful 
architectural view of the Océ Controller. We therefore formulate an additional hypothesis: 
 

H2: Knowledge of frequently used structural design constructs found with Formal 
Concept Analysis in the Océ Controller provides an architectural-view that is 
useful to gain insight in the structure of the system. 

 
The usefulness of knowledge on structural design constructs depends on the amount of 
information this knowledge gives. The number of classes in the pattern and the number of 
instances of the pattern are two important criteria for this. On average, the design patterns in 
[Gamma et al, 1995] contain about four to five classes. Because we are reconstructing an 
architectural view and not a subsystem-design we want to find slightly larger patterns. Hence 
we decided the patterns must contain at least six classes to be useful for architecture 
reconstruction.  
The other criterion, the minimal number of instances of a useful pattern, is difficult to quantify. 
To our knowledge no work is published on this subject, so we determine it heuristically. 
Because no pattern-library is used, maintainers need to invest time to understand the patterns 
before reaping the benefit of this knowledge. The benefit, easier program understanding, 
must outweigh this investment. Obviously this is not the case if the patterns have one 
instance. Because we search repeated structures and not named patterns (like library-based 
approaches do) the investment is relatively high. Hence we decided that a pattern must have 
at least four instances to be useful to reconstruct an architectural view of the Océ Controller.  
 
To confirm these two hypotheses a prototype has been built that implements the approach 
Tonella and Antoniol proposed, which is described in paragraph 4.2.3. Before applying the 
prototype to the complete Océ Controller it has been applied to two of its subsystems, namely 
Grizzly and the RIP Worker. Because this produced unsatisfactory results it was decided not 
to apply the prototype to the entire Océ Controller. For more information on the results of this 
case study the reader is referred to paragraph 5.4. 

                                                      
14 See paragraph 2.4.3 for more information on this subject. 
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5.2 Pattern detection architecture 
This paragraph describes the architecture of the pattern detection prototype. This architecture 
is based on the pipe and filter architectural style [Buschmann et al, 1999]. The processing 
modules have been implemented with two third party tools and XSLT transformations [XSLT, 
2005].  
 
XSLT is chosen because: 
• Functional programming: XSLT allows functional programming. This is an advantage 

because one of the most important algorithms of the implemented approach is defined 
inductively (by (11)). This definition maps very well to a functional implementation.  

• Easy integration: The two third-party tools, Columbus and Galicia, both support XML 
[XML, 2005] ex- and import. 

• Maturity: XSLT is a mature and platform independent language. 
 
Figure 12 shows a view of the prototype’s architecture. The blocks represent processing-
modules and the arrows directed communication channels between the modules. The latter 
are implemented with files. 
 

Fact
extraction

Lattice
construction

Context
generation

Pattern
selection

Source
code

Most used
design

constructs  
Figure 12: Architectural view of the prototype 

The following paragraphs discuss each of these modules. 

5.2.1 Fact extraction 
The fact extraction module is based on the approach chosen by [Kersemakers, 2005]. In this 
step Columbus/CAN is used to extract structural information from the source code. Columbus 
uses the compiler that was originally used to compile the analysed software, in this case 
Microsoft Visual C++ [MSVC, 2005]. The extracted information is exported from Columbus 
with its UML exporter [Columbus, 2003], which writes the information to an XMI file. The 
schema Columbus uses can be found in [Columbus, 2003]. For more information about 
Columbus the interested reader is referred to paragraph 3.4.1. 

Relationship types 
Because the XMI file has a relatively complex schema the fact extraction module converts it 
to an XML file with a simpler schema. This file serves as input for the context generation 
module. It contains the classes and most important relationships between them.  
 
Three types of relations are extracted [Booch et al, 1999]: 
• Inheritance: The object-oriented mechanism via which more specific classes incorporate 

the structure and behaviour of more general classes. 
• Association: A structural relationship between two classes. 
• Composition: A special kind of association where the connected classes have the same 

lifetime. 

Fact extraction output 
Appendix 2 gives the schema of the XML file the fact extraction module produces. To 
illustrate the format we give a simple example here.  
Figure 13 shows a class diagram with five classes, A up to F. The bracketed numbers are 
unique identifiers of the classes that are generated by Columbus. In the figure classes A and 
D inherit from B and E respectively. Classes B and D have an association with classes C and 
F respectively. 
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A
(101)

B
(102)

C
(103)

D
(104)

E
(105)

F
(106)

 
Figure 13: Example static structure 

 
(15) shows the output of the fact extraction module for the class diagram in Figure 13. It 
consists of a Model containing Classes and Relations between classes. Each class has a 
name and a unique id, which is the number shown between the brackets in Figure 13. The 
Relations element contains A and I elements, which represent association and inheritance 
relations respectively. In case of the A element the C1 and C2 attributes contain the id of 
respectively the source and the destination class of the relation. In case of the I element the 
C1 and C2 attributes contain the id of respectively the child and the parent class. 
Composition relations are represented by a C element in the Relations element (not shown 
in (15)), using the same notation as the A element. 
 

<Model> 
  <Classes> 
   <Class id="101" name="A" />  
   <Class id="102" name="B" />  
  <Class id="103" name="C" />  
  <Class id="104" name="D" />  
  <Class id="105" name="E" />  
  <Class id="106" name="F" />  (15) 
  </Classes> 
  <Relations> 
   <I C1="101" C2="102" />  
  <A C1="102" C2="103" />  
  <I C1="104" C2="105" />  
  <A C1="104" C2="106" />  
  </Relations> 
</Model> 

5.2.2 Context generation 
This module uses the inductive context construction algorithm given in (11) to generate the 
formal context that will be used to find frequently used design constructs.  
 
Recall that this algorithm consists of an initial and an inductive step. In the initial step an order 
two context is created. In the inductive step the order of the context is increased with one. 
This step is repeated until the desired order is reached. Also recall that the order of the 
context represents the number of classes in the patterns searched for. 

Removing duplicates 
Since XSLT does not support sets the prototype uses bags. This however allows the 
existence of duplicates. The prototype removes these with an extra template that is applied 
after the templates that implement each of the initial- and inductive steps. This produces the 
XSLT equivalent of a set. 

Context generation output  
After algorithm (11) has been completed, the “context generation” module converts the formal 
context to the XML import format Galicia uses for “binary contexts”. Appendix 3 gives the 
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schema of this XML file. To illustrate the format (16) gives a simple example for an order 
three context, which is based on the facts in (15).  
 
In (16) the BIN element represents the binary context as a whole. Its nbAtt and nbObj 
attributes contain the number of formal-attributes and -objects in the context. The type 
attribute specifies the type of the context, in this case a binary context.  
The OBJS element contains the formal objects. Each OBJ element has an identifier (id), and 
contains a string with the class IDs of the formal object separated by underscore characters.  
The ATTS element contains the formal attributes. Each ATT element has an identifier (id) 
and contains a string with a relationship type and two indices in the formal objects, separated 
by underscore characters. These indices refer to positions in the formal objects. For example 
the <ATT id="0">att_I_C1_C2</ATT> element refers to the first and the second position.  
The RELS element represents the relations between the formal objects in OBJS and the 
formal attributes in ATTS. It consists of REL elements, which specify that a certain formal 
object has a certain formal attribute through its idObj and idAtt attributes.  
 

<BIN name="Example" nbAtt="6" nbObj="4" type="BinaryRelation"> 
  <OBJS> 
   <OBJ id="0">obj_101_102_103</OBJ>  
  <OBJ id="1">obj_102_103_101</OBJ>  
  <OBJ id="2">obj_104_105_106</OBJ>  
  <OBJ id="3">obj_104_106_105</OBJ>  
 </OBJS> 
  <ATTS> 
   <ATT id="0">att_I_C1_C2</ATT>  
   <ATT id="1">att_A_C1_C2</ATT>  
  <ATT id="2">att_A_C2_C3</ATT>  (16) 
  <ATT id="3">att_I_C3_C1</ATT>  
  <ATT id="4">att_A_C1_C3</ATT>  
  <ATT id="5">att_I_C1_C3</ATT>  
 </ATTS> 
  <RELS> 

   <REL idObj="0" idAtt="0" />  
   <REL idObj="0" idAtt="2" />  
  <REL idObj="1" idAtt="1" />  
  <REL idObj="1" idAtt="3" />  
  <REL idObj="2" idAtt="0" />  
  <REL idObj="2" idAtt="4" />  
  <REL idObj="3" idAtt="1" />  
  <REL idObj="3" idAtt="5" />  

  </RELS> 
</BIN> 

 
For example in (16) the <OBJ id="0">obj_101_102_103</OBJ> element refers to the class 
sequence [A,B,C], using the IDs of the classes specified in (15). This sequence is constructed 
as follows. The initial step produces the string “obj_101_102” because the relation-element  
<I C1=”101” C2=”102”> exists. This relation also leads to the creation of the 
<ATT id="0">att_I_C1_C2</ATT> and <REL idObj="0" idAtt="0" /> elements. The next 
inductive step extends the formal object to “obj_101_102_103” because the relation-element 
<A C1=”102” C2=”103”> exists and “102” is already part of the formal object. Now the 
complete <OBJ id="0">obj_101_102_103</OBJ> element has been obtained. This last 
extension also causes the creation of the <ATT id="2">att_A_C2_C3</ATT> and  
<REL idObj="0" idAtt="2" /> elements. 
The other elements in (16) are constructed similarly. 
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Size of the output 
The initial step of the context generation algorithm produces an order two context. Each 
inductive step extends the order with one. So in general the (k-1)-th step of the algorithm 
(k¥2) produces a context Ck=(Ok,Ak,Rk) of order k, where Ok is the set of formal objects, Ak 
the set of formal attributes, and Rk the set of relations between the formal objects in Ok and 
the formal attributes in Ak.  
 
The number of formal attributes, |Ak|, is bounded by the number of different triples that can 
be made. Each formal attribute in Ak is a triple (p,q,t) where p and q are integer numbers 
between 1 and k, and t is a relationship-type. The number of permutations of two values, 
each between 1 and k, is bounded by k2 so at most k2 different combinations are possible for 
the first two components of the formal attributes. Therefore, if T is the set of relationship-
types, and the size of this set is |T|, |Ak|§|T|·k2.  
 
The number of formal objects, |Ok|, in the order k context is limited by the number of 
permutations of different classes of length k. If D is the set of classes, and |D| the size of this 
set, this means that |Ok|§|D|k. So the number of formal objects is polynomial with the 
number of classes and exponential with the size of the patterns searched for. However, the 
fact that the connectivity of the classes in D is usually relatively low (and even can contain 
disconnected subgraphs), limits |Ok| significantly.  

Computational complexity 
Let PŒDµDµT be the set of relations between classes, with D and T defined above.  In the 
implementation the initial step is implemented with a template for the elements of P. Hence, if 
|P| is the number of elements in P, the complexity of the initial step is O(|P|).  
 
The inductive step increases the order of the context with one. This is implemented with a 
template for the formal objects in the order (k-1) context, so for the elements of Ok-1. This 
template extends each formal object oœOk-1 with a class that is not yet part of o and is related 
to one of the classes in o via a class-relation in P. Because every formal object in Ok-1 
consists of k-1 classes, the inductive step that produces Ok has a computational complexity 
of O(|Ok-1|·(k-1)·|P|), which approximates O(k·|P|·|Ok-1|).  
 
Let (x1,…,xk-1) be the sequence of classes represented by a formal object oœOk-1. Because 
in our implementation the previous inductive step appended classes to the end of this 
sequence15, in the next inductive step only the last element xk-1 can lead to the addition of 
new classes to the sequence. Therefore, all but the first inductive steps do not have to iterate 
over all k-1 classes in the formal objects in Ok-1, but can only consider the most recently 
added class. This optimisation reduces the computational complexity of the inductive step to 
about O(|P|·|Ok-1|). Because of limited implementation time this optimisation has not been 
applied to the prototype however, but is left as future work.  
 
Because |Ok-1| is polynomial with the number of classes in D, and in the worst case |P| is 
quadratic with |D|, this optimisation gives the inductive step a computational complexity that 
is polynomial with the number of classes in D. However, it is exponential with the size of the 
patterns searched for. 

5.2.3 Lattice construction 
The prototype constructs the lattice with a third party tool called Galicia. Galicia is an open 
platform for the construction, visualisation and exploration of concept lattices [Valtchev et al, 
2003]. Its most important functions are the input of contexts, and lattice construction and 
visualisation [Galicia, 2005]. Galicia also implements interactive data inputs and various 
export formats.  
                                                      
15 The fact that this is the end is not really relevant. The essential point is that the new class is 
always added at the same position. 
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Lattice construction algorithm 
Galicia implements several algorithms to construct a lattice from a formal context. Based on 
their characteristics one of them is chosen for the prototype. [Kuznetsov and Obëdkov, 2001] 
compare a set of lattice construction algorithms, both theoretically and experimentally. They 
conclude that for large contexts the Bordat algorithm [Bordat, 1986] gives the best 
performance16. Because it is expected that the number of classes extracted from the source 
code, and hence the number of formal objects, will be relatively high, the Bordat algorithm is 
chosen to generate the lattice. Let L represent a concept lattice with |L| formal concepts. 
Further, let |O| and |A| be the number of formal-objects and -attributes respectively of the 
formal context from which L is constructed. Then the Bordat algorithm has a worst-case 
computational complexity of O(|O|·|A|2·|L|).  
 
Theoretically the size of the lattice, |L|, is exponential with the size of the context; if 
|A|=|O|=n then |L|≤2n. In practice however, the lattice-size may be O(n) [Snelting, 1996], 
but this obviously depends on the properties of the formal context. When assuming that this is 
the case, and considering that in our case |A| is much smaller than |O|, the computational 
complexity of the Bordat algorithm approximates O(|O|2). Recall that the number of formal 
objects is polynomial with the number of classes and exponential with the size of the patterns 
searched for. This means that the computational complexity of the lattice construction is 
polynomial with the number of classes in the source files and exponential with the size of the 
patterns. 

Lattice construction output 
Figure 14 shows the lattice Galicia produces for the formal context in (16). Each node in the 
graph represents a formal concept with its extent (E) and intent (I). The subconcept relations 
between the concepts17 determine the structure of the graph. The numbers inside the nodes 
are the unique identifiers of the formal concepts Galicia assigned to them.  
 

 
Figure 14: Galois lattice for formal context in (16) 

 

                                                      
16 The following algorithms were examined: Bordat, Ganter, Close by One, Lindig, Chein, 
Nourine, Norris, Godin, Dowling, and Titanic. For details the reader is referred to [Kuznetsov 
and Obëdkov, 2001]. 
17 The extent, intent and the subconcept relation are discussed in paragraph 4.2.1. 
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For example, concept 9 represents the class sequences [101,102,103] and [104,105,106], 
and has an intent that consists of the formal attribute att_I_C1_C2. This concept represents 
a pattern with two instances in which the first class in the sequence inherits from the second. 
 
The next module of the prototype filters the found formal concepts. Like the other data 
transformations in the prototype, this step is implemented with XSLT templates. The lattice is 
exported from Galicia in the XML format described in Appendix 4. (17) shows a fragment of 
this file that is produced for the formal context in (16). The OBJS and ATTS elements are the 
same as in (16) and are shown empty here. The NODS element represents the set of formal 
concepts, each represented by a single NOD element. (17) shows only one such element; 
the actual XML file contains eight. The extent and intent of each NOD element are 
represented by the EXT and INT elements respectively, and contain references to the 
elements in OBJS and ATTS respectively. The SUP_NOD element describes the 
subconcept ordering of the lattice but is not relevant for the prototype. 
 

<LAT type="LinkedConceptLattice"> 
 <OBJS/> 
 <ATTS/> 
 <NODS> 
  <NOD id="9"> 
   <EXT> 
    <OBJ id="0"/> 
    <OBJ id="2"/> (17) 
   </EXT> 
   <INT> 
    <ATT id="0"/> 
   </INT> 
   <SUP_NOD> 
    <PARENT id="8"/> 
   </SUP_NOD> 
  </NOD> 
 </NODS> 
</LAT> 

5.2.4 Pattern selection 
The final module of the prototype filters the patterns in the lattice. Two filters are applied. 
First, sets of equivalent formal concepts, in the sense defined by (13), are replaced by one of 
their elements. Second, the concepts are filtered according to the size of their extent and 
intent (the number of formal objects and attributes respectively). In the remainder of this 
paragraph these two filters are described more precisely 
 
The prototype does not filter for equivalent patterns in the sense defined by (12). It was 
planned to add this later if the output of the prototype proved to be useful. However, as is 
described in paragraph 5.4, this was not the case. 

Equivalent formal object filtering 
Let X be the set of formal objects of some formal concept the lattice construction module 
produced, and let instance equivalence @ be defined by (13). Then, for every formal concept, 
the result of the first filter is the subset X’Œ X that is the maximal subset of X that does not 
contain equivalent instances. If |X’| and |Z| refer to the number of elements in X’ and 
another set Z respectively this is defined as:  

 
( ) ( )

( ) 1 2 1 2 1 2

' ' : '

with ' , ' :

X X f X Z X f Z Z X

f X x x X x x x x

⊆ ∧ ∧ ¬∃ ⊆ ∧ >

≡ ¬∃ ∈ ≠ ∧ ≅
 (18) 

This filter is implemented with two templates for the formal objects (the elements of X). The 
first template marks, for every formal concept, those formal objects for which an unmarked 
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equivalent instance exists. Of every set of equivalent instances this leaves one element 
unmarked. The second template removes all marked formal objects. It is easy to see that this 
produces the maximal subset of X that does not contain equivalent instances.  
 
Let avg(|X|) and avg(|Y|) represent the average number of formal objects and formal 
attributes respectively of the formal concepts. If |L| represents the number of formal concepts 
in the lattice, the first filter then has a time complexity of O(|L|·avg(|X|)·avg(|Y|)). 

Size-based filtering 
The second filter removes all formal concepts with a small number of formal-objects or  
-attributes. Let px and py be two user-specified parameters that specify the minimum number 
of required formal-objects and -attributes respectively. Then the output of this filter only 
contains concepts with at least px formal objects and py formal attributes.  
 
This is implemented with a trivial template for the elements in the lattice. If avg(|X’|) 
represents the average size of the formal objects after equivalent instances have been 
removed, and avg(|Y|) and |L| are defined in the previous section, this has a computational 
complexity of O(|L|·(avg(|X’|)+avg(|Y|))). 

Total complexity of the pattern selection 
The two filters are applied subsequently. Because avg(|X’|) is smaller than avg(|X|), the 
pattern selection module has a computational complexity of approximately 
O(|L|·avg(|X|)·avg(|Y|)).  
 
We now express these three terms in terms of the number of formal objects. Recall that |L| 
represents the number of formal concepts in the lattice and that we assume it to be 
proportional to the number of formal objects (and the number of formal attributes, but that is 
much less). If every formal attribute is associated with every formal object, avg(|Y|) equals 
the number of formal objects. Because we assume the number of formal attributes to be very 
small compared to the number of formal objects, avg(|X|) is not relevant for the 
computational complexity. Therefore, the computational complexity of the filtering module is 
approximately quadratic with the number of formal objects. Recall that the number of formal 
objects is polynomial with the number of classes and exponential with the size of the patterns 
searched for. This means that the complexity of the pattern-selection is polynomial with the 
number of classes in the input and exponential with the size of the patterns searched for. 

5.3 Implementation validation 
Before the prototype can be used to detect frequently used design constructs in source code, 
it must be ensured that the implementation is correct. This paragraph discusses how this has 
been handled. 
 

E

F G

U

V

W

K

L

M

 
Figure 15: Validation code structure 

 
To validate the quality of the prototype implementation, it is applied to a reference program 
written in C++. The structure of this program is the same as the example given in paragraph 
4.2.3, whose structure is repeated in Figure 15. The squares represent classes and the 
relations are shown in UML notation [Booch et al, 1999]. For example class E has an 
association relation to class F and class W inherits from classes U and V. 
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Table 9 shows the output of the lattice construction module for the structure in Figure 15. 
Every row in the table represents a formal concept. Each formal concept is a tuple (X,Y), 
where X represents the set of formal objects and Y the set of formal attributes. The formal 
attributes are shown using the same notation as in paragraph 4.2.3; each is a triple (p,q)t, 
where p and q represent indices in the formal objects, and t the type of the relation between 
the classes.  
 

1 ({(E,F,G),(U,V,W)}, {(1,2)a,(3,2)e}) 
2 ({(G,F,E),(M,L,K),(W,U,V)}, {(1,2)e})
3 ({(U,V,W)}, {(1,2)a,(3,1)e,(3,2)e}) 
4 ({(G,F,E),(W,V,U)}, {(3,2)a,(1,2)e}) 
5 ({(M,L,K),(W,U,V)}, {(1,2)e,(1,3)e}) 
6 ({(W,V,U)}, {(3,2)a,(1,2)e,(1,3)e}) 
7 ({(W,U,V)}, {(2,3)a,(1,2)e,(1,3)e}) 

Table 9: Prototype output 
 
Observe that in Table 9 concept 4 can be transformed into concept 1 and vice versa with the 
index permutation {1Ø3, 3Ø1}. Therefore concept 4 and 1 are equivalent (according to 
definition (12)). Concepts 6 and 3 are also equivalent, as are 7 and 3. 
 
Table 10 shows the output of the pattern-selection module resulting from the automatic 
filtering and the manual removal of redundant equivalent patterns from the concepts in Table 
9. The two user-specified filtering-parameters are both set to one (px=py=1). Observe that 
the shown concepts are equivalent to the patterns in Table 8 (the pattern example). In fact, 
except for pattern 5, which is equivalent to c5 in Table 8, the patterns are exactly the same. 
This confirms the correctness of the prototype’s implementation. 
 

1 ({(E,F,G),(U,V,W)}, {(1,2)a,(3,2)e}) 
2 ({(G,F,E),(M,L,K),(M,K,L),(W,U,V),(W,V,U)}, {(1,2)e}) 
3 ({(U,V,W)}, {(1,2)a,(3,1)e,(3,2)e}) 
5 ({(M,L,K),(W,U,V)}, {(1,2)e,(1,3)e}) 

Table 10: Prototype output after manual filtering 

5.4 Results of pattern detection case study 
The prototype has been applied to the Grizzly and RIP Worker subsystems of the Océ 
Controller. The characteristics of these subsystems have been given in paragraph 1.2. The 
following paragraphs give some examples of the found patterns. In all cases classes will be 
visualised as squares and the relations between them with UML notation [Booch et al, 1999]. 

5.4.1 Results for Grizzly 
The application of the prototype to the Grizzly source code (234 classes) produced a formal 
context and a lattice with the characteristics shown in Table 11.  
 

Number of formal objects 40.801 
Number of formal attributes 37 
Number of attribute-object relations 128.065
Number of formal concepts 989 

Table 11: Characteristics of the order four 
context for Grizzly and the corresponding lattice 

 
Recall from the “Size of the output” section in paragraph 5.2.2 that the number of formal 
attributes of an order k context, |Ak|, is bounded by the number of relationship-types, |T|, 
multiplied with k2, so |Ak|§|T|·k2. In this case, |T|=3 and k=4 so the number of formal 
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attributes is bounded by 3µ42=48. Observe in Table 11 that the number of formal attributes 
(37) is indeed less than 48.  
Recall from the same section that the upper bound of the number of formal objects of an 
order k context, |Ok|, is polynomial with the number of classes |D|. More specific |Ok|§|D|k. 
Since the characteristics in Table 11 are of an order four context, |Ok|=2344º3.0·109, which 
is clearly more than 40.801. In fact, the number of formal objects is in the same order as 
2342=54.756. This large difference is due to the low connectivity of the classes.  
 
The figures in Table 11 confirm the assumptions made in paragraph 5.2.3. The number of 
formal attributes is indeed much lower than the number of formal objects. Furthermore, the 
number of formal concepts is not exponential with the size of the context. In fact, it is about 
one order smaller than the number of formal objects. This confirms our assumption in 
paragraph 5.2.3 that the size of the lattice is approximately linear with the number of formal 
objects. 
 
With the user-specified filtering-parameters both set to four (px=py=4), the prototype 
extracted 121 order four concepts from this context (with px=py=5 only twelve remained). 
However, despite the filtering, many of the found patterns were very similar. The result even 
included several variants of the same pattern, for example with the associations organised 
slightly different.  
 
The 121 concepts obtained with both filtering parameters set to four have been analysed 
manually according to their number of formal-objects and -attributes. Figure 17 shows two of 
the found patterns that were among the most interesting ones. For each pattern the ID of the 
corresponding formal concept is shown, as well as the number of formal-objects and  
-attributes. Galicia generated the concept-IDs, which uniquely identify the concept within the 
lattice. 
 

W

Y

Concept ID=941
Nr. of formal objects=21
Nr. of formal attributes=5

Concept ID=678
Nr. of formal objects=20
Nr. of formal attributes=4

K

NMLZX

 
Figure 17: Two patterns found in Grizzly 

 
Concept 678 represents a pattern with classes W, X, Y and Z, where Z has an association 
with X and Y. Furthermore, both W and Y have a composition relationship with X. Analysis of 
the 20 instances of this pattern learns that for W fourteen different classes are present, for X 
and Y both two, and for Z three. This indicates that the instances of this pattern occur in a 
small number of source-code contexts. 
 
Table 12 shows four example instances of this pattern. Examination of the Grizzly design 
documentation [Delnooz and Vrijnsen, 2003] learns that the first instance in Table 12, with 
W=BitmapSyncContext, covers a part of an Interceptor pattern [Buschmann et al, 1999]. This 
pattern plays an important role in the architecture of Grizzly. The BitmapDocEventDispatcher 
class plays the role of event Dispatcher, and the BitmapSyncContext the role of 
ConcreteFramework. The abstract and concrete Interceptor classes are not present in the 
detected pattern18. The EventDispatcherTest class is part of the Grizzly test code, and plays 
the role of the Application class in the Interceptor pattern. The Document class is not part of 
                                                      
18 The designers of Grizzly omitted the abstract Interceptor class from the design. 
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the Interceptor pattern. In the Grizzly design this class is the source of the events handled 
with the interceptor pattern.  
Observe that the pattern in Figure 17 does not contain the “create” relation between the 
BitmapDocEventDispatcher (Y) and the BitmapSyncContext (W) classes [Buschmann et al, 
1999] specified. This does not mean that this relationship is not present; it is omitted from this 
pattern because the other pattern instances do not have this relationship. 
 
W X Y Z 
BitmapSyncContext 
SheetDocEventDispatcher 

Document BitmapDoc 
EventDispatcher

BitmapDocEvent 
DispatcherTest

FlipSynchronizer InversionWorkerJobInterceptor
StripeSynchronizer 

BasicJob BitmapDoc 
Synchronizer BitmapDocSynchronizerTest 

Table 12: Example instances of pattern 678 
 
The other concept shown in Figure 17 (with ID 941) represents a relatively simple pattern with 
four classes labelled K, L, M and N. In this pattern class L, M and N inherit from K, L has a 
self-association, and M an association to N. As shown in Figure 17, 21 instances of this 
pattern are detected. Analysis of these instances of learns that in all cases K refers to the 
same class, L to three, and M and N both to six different classes. This indicates that all 
instances of this pattern are used in the same source-code context. 
 
Table 13 shows four of the detected instances of pattern 941. SplitObjectStorage is an 
abstract class from which all workflow-related classes that store data inherit. The “SplitList” 
classes are container classes, for example for SplitTransition classes. The SplitTransition 
classes each represent a single state transition and are each associated with two SplitState 
objects. These represent the states before and after the transition.  
 

K L M N 
SplitTransition SplitState SplitListOfAllTransitions 
SplitNode SplitDoc 

SplitListOfAllStates SplitState SplitAttribute 

SplitObjectStorage 

SplitListOfAllDocuments SplitDocPart SplitImageSequence 

Table 13: Example instances of pattern 941 
 
Surprisingly, the Grizzly design documentation [Delnooz and Vrijnsen, 2003] does not 
mention any of the classes listed in Table 13. Analysis of the code learns that these classes 
are concerned with workflow management in the Océ Controller, and represent points where 
Grizzly interfaces with the rest of the system. Strictly speaking these classes are not part of 
Grizzly but of the workflow-management subsystem of the Océ Controller. However, they are 
redefined in the Grizzly source-tree, and hence extracted by Columbus. 
 
Observe that the two described patterns have a relatively low complexity. Recall that the two 
patterns described here are among the most interesting ones that are detected. So on 
average the complexity of the detected patterns is slightly lower that of the patterns described 
here. 

5.4.2 Results for RIP Worker 
Applying the prototype to the RIP Worker source code (108 classes) produced a formal 
context and a lattice with the characteristics shown in Table 14. 
 

Number of formal objects 52.037 
Number of formal attributes 41 
Number of attribute-object relations 170.104
Number of formal concepts 3.097 

Table 14: Characteristics of the order four context 
for the RIP Worker and the corresponding lattice 
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Observe that, if |T| is the number of relationship-types, |T|·k2 is an upper bound of the 
number of formal attributes of the order k context. This confirms our assumption in the “Size 
of the output” section in paragraph 5.2.2. The number of formal objects of the order k context, 
|Ok|, does not exceed the upper bound predicted in the “Size of the output” section in 
paragraph 5.2.2. Table 14 represents an order four context, and 
|Ok|=52.037§|D|4=1084º1,4·108, so the number of formal objects is relatively low. As with 
Grizzly, this is due to the low connectivity of the classes.  
 
Observe also that the figures in Table 14 confirm our assumptions in paragraph 5.2.3: like 
with Grizzly, the size of the lattice is approximately linear with the size of the context (one 
order smaller), and the number of formal objects is much higher than the number of formal 
attributes. 
 
With the user-specified filtering-parameters both set to five (px=py=5), the prototype 
produced 158 order four concepts (with px=py=4 799). Like the patterns found in Grizzly, the 
set of patterns found in the RIP Worker also contains a lot of similar patterns. Figure 18 
shows two of the found patterns, together with their number of formal-objects and -attributes. 
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Concept ID=2694
Nr. of formal objects=25
Nr. of formal attributes=5

WZ

YX

Concept ID=2785
Nr. of formal objects=31
Nr. of formal attributes=5  

Figure 18: Two patterns found in the RIP Worker 
 
Concept 2694 represents a pattern with classes K, L, M and N, where class K has an 
association relationship with L and M, L a self-association, and M an association to L. Finally, 
class M has a composite relationship to N. Analysis of the output of the filtering-module learns 
that for class N 25 different classes are present, but for K, L and M all pattern instances have 
the same class. This indicates that all instances of this pattern are used in the same piece of 
the source code. 
 
Table 15 shows four examples of pattern 2694. All are concerned with job-settings and the 
configuration of the system. The PJT_T_SystemParameters class stores information about 
the environment of the system, for example supported media-formats and -types. The 
PJT_T_JobSetting class represents the settings for a complete job, and is composed of the 
classes listed for N. The class listed for L, PJT_T_Product, is used to detect if the machine 
can handle a certain job-specification [DVRIP, 2002]. 
 

K L M N 
PJT_T_MediaColor 
PJT_T_MediaWeight 
PJT_T_RunLength 

PJT_T_System 
Parameters 

PJT_T_ 
Product

PJT_T_ 
JobSetting

PJT_T_StapleDetails 

Table 15: Example instances of pattern 2694 
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Concept 2785 represents a pattern with classes W, X, Y and Z, where X and Y inherit from W, 
Y has a self-association, and W a self-composition. Class Z is only loosely connected to the 
other classes, namely via an association to class W.  
Analysis of the 31 instances of this pattern learns that in all cases W and Y refer to the same 
class. X refers to eight different classes and Z to four. This indicates that all instances of this 
pattern are used in the same source-code context.  
 
Table 16 shows four example instances of pattern 2785. None of the listed classes are 
mentioned in the RIP Worker design documentation [DVRIP, 2002]. Examination of the 
source code learns that all instances are part of a GUI library the RIP Worker’s test tools  use. 
 

W X Y Z 
CDialog CCmdUI 
CButton CDialog 
CListBox CWinThread 

CWnd 

CEdit 

CFrameWnd

CDataExchange

Table 16: Example instances of pattern 2785 
 
Similar to the result for Grizzly, the patterns described for the RIP Worker have a relatively 
low complexity. Since these patterns are the most interesting of the detected patterns, the 
other patterns can generally be regarded as uncomplicated. 

5.4.3 Observations 

Quality of the results 
When examining the prototype’s output for Grizzly and the RIP Worker it is clear that better 
filtering is required. Recall that filtering for equivalent patterns, as defined by (12), has not 
been implemented in the prototype. The output contains many equivalent patterns so in 
practice this filtering is desired too.  
 
The occurrence of sets of patterns in the output with small differences represents a more 
significant problem. A possible filtering strategy might be to group highly similar patterns into 
subsets and (initially) show only one pattern of each subset of the user. This requires a 
measurement for the difference between patterns. This measurement could for example be 
based on the number of edges (class relations) that must be added and removed to convert 
one pattern into another. We leave this as future work. 
 
After filtering the results manually, the remaining patterns are of a relatively low complexity, 
compared to for instance the patterns found in [Gamma et al, 1995]. More complex patterns 
typically have one instance and are removed by the pattern selection module. This means we 
are not able to achieve our goal of finding patterns that are useful to reconstruct architectural 
views (hypothesis H2).  
 
In literature several publications report finding large numbers of design pattern instances in 
public domain code and few in industrial code, e.g. [Antoniol et al, 1998], [Kersemakers, 
2005]. We speculate that it could be the case that industrial practitioners structurally design 
software in a less precise way than public domain developers. Obviously further experiments 
are needed to validate this statement, but it could explain why in our case study the number 
of instances of the found patterns remains fairly low.  

Encountered problems 
During the fact extraction process several problems were encountered. First of all, Columbus 
consistently crashed during the compilation of some source files. Recall that the source files 
are compiled with the same compiler as with which they were compiled during forward 
engineering ([MSVC, 2005]). Because they compiled without errors at that time, the error 
during fact extraction must either be caused by an incompatibility between Columbus and the 
Microsoft Visual C++ compiler, or by an error in Columbus itself.  
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This problem was encountered once while analysing the RIP Worker and ten times while 
analysing the full Océ Controller. In all cases, skipping the source file that triggered the error 
solved the problem. Because this only happened once for the RIP Worker, and not at all for 
Grizzly, this has little impact on the results described in paragraph 5.4.2.  
 
The second encountered problem occurred during the linking step of the fact extraction. In 
this step the linker of Columbus combines the compiled source files, similar to the task of a 
linker during the generation of an executable. With the RIP Worker and Grizzly subsystems 
no problems were encountered, but with the complete Océ Controller Columbus crashed 
during this step. A few experiments revealed that this is probably caused by the size of the 
combined abstract syntax graphs, which is closely related to the size of the source files. 
Therefore it was not possible to extract facts from the full Océ Controller with Columbus. 

Execution times 
Both subsystems are analysed on the same test platform. Table 17 shows the characteristics 
of this platform. 

Processor Pentium 4, 2 GHz 
Memory 2 GB 
Operating system Windows 2000 SP4 
Columbus 3.5 
Galicia  1.2 
Java 1.4.2_06 

Table 17: Test system characteristics 
 
Table 18 shows the execution times for the RIP Worker and Grizzly subsystems for an order 
four context. All values, except for the lattice-construction time, are measured in wall-clock 
time. The lattice-construction time is measured in CPU time, but because the CPU load 
during this process was almost 100%, this is equivalent to wall-clock time. The time for lattice 
construction includes the time needed to import the formal context into Galicia and export the 
generated lattice to an XML file.  
For Grizzly the total execution time was 7:44:59 and for the RIP Worker 11:17:17 (hh:mm:ss). 
 

  Grizzly RIP Worker 
1 Fact extraction 0:01:09 0:42:40 
2 Context generation  0:26:00 0:36:00 
3 Lattice construction  4:41:50 6:57:37 
4 Pattern selection  2:36:00 3:01:00 

Table 18: Execution times (hh:mm:ss) 
 
The patterns the prototype detected in the Grizzly and RIP Worker source code are relatively 
simple. Possibilities to produce more interesting patterns are: 
1. Extending the size of the input to, for example, multiple subsystems of the Océ Controller. 
2. Increasing the order of the context. This increases the number of classes in the patterns, 

and hence their complexity. 
3. Introducing partial matches. 
 
The third possibility, partial matches, requires fundamental changes to the method. If FCA 
would still be used, these changes would increase the size of the lattice significantly, and 
hence the execution time of the lattice construction step.  
 
The first two options have the disadvantage that they increase the size of the data that is 
processed. This affects the running time of all modules. Recall that the computational 
complexity of the algorithms each of the modules uses is polynomial with the number of 
classes and exponential with the order of the context. Based on this, and the executing times 



 56

in Table 18, we concluded that, from a performance point of view it is not practical to use the 
prototype to reconstruct architectural views of the complete Océ Controller19. 

5.5 Conclusions of the pattern detection case study 
This case study aimed to investigate the following hypotheses: 
 

H1: With Formal Concept Analysis frequently used structural design constructs in 
the source code of the Océ Controller can be detected without upfront 
knowledge on the expected structures. 

 
H2: Knowledge of frequently used structural design constructs found with Formal 

Concept Analysis in the Océ Controller provides an architectural-view that is 
useful to gain insight in the structure of the system. 

 
Paragraph 5.1 describes two criteria for a structural design construct to be useful to 
reconstruct an architectural view; it must contain at least six classes and have at least four 
instances.  
 
To confirm the two hypotheses, a prototype has been built that implements the approach 
[Tonella and Antoniol, 1999] proposed. This prototype has been applied to two subsystems of 
the Océ Controller, leading to the following conclusions: 
• FCA can indeed be used to find frequently used design constructs in source code without 

upfront knowledge on the expected constructs.  
• The performance our XSLT implementation of the approach is such that it is not feasible 

to analyse very large software structures. Although this is partly due to inefficiencies in 
our XSLT implementation, the computational complexity of the used algorithms is the 
main reason for this. Since applying the algorithms to two small subsystems of the Océ 
Controller already requires a lot of time we conclude that it is not practical to apply the 
approach to the complete Océ Controller. With a more efficient implementation it seems 
possible to detect design patterns in its subsystems though. These subsystems are about 
five to ten percent of the size of the total system. 

• The found design constructs are of a limited complexity. For performance reasons no 
contexts of orders large than four could be analysed, so the detected patterns consisted 
of four classes or less. Although large numbers of pattern instances were detected, these 
were typically confined to a few areas of the source code. 

• Due to an error in Columbus/CAN, this fact extractor cannot be used to extract facts from 
the complete Océ Controller.  

 
This case study shows that finding patterns without a pattern library takes a lot of computing 
time, even for relatively simple patterns in relatively small pieces of software. Since it was 
possible to find frequently used design constructs, the results confirm hypothesis H1. 
Because it was not possible to detect patterns with six classes or more, we failed to confirm 
H2.  
 
This leads to the conclusion that the prototyped approach is not (yet) useful to reconstruct 
architectural views of the complete Océ Controller. Using the distinction between architecture 
and design described in paragraph 2.4.3, we conclude that it can be used to reconstruct 
subsystem designs. 

                                                      
19 The Océ Controller contains about ten to twenty times more classes than the two 
subsystems used in the experiment. 
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6 Clustering-based architecture reconstruction 
The second of the two case studies described in this thesis uses clustering techniques to 
reconstruct an architectural view from source code. This chapter describes similar 
approaches reported in literature.  

6.1 Clustering introduction 
Before literature on clustering-based architecture reconstruction is discussed, this paragraph 
gives a non-exhaustive overview of clustering techniques. For more information on clustering 
the interested reader is referred to [Jain et al, 1999], [Berkhin, 2002] and [Pal and Mitra, 
2004]. 
 
Clustering is a data analysis technique for dividing data elements into groups of similar 
elements that are called clusters [Berkhin, 2002]. This division is based on the similarity of 
data elements, which are usually represented as points in a multidimensional space or 
vectors of measurements [Jain et al, 1999]. Intuitively, in a valid clustering the data elements 
within a cluster are more similar to each other than to those in other clusters. Figure 19 shows 
an example of a clustering of points in a two-dimensional space. 
 

 
Figure 19: Example clustering 

 
Various terms are used to refer to the data elements. Publications that describe the clustering 
process sec call them objects [Berkhin, 2002], [Pal and Mitra, 2004] or patterns [Jain et al, 
1999]. [Lakhotia, 1996] presents a unified framework for software subsystem classification 
techniques where the data elements are called nodes. Approaches that use clustering for 
reverse engineering often use the terminology [Wiggerts, 1997] introduced, in which the 
clustered data elements are called entities. To avoid confusion with the object-oriented 
notions of objects and patterns we decided to use the latter term.  
 
Clustering is an unsupervised classification technique. In general two types of classification 
techniques can be distinguished [Jain et al, 1999]: 
• Supervised classification techniques start with a collection of pre-classified entities. The 

problem is to classify a newly encountered entity based on this collection. The pre-
classified entities are often used to train the algorithm to recognise distinguishing 
characteristics of the entities, after which new entities can be classified. 

• Unsupervised classification techniques do not start with a collection of pre-classified 
entities. Instead, they work solely on the collection of unclassified entities. 

 
Clustering has many applications, including the classification of plants and animals, speech 
and character recognition, image segmentation, information retrieval and data mining. [Jain et 
al, 1999] give examples of the last four. Chapter 6 of this thesis describes a case study where 
clustering is used for architecture reconstruction. After completing our description of clustering 
in general, this chapter describes clustering-based architecture reconstruction approaches 
reported in literature. 
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6.1.1 Definitions 
The following definitions regarding clustering are used in this chapter. These definitions are 
based on [Jain et al, 1999] and [Wiggerts, 1997]. 
• An entity x is a single data item used by the clustering algorithm. Typically it consists of a 

feature-vector of D measurements. Observation, object, datum and pattern are some of 
the synonyms for entity used in literature. 

• The individual components of x are called features. In literature the term attribute is also 
used. 

• D is the dimensionality of the entity. 
• An entity set H={x1,…,xN} denotes a set of N entities. The i-th entity is denoted xi 

(1§i§N), and the j-th feature of xi as xi,j (1§j§D). Some clustering algorithms view the 
entity set as an NµD entity matrix. 

6.1.2 Components of a clustering task 
A typical clustering task involves the following issues [Jain et al, 1999]: 
 
1. Entity representation and feature selection involves the selection of the entities and 

the features. This often comprises of selecting the features that lead to the most effective 
clustering.  

2. A similarity metric is a metric or quasi metric on the feature space that is used to 
quantify the similarity of two entities. The proximity of entities is usually measured with a 
distance function defined on pairs of entities. 

3. Grouping the entities can be performed with many different algorithms. Traditionally 
these are divided into hierarchical and partitional algorithms [Berkhin, 2002]. Hierarchical 
algorithms produce a series of nested partitions by splitting or combining clusters. 
Partitional algorithms iteratively relocate entities between clusters to optimise a clustering 
criterion.  

4. Data abstraction is an optional step in which a representation of the grouping result is 
created that is meaningful to the user. Typically this is done with a compact description of 
each cluster in terms of cluster prototypes or representative entities such as the 
centroid20. 

5. Assessment of output is an optional step that consists of an, often subjective, validation 
of the grouping result. 

 
The following paragraphs discuss these five issues in more detail.  

6.1.3 Entity representation & feature selection 
The first issue in any clustering process is the selection of features and entities. An important 
goal of this step is to reduce the dimensionality of the feature space, while retaining the 
salient characteristics of the entities [Mitra and Pal, 2004]. Although no theoretical guidelines 
exist that suggest the appropriate entities and features for a specific situation [Jain et al, 
1997], statistical measures can be used to evaluate the quality of a proposed feature 
selection [Mitra and Pal, 2004].  
 
In general two types of features can be distinguished [Jain et al, 1997]: 
• Quantitative features, for example: 

o Continuous values (e.g. the age or length of people). 
o Discrete values (e.g. the number of children in a family). 
o Interval values (e.g. the beginning and end of an event). 

• Qualitative features, for example: 
o Nominal or unordered values (e.g. gender or colour). 
o Ordinal values (e.g. temperature classifications like “hot” and “cold”). 

 

                                                      
20 The centroid of a solid object is its centre of mass. The centroid of a cluster is the point in 
the feature space that is the “average” of the points in the cluster. This point can be seen as 
the centre of gravity of the cluster. 
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[Wiggerts, 1997] uses a different classification, distinguishing two feature-types we will call 
inter- and inner-entity features: 
• Inter-entity features describe relationships between entities. In this case the search space 

is considered as a graph in which the nodes represent the entities and the edges the 
relationships between them. 

• Inner-entities describe each entity’s score on the features. 
 
Although these two classifications appear different, the relationship between them is easy to 
see. The inter-entity features can be considered unordered qualitative features by using a 
matrix that contains for each pair of entities the number of edges between them. Obviously 
the inner-entity features can be classified according to the classification of [Jain et al, 1997].  
 
Based on their features, the similarity measure calculates the similarity of two entities, as is 
described in the next paragraph. This can be based on the values of the features (e.g. with 
continuous feature-values), but also on the presence or absence of features (e.g. with 
unordered feature-values). These two types are called distance measures and association 
coefficients respectively. 

6.1.4 Similarity measures  
A similarity measure calculates the similarity or dissimilarity of two entities. The clustering 
algorithm uses this measure to determine which entities must be placed in the same cluster.  
 
Consider the case where inter-entity features are used. Recall that in this case the search 
space is considered as a graph where the nodes represent the entities and the edges 
relations between them. The similarity of two entities may be based on the edges between 
them, for example by counting them. This is an example of a similarity measure called an 
association coefficient. In case of directed edges, similarity measures may or may not take 
the direction into account. If different edge types are present each may be associated with a 
different weight, in which case the weights of the edges have to be summed.  
 
Similarity measures produce a value bounded by 0 and 1, where 0 indicates no similarity at 
all, and 1 no difference. Some similarity measures calculate the dissimilarity dis(xi,xj), of two 
entities xi and xj. In this case the similarity sim(xi,xj)=1-dis(xi,xj). 
 
Distance measures and association coefficients are two frequently used types of similarity 
measures [Berkhin, 2002], [Wiggerts, 1997]: 
• Distance measures usually calculate the dissimilarity of two entities based on numeric 

features. Most distance measures are based on the Minkowski metric. Using the 
definitions introduced earlier in this chapter for two entities xi and xj this metric can be 
described as: 
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where 1§p§¶. The most popular distance measure, the Euclidean distance, is a special 
case of this metric with p=2 [Jain et al, 1999]. The Manhattan distance is another special 
case of the Minkowski metric, but with p=1 [Berkhin, 2002]. A disadvantage of the 
Minkowski metrics is the tendency of the largest scaled features to dominate the others. 
Normalising the features, or introducing weighting schemes can solve this [Jain et al, 
1999].  

• Association coefficients calculate the similarity of two entities based on the presence or 
absence of qualitative features. The following matrix is commonly used in literature to 
define association coefficients [Wiggerts, 1997]: 
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In this matrix xi and xj are two entities with binary features that are either absent (0) or 
present (1). The value of a represents the number of features that are present in both xi 
and xj, b represents the number of features present in xi but absent in xj et cetera. 
Differences between the various association coefficients are cause by different handling 
of 0-0 matches and different weighting of matches and mismatches [Wiggerts, 1997]. 
Popular association coefficients are the Rand and Jaccard indices, simR and simJ 
respectively, that are defined as [Berkhin, 2002]: 

( ),R i j
a dsim x x

a b c d
+

=
+ + +

 ( ),J i j
asim x x

a b c
=

+ +
 

Observe that these two indices differ in the way 0-0 matches are handled. [Wiggerts, 
1997] calls the Rand association coefficient the simple matching coefficient.  
The Sørensen-Dice coefficient is similar to the Jaccard coefficient in the handling of 0-0 
matches, but assigns double weight to 1-1 matches [Anquetil and Lethbridge, 1999]: 
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6.1.5 Grouping the entities 
This task creates the actual clusters using one of the similarity measures described in the 
previous paragraph. Clustering algorithms can be divided in two groups, hierarchical and 
partitional algorithms. Algorithms of the first type produce a hierarchy of nested clusters, 
whereas algorithms of the second type produce a single partitioning of the entities. This 
paragraph describes these types, and the refinements that are listed below. This selection is 
based on the taxonomy of [Jain et al, 1999] and the architectural clustering approaches 
described in this chapter.  
 
1. Hierarchical 

a. Single link 
b. Complete link 
c. Average link 

2. Partitional 
a. Square error 
b. Graph theoretic 
c. Evolutionary 

 
Before these types of algorithms are discussed in more detail, several crosscutting issues are 
discussed that affect all algorithm types. This discussion is based on [Jain et al, 1999]. 
• Agglomerative vs. divisive concerns the starting point the algorithm chooses. 

Agglomerative algorithms start with each entity in a singleton cluster and merge clusters 
until some stopping criterion is satisfied. Divisive algorithms start with all entities in a 
single cluster and split clusters until some stopping criterion is satisfied. Agglomerative 
algorithms are also called “bottom-up” and divisive algorithms “top-down” [Lakhotia, 
1996]. 

• Monothetic vs. polythetic relates to the use of the features. Polythetic algorithms use all 
the features simultaneously in the similarity calculations. Monothetic algorithms do not do 
this and consider for example the features sequentially, using a different feature in each 
cycle of the algorithm. 

• Hard vs. fuzzy relates to the output of the clustering. Hard clustering algorithms assign 
each entity to a single cluster. Fuzzy algorithms assign each entity to a set of clusters, 
each with a certain degree of membership.  

• Deterministic vs. non-deterministic is important for algorithms that do not consider the 
entire search space but a subset of it. When run repeatedly, deterministic algorithms 
produce the same clustering, whereas non-deterministic algorithms produce different 
ones.  

Hierarchical clustering algorithms 
Hierarchical algorithms produce a series of nested clusters. Each iteration of the algorithm 
combines two clusters (agglomerative) or splits a single cluster (divisive). In both cases a 



 61

dendrogram is produced. A dendrogram can be visualised in a tree where the nodes 
represent clusters and the edges merge or split decisions taken by the algorithm. If the inner 
nodes are numbered such that the numbers increase monotonically from each child node to 
the parent node, levels in the clustering process can be identified.  
Figure 20 (left) shows an example of a dendrogram. Slicing the dendrogram at a certain level 
gives a partitioning. In Figure 20 the dotted line in the dendrogram leads to the partitioning on 
the right. 
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Figure 20: Hierarchical clustering example 

 
Divisive hierarchical algorithms have the disadvantage that in the first iteration a large number 
of possible divisions must be evaluated. If the entity set consists of N entities, 2N-1-1 
possibilities must be considered in the first iteration. Agglomerative algorithms do not have 
this disadvantage and are therefore the most widely used hierarchical algorithms [Wiggerts, 
1997].  
 
Agglomerative hierarchical algorithms all fit the following scheme (adapted from [Lakhotia, 
1996] and [Wiggerts, 1997]): 
 

 

set of clusters obtained by placing each entity in its own cluster
Compute the similarities between the clusters in 
while | | 1 do
 ' subset of  with most similar clusters such that | ' | 2
 : \ '

K
K

K
K K K
K K K

=

>
= ≥
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Update the similarities between the clusters in 
od

merge clusters K
K

 (19) 

 
The algorithm starts with the creation of singleton clusters. The similarities between each pair 
of these clusters is computed by means of a similarity measure for entities, such as those 
discussed in the previous paragraph. In the first two steps of the while-loop, the algorithm 
finds the set of most similar clusters and merges them. In the third step of the loop the 
similarities are updated using one of the update rules described below. The algorithm iterates 
until a single cluster remains.  
 
The last action of the while-loop, calculating the similarity between the newly formed cluster 
and the other clusters, can be implemented in several ways. All are based on the similarities 
of the merged clusters with the other clusters. These have been calculated earlier, either in 
the initialisation or a previous cycle of the loop. Let ka, kbœ K be two distinct clusters that are 
merged. Then three popular update strategies to calculate the similarity between the merged 
cluster ka » kb and a different cluster kcœ K are [Lakhotia, 1996]: 
• Single link: simSL(kc,ka » kb)=simSL(kc,ka) Æ simSL(kc,kb) 
• Complete link: simCL(kc,ka » kb)=simCL(kc,ka) ∞ simCL(kc,kb) 
• Average link: simAL(kc,ka » kb)=(simAL(kc,ka) + simAL(kc,kb))/2 
in which Æ and ∞ denote the maximum and minimum of two values respectively. Two variants 
of the average link strategy are the weighted and unweighted average link strategies.  
The complete link strategy produces compact or tightly bound clusters, whereas the single 
link strategy has a tendency to produce straggly or elongated clusters [Jain et al, 1999]. 
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Figure 21 illustrates this (from [Wiggerts, 1997]). The dendrogram in Figure 20 is the result of 
applying an agglomerative hierarchical algorithm with a single link update strategy. 
 

 

Figure 21: Clusterings obtained with single (left) and  
complete (right) link strategies. 

 
According to [Jain et al, 1999] the time complexity of hierarchical agglomerative algorithms is 
typically O(N2 log N), where N is the number of entities. Because agglomerative algorithms 
need to store a similarity matrix the space complexity is typically O(N2). 

Partitional clustering algorithms 
Partitional algorithms are the other main type of clustering algorithms. These algorithms 
produce a single partitioning of the entities and no hierarchy of clusters, as hierarchical 
algorithms do.  
 
Due to the large number of possible combinations to cluster the entities it is usually not 
practical to try all of them. Partitional algorithms handle this by investigating only a part of the 
total search space, using various heuristical strategies. This typically causes these algorithms 
to converge at local optima. In practice the algorithm is often run multiple times with different 
starting states to handle this [Jain et al, 1999].  
 
Several different types of partitional algorithms exist. In the remainder of this chapter three 
types will be discussed, namely square error, graph theoretical and evolutionary algorithms. 

Square error clustering algorithms 
Square error algorithms are the most frequently used partitional algorithms [Jain et al, 1999]. 
They start with an initial partition of the entities in a fixed number of clusters and iteratively 
relocate entities between clusters to optimise some clustering criterion. This criterion 
represents the quality of the clustering [Tzerpos and Holt, 1998].  
 
Square error algorithms all use the following clustering criterion. Recall that H is the entity set, 
and let K be a clustering with |K| clusters. Further, let cj be the centroid of the j-th cluster and 
nj the number of entities in the j-th cluster. Finally, let xi

(j) be the i-th entity belonging to the  
j-th cluster in K. Then the squared error criterion e2 can be defined as [Jain et al, 1999]: 
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In (20) ||xi

(j)-cj|| represents a chosen distance measure between entity xi
(j) and the cluster 

centroid cj. Squared error algorithms use the criterion in (20) to determine if some entity-
relocation improves the quality of the clustering. The relocation is only applied if this is the 
case. When a certain convergence criterion is met the clustering process stops. Examples of 
convergence criteria are that the squared error value has not decreased for some number of 
iterations, or that no entity reassignment from one cluster to another has taken place for some 
number of iterations.  
 
The k-means algorithm is the simplest and the most commonly used square error algorithm.  
In the initialisation-step a set of k cluster centroids is chosen, for example by randomly 
choosing k entities as cluster centroids, or by randomly choosing k points in the feature 
space. Next, the algorithm assigns the entities to the cluster that contains the closest centroid, 
after which the centroids are recomputed. The last two steps are repeated until a 
convergence criterion is met.  
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(21) describes this in pseudo-code (adapted from [Jain et al, 1999]): 
 

 
( )

( )

set of  randomly chosen cluster centroids
repeat

: assign each entity to the cluster with the closest centroid in 
: centroids

while 

C k

K C
C K
criterion K

=

=
=

¬

 (21) 

 
k-means algorithms are sensitive to the initial choice of the cluster centroids, which can lead 
to the algorithm converging in a local minimum. Some variants of this algorithm attempt to 
choose initial centroids that are more likely to lead to a good clustering. Other variations of 
this algorithm permit the merging and splitting of clusters [Jain et al, 1999]. 
 
According to [Jain et al, 1999] the time complexity of the k-means algorithm is typically  
O(N·k·l), where N is the number of entities, k the chosen number of clusters and l the 
number of iterations. If k and l are fixed in advance the algorithm has a linear time complexity. 
The space complexity is O(k+N) because both the centroid-set and the entity-set need to be 
stored in memory.  

Graph-theoretic clustering algorithms 
Graph-theoretic algorithms are partitional algorithms that operate on graphs. The nodes of 
such graphs represent entities and the edges relations between these entities. In general 
graph algorithms try to split this graph into subgraphs that will form the clusters, instead of 
focussing on the entities themselves [Wiggerts, 1997].  
 
The best-known graph-theoretic clustering algorithm uses a minimal spanning tree (MST) of 
the data [Jain et al, 1999]. A spanning tree is a graph connecting a set of N nodes such that a 
complete tree of N-1 edges is constructed. A spanning tree is minimal if the total length of the 
edges is the minimum necessary to connect all the nodes [Pal and Mitra, 2004]. Once the 
MST is constructed, the longest MST edges are deleted. The disconnected subgraphs 
obtained this way form the clusters [Jain et al, 1999].  
 
Figure 22 shows an example of an MST. The numbers near the edges denote the length of 
the edges. The edge between the nodes labelled C and G (dotted in red) is the longest. If a 
single edge is removed to produce the clustering it will be this one, leading to the two clusters 
shown as ellipses in the figure. 
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Figure 22: MST clustering example 

Evolutionary clustering algorithms 
Evolutionary algorithms are motivated by natural evolution. They use evolutionary operators 
and a population of solutions to obtain a globally optimal partition. Candidate solutions are 
encoded as ‘chromosomes’. In evolutionary clustering algorithms these represent a 
partitioning. Examples of evolutionary operators are selection, recombination and mutation. 
Each of these transforms one or more input chromosomes into one or more output 
chromosomes.  
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Evolutionary clustering algorithms typically start with the generation of a random population of 
solutions, which represent a set of initial clusterings. The number of solutions in this 
population is called the population size. Each solution is associated with a fitness value that 
typically is inverse proportional to the squared error value of the corresponding clustering. 
Next, two steps are repeated until some termination condition is satisfied. First, the 
evolutionary operators are used to generate a new population of fitter solutions, typically with 
the same size as the previous population. Second, the fitness values are updated.  
These steps can be summarized as follows (adapted from [Jain et al, 1999]): 
 

 

( )

: random population of solutions.
Associate a fitness value with each solution in 
repeat

: _ ( )
Update fitness values

while 

K
K

K next generation K

termination K

=

=

¬
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Genetic algorithms (GAs) are the best-known evolutionary clustering techniques [Jain et al, 
1999]. These algorithms represent the solutions as binary strings, leading to a partitioning into 
two clusters. For example consider an entity set H={x1,…,x6} and the six bit binary string 
[101110]. This string corresponds to a clustering of the six entities in H in two clusters: 
{x1,x3,x4,x5} and {x2,x6}.  
The most popular recombination operator is the crossover operator [Jain et al, 1999]. This 
operator takes two solutions as input and swaps the substrings after the crossover point. Let 
≈ denote the crossover operator, p (1<p<N) the crossover point, and [s1,…,sN] and 
[t1,…,tN] two binary strings that both classify N entities. Then the crossover operator applies 
the following transformation:  

[ ] [ ] ( )1 1 1 1 1 1,..., ,..., ,..., , ,..., , ,..., , ,...,N p N p p N p p Ns s t t s s t t t t s s+ +   ⊗ =      

For example [011111] ≈2 [100010]=([10 1111],[01 0010]). 
 
The selection operator uses a fitness function that implements a similarity metric to select the 
best solutions. The mutation operator is used to reduce the possibility that the algorithm 
terminates in a local optimum [Jain et al, 1999]. This operator takes a solution as input and 
complements a randomly selected bit. For example [001000] is produced by mutating the 
third bit of the input string [000000]. Mutation is used to increase the probability that the 
search space is sufficiently explored. 
 
[Jain et al, 1999] report that “the sensitivity of GAs to the selection of their parameters such as 
the population size, crossover and mutation probabilities is a major problem”. Researchers 
defined problem-specific heuristics to alleviate this problem.  

6.1.6 Data abstraction 
In many applications the clusters the grouping produces must be represented in a compact 
form, simply because of their huge size. The entities that form the clusters are abstracted 
from to achieve this. [Jain et al, 1999] describe several representation schemes: 
• Representative elements represent clusters by their centroid or a set of distant points. 

Distant points of a cluster are elements located at its edges.  
• Classification tree represent the clusters by a classification tree that graphically 

visualises the search space and the cluster boundaries.  
• Logical expressions represent the clusters by predicates that hold for all elements in the 

cluster, for example y1<4 ⁄ y2>3, where y1 and y2 are two numeric features. 
 
In practice, clusters usually are represented by their centroid [Jain et al, 1999]. 
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6.1.7 Assessment of output 
Assessment of output is an optional task that consists of an, often subjective, validation of the 
grouping result. Three types of assessment can be distinguished, all using statistical 
measures [Jain et al, 1999]: 
• An external assessment compares the grouping to an a priory structure.  
• An internal examination considers if the grouping is intrinsically appropriate for the data.  
• A relative test compares two different groupings. 

6.2 Clustering-based architecture reconstruction 
This paragraph discusses several clustering-based architecture reconstruction approaches 
reported in literature. This overview is based on [Wiggerts, 1997], [Tzerpos and Holt, 1998], 
[Koschke, 2000] and [Mitchell, 2002]. 

6.2.1 Early architecture clustering 
[Schwanke, 1991] describes a tool called Arch, which is a graphical and textual structure-
chart editor for understanding and reorganising the internal structure of software systems.  
Arch provides a semi-automatic architectural-clustering method that clusters procedures into 
modules. This is implemented with a hierarchical agglomerative clustering algorithm that uses 
the single linkage update rule. The similarity measure is based on shared design decisions; 
procedures are related if they share design decisions. Examples are procedures that use the 
same tables or call the same procedures.  
The clustering can be used in three ways: 
• Batch clustering runs without supervision. 
• Interactive radical clustering asks the user for confirmation each time two clusters are 

combined. 
• Interactive reclustering uses a previous clustering to guide the clustering.  
An interesting feature of Arch is “maverick analysis”, which finds procedures that appear to be 
assigned to the wrong module. These are prioritised, and assigned to more appropriate 
modules. 
 
[Choi and Scacchi, 1990] describe a fully automatic architectural clustering method that 
produces a hierarchical decomposition of a system. The method uses the NuMIL module 
interconnection language. In NuMIL a system is composed of subsystems, which are in turn 
composed of modules and other subsystems. This creates a hierarchy of subsystems and 
modules. In this hierarchy the subsystems correspond to interior nodes and the modules to 
leaf nodes. A module can be a single procedure or a set of procedures that are defined in a 
single source file.  
The subsystem construction algorithm aims to minimize coupling and alteration distance. 
Coupling is a measure for the strength of the association between modules. The coupling of a 
system or subsystem is the sum of the couplings of all contained modules and subsystems. 
The alteration distance between modules is a measure for the distance between an altered 
module and the affected module. If both modules are located in the same subsystem the 
alteration distance is zero. Otherwise, the alteration distance is the length of the path between 
the altered and the affected module. The alteration distance for a system or subsystem is the 
sum of the alteration distances of the contained modules or subsystems. 
The clustering algorithm starts with a resource flow diagram (RFD), in which the nodes 
represent the modules. An edge is placed from module A to module B if and only if module A 
provides one or more resources to module B. The clustering algorithm searches articulation 
points in the RFD, which are nodes that divide the RFD graph into two or more connected 
components. Together with the subgraphs, the articulation points become subsystems. When 
all articulation points have been processed the algorithm cleans the resulting hierarchy by 
removing subsystems with a single node and placing their content in a higher-level 
subsystem.  

6.2.2 Rigi 
Rigi [Rigi, 2004] is an architecture reconstruction tool (see paragraph 3.3.3). Rigi’s clustering 
method [Müller and Uhl, 1990] is intended to assist users with the reconstruction of the 
architecture of procedural software. Alternative decompositions are generated to achieve this. 
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It is chosen not to construct the decompositions fully automatically because “an experienced 
software engineer will always be able to produce a better system decomposition than an 
automatic procedure –given sufficient time” [Müller and Uhl, 1990].  
 
Rigi produces a hierarchical decomposition in the form of a (k,2)-partite graph. Such a graph 
consists of a series of graph levels (or layers) and a special set of edges. These layers are 
connected by so called layer-edges, which may only connect adjacent layers. The nodes 
within each layer are connected by at most k edges. In terms of the software architecture, the 
nodes in the graph represent system entities, such as subsystems, modules or files. The 
levels are resource-flow graphs, each representing a certain abstraction level. The lowest 
level consists of source-code entities. Nodes at higher levels are composed of lower level 
nodes.  
 
The clustering process consists of five steps [Müller and Uhl, 1990], which are described 
below. Users can invoke each of these steps from the Rigi application. 
1. Remove omnipresent nodes. Omnipresent nodes are nodes that use many other 

nodes, or are themselves used by many other nodes. The first case represents driver 
nodes, and the second library nodes. Omnipresent nodes (and all their edges) are 
removed before the actual clustering takes place because they obscure the system 
structure. 

2. Compose by standard library places known library members into special subsystems.  
3. Compose by interconnection strength is a step that is based on the principles of high 

cohesion and low coupling. The interconnection strength similarity measure of two nodes 
in a resource flow graph is defined as “the exact number of syntactic objects exchanged 
between the two nodes” [Müller and Uhl, 1990]. Two nodes are strongly coupled if and 
only if their interconnection strength exceeds a certain threshold. Two nodes are loosely 
coupled if and only if their interconnection strength is below some other (lower) threshold.  
This step places strongly coupled nodes in the same subsystem and loosely coupled 
nodes in different subsystems. Node pairs that fall in neither category are placed in the 
same subsystem. 

4. Compose by common neighbour is based on the software engineering principle of few 
interfaces. The intention is to identify pairs of loosely coupled nodes that have common 
clients or common suppliers. Placing such nodes into the same subsystem reduces the 
number of interfaces. 

5. Clean-up layers identifies subsystems that contain only one node. Such subsystems are 
merged with their parent nodes. 

6.2.3 ACDC 
The Algorithm for Comprehension-Driven Clustering (ACDC) [Tzerpos and Holt, 2000] 
combines pattern detection and clustering techniques.  
 
Instead of focussing on high cohesion and low coupling, ACDC uses a different approach to 
reconstruct an architecture. It is based on three characteristics that are considered essential 
for a recovered architecture to be useful for program understanding [Tzerpos and Holt, 2000]: 
• Effective cluster naming: refers to the “data abstraction” issue discussed in paragraph 

6.1.6. Giving meaningful names to the clusters that are familiar to maintainers makes an 
architecture much easier to understand, as opposed to names like “SS0”, “SS1” et cetera. 

• Bounded cluster cardinality: Clusters containing a lot of entities are not considered 
useful because of the overwhelming amount of information they present to the user. 
Clusters containing one or two entities are not considered useful either. Ideally, the 
clusters should contain between about five and twenty entities. 

• Pattern-driven: A structure is easier to understand if it is presented in the form of familiar 
patterns, as was described in paragraph 2.4.3. 

 
The ACDC algorithm works on procedural source code and clusters “source code resources”. 
Examples of such resources are source-files, procedures, functions and variables. The 
algorithm reconstructs the architecture in two steps. In the first step, pattern-based techniques 
are used to detect common subsystem patterns. This produces a skeleton architecture. In the 
second step, orphan adoption techniques are used to classify entities that were not classified 
in the first step.  
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The first step of the algorithm performs the following substeps [Tzerpos and Holt, 2000]: 
1. Source file clusters group entities that are defined in the same file into a cluster. This is 

only applicable if procedures, functions or variables are clustered. 
2. Body-header conglomeration clusters group files that contain the definition and 

implementation of the same entities. In the C programming language for example .h files 
contain declarations and .c files the corresponding implementations.  

3. Leaf collection and supporting library identification identifies sets of files that have a 
very large fan-in. These are potential library modules, but are not placed in a separate 
cluster yet. 

4. Ordered and limited subgraph domination is the main step of the algorithm. A call 
graph is considered to find domination-relations between entities. If an entity x dominates 
an entity y this means that all paths in the call graph leading to y also contain x. When 
domination relations are found, the dominating and dominated entities are placed in the 
same cluster. This step ignores entities with a very large fan-out, as these are likely to be 
central entities that perform high-level control functions. 

5. Creation of support subsystem is the last substep of the skeleton construction. In this 
step any entities found in step 3 that where not added to some cluster in step 4 are added 
to a special subsystem containing libraries. 

 
In the second step, the ACDC algorithm uses the orphan adoption technique [Tzerpos and 
Holt, 1997] to place any remaining unclassified entities into the most appropriate cluster. 
Orphan adoption uses structural information to determine the set of entities to which some 
entity is closest related. This entity is then added to the cluster that contains the entities with 
which it has the highest number of relations. For further details the interested reader is 
referred to [Tzerpos and Holt, 1997]. 
 
[Tzerpos and Holt, 2000] describe two case studies that apply the ACDC algorithm to 
reconstruct an architecture from procedural source code. The first analyses Tobey, an 
industrial system consisting of 939 source files (250 KLOC). The second analyses Linux, an 
open source operating system. The analysed version consisted of 955 source files (750 
KLOC).  
The clusterings ACDC produced are compared to authoritive decompositions produced by 
experts on the analysed systems with the MoJo metric, which is discussed in paragraph 6.3.2. 
[Tzerpos and Holt, 2000] conclude that the ACDC algorithm produces meaningful 
decompositions that “are among the better ones an automatic clustering algorithm can 
achieve”.  

6.2.4 Bunch 
[Mitchell, 2002] describes a clustering tool called Bunch that implements three different 
partitional clustering algorithms [Bunch, 2005]. Bunch obtains hierarchical clusterings by 
repeated application of the algorithm. This is explained later in this paragraph. 
 
Bunch is based on a module dependency graph G=(V,E), in which V represents a set of 
entities and E a bag of directed, weighted edges between the entities. E can contain multiple 
edges between the same entities, possibly with the same weight. Bunch uses third party fact 
extractors to extract G from the source code. 
 
Bunch is developed to cluster procedural software, but can also be used for object-oriented 
software. [Mitchell, 2002] describes several case studies where Bunch is used for procedural 
code. In those the module dependency graph G=(V,E) is used with: 
• E: set of source files. 
• V: set of relations between the files in E. More specific, type references, variable access, 

function calls and macro invocations are considered. All relationship types have the same 
weight. 
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For cases where Bunch is used to cluster object-oriented source code [Mitchell, 2002] 
suggests to use the module dependency graph G=(V,E) with: 
• E: set of classes. 
• V: set of relations between the classes in E, such as inheritance and associations. All 

relationship types have the same weight. 
 
The similarity measure implemented in Bunch is called modularisation quality (MQ), and is 
based on the notions of intra- and inter-connectivity. Intra-connectivity measures the degree 
of connectivity within a cluster. Inter-connectivity measures the degree of connectivity 
between two clusters. Both are bounded by zero and one. Let Ni be the number of entities in 
a cluster i, and mi the total number of edges between all pairs of different entities in cluster i. 
Further, let εi,j be the total number of edges between all pairs of entities of which one entity is 
located in cluster i and the other in j or vice versa. Then the intra-connectivity Ai of a cluster i 
and the inter-connectivity Ei,j between clusters i and j are defined as [Mitchell, 2002]: 
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Ai=0 indicates that there are no dependencies within cluster i and Ai=1 that every entity in 
cluster i depends on all other entities in this cluster. Ei,j=0 indicates that none of the entities 
in cluster i depends on an entity in cluster j and vice versa. Ei,j=1 indicates that every entity 
in cluster i depends on every entity in cluster j and vice versa.  
 
Figure 23 shows an example clustering of five entities x1,…,x5 (the circles), in two 
subsystems (the squares). Subsystem 1 has one intra-edge and contains two entities, so 
A1=1/4. Two inter-edges between subsystem 1 and 2 are present, giving ε1,2=2. Because 
N1=2 and N2=3 E1,2=2/(2µ2µ3)=1/6. 
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Figure 23: MQ calculation example 
 
If k is the number of clusters and (23) defines intra- and inter-connectivity, the BasicMQ 
similarity metric is defined as (adapted from [Mitchell, 2002]):  
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In (24), for the case k>1 the left summation-term calculates the average cohesion and the 
right one the average coupling. The metric rewards cohesion and penalizes coupling. The 
BasicMQ metric is bounded by –1 (no intra-edges) and +1 (no inter-edges) [Mitchell, 2002]. 
Mitchell defines the BasicMQ similarity metric slightly differently, namely without the i§j term. 
However, the metric is only bounded by –1 if this term is added. Further, the examples in 
[Mitchell, 2002] and [Mitchell et al, 1998] also utilize this addition.  
For the example in Figure 23  
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Worst case O(|E|)=O(|V|2), giving the BasicMQ calculation a worst-case computational 
complexity of O(|V|4). Because in practice O(|E|)ºO(|V|) the average complexity is O(|V|3) 
[Mitchell, 2002]. This is still too expensive for large graphs. Another disadvantage of this 
metric is that it does not allow the edges to have different weights.  
 
The TurboMQ metric solves both problems. Let k represent the number of clusters again, and 
mi the summed weight of the intra-edges within cluster i. Further, let εi,j and εj,i represent the 
summed weights of the inter-edges from cluster i to j and vice versa respectively. If i=j then 
εi,j=εj,i=0. Using these definitions TurboMQ is defined as [Mitchell, 2002]: 
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CFi is called the cluster factor of cluster i. 
 
Bunch implements three different partitional clustering algorithms [Mitchell, 2002]: 
• An exhaustive algorithm that enumerates all possible partitions and returns the partition 

with the highest MQ value. The computational complexity of this algorithm is O(|V|!), so 
it can only be used for very small module dependency graphs. 

• A hill-climbing algorithm that is based on the k-means algorithm discussed in 
paragraph 6.1.5 (“Square error clustering algorithms” section). To reduce the risk of 
finding a local optimum it does not generate one initial partition like the k-means 
algorithm, but a set of initial partitions. All partitions in this set are clustered, after which 
the best result is chosen. The computational complexity of the hill-climbing algorithm is 
O(|V|2·|E|). 

• A genetic algorithm, similar to the genetic algorithm discussed in paragraph 6.1.5 
(“Evolutionary clustering algorithms” section). The algorithm described in that section 
uses a binary encoding, giving a partition with two clusters. Both [Mitchell, 2002] and 
[Doval et al, 1999] give an example with a quartairy encoding (i.e. four clusters), but the 
chosen number of clusters is not mentioned explicitly. In Bunch’ genetic algorithm, 
parameters like the population size and number of created generations depend on the 
number of entities. If N is the number of entities (so N=|V|), the genetic algorithm uses a 
population size of 10N, and creates 200N generations before terminating. These figures 
were determined empirically. A version of the MQ metric is used as fitness function. 

 
[Mitchell, 2002] compares the results of the genetic algorithm to that of the hill-climbing 
algorithm. This shows that the quality of the results of the genetic algorithm varies more than 
that of the hill-climbing algorithm. The execution time of the genetic algorithm also varies 
widely. [Mitchell, 2002] speculates that the chosen encoding causes this, and concludes that 
the genetic algorithm must be improved further in order to be useful.  
 
[Shokoufandeh et al, 2004] apply spectral methods to the software-clustering problem. The 
resulting algorithm is called the recursive bisection algorithm. The quality of clusterings is 
frequently evaluated with the notions of conductance volume and normalised inter-cluster 
distance [Kannan et al, 2004]. [Shokoufandeh et al, 2004] show that their algorithm has a 
conductance volume and an inter-cluster volume within a known distance of the optimal 
clustering. This means that their algorithm gives a bounded approximation of the optimal 
clustering. For more details on conductance volume and an inter-cluster volume the 
interested reader is referred to [Kannan et al, 2004]. 
A disadvantage of the recursive bisection algorithm is that it has a relatively large worst-case 
complexity. If N is the number of entities, it is O(N4). [Shokoufandeh et al, 2004] applied their 
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algorithm and the hill-climbing algorithm of Bunch21 to cluster 13 software systems and 
compared the results. They observed that their algorithm “is generally worse than Bunch in 
quality of solutions and running time, and only gets worse as the size of the input increases”. 
This implies that the hill-climbing algorithm of Bunch efficiently yields clusterings within a 
bounded approximation of the optimal solution. 
 
Although partitional algorithms are used, Bunch can still produce hierarchical decompositions. 
This is done by repeatedly applying the clustering algorithm to the result of the previous 
clustering [Mitchell, 2002]. The first clustering cycle clusters the module dependency graph 
the user provided. Say this produces a clustering K1. Based on K1 a new module dependency 
graph is created that will be clustered again. Say this graph is G2=(V2,E2), where V2 
represents the entity-set and E2 the set of edges between the entities. For each cluster in K1 
a node is added to V2. The set of edges E2 is defined by considering the nodes in the clusters 
of K1. For every pair of entities v,wœV2 for which the corresponding clusters in K1 contain 
nodes with an edge between them, an edge is added to E2. The weight of this edge is the 
sum of the weights of the edges between the clusters represented by v and w.  
After the new module dependency graph G2 has been constructed, it is clustered. This 
process of constructing a new module dependency graph and clustering it is repeated until a 
clustering is obtained with only one cluster. 
 
[Mancoridis et al, 1999] present several extensions to Bunch that were added in response to 
user-feedback: 
• Library and omnipresent-module detection allows the identification of modules that are 

used everywhere in the software. The user can do this manually, or it can be done 
automatically by considering the fan-in and fan-out of the modules, as [Müller et al, 1993] 
described. Modules with a fan-out that exceeds the average value three times are 
considered omnipresent modules and are ignored during the clustering process. Instead, 
they are placed in a special subsystem. Modules with a fan-in that exceeds the average 
value three times are considered library modules, and are treated similarly. 

• User-directed clustering allows users to define clusters manually to incorporate their 
knowledge in the clustering process. 

• Orphan adoption is used to allow incremental clustering, as [Tzerpos and Holt, 1997] 
described. An orphan is a module that is either completely new or has undergone 
structural changes that might justify placement in a different subsystem. The hill-climbing 
and genetic algorithms of Bunch are non-deterministic. If a clustering has been generated 
earlier and new entities need to be incorporated, constructing a completely new clustering 
can lead to a completely different result. Orphan adoption adds orphans to existing 
clusters, instead of constructing a completely new clustering. This enables users to 
preserve an existing subsystem structure. 

 
Bunch uses dotty [North and Koutsofios, 1994] to visualise the resulting clustering, but it is 
also possible to export the clustering to a file for integration with other visualisation tools.  
[Mitchell, 2002] mentions the use of the Acacia fact extractors (see paragraph 3.4.2) for C 
code and the Chava fact extractor [Korn et al, 1999] for Java code. However, the simple 
format of the module dependency graph enables easy integration of other fact extractors. 
 
Besides by means of the in- and output-files, Bunch can also be integrated into reverse 
engineering frameworks by means of the Bunch API [Mitchell, 2002]. This API offers a Java 
[Java, 2005] interface to the internal components of Bunch.  
 
Bunch is used in various reverse engineering case studies. As described above, 
[Shokoufandeh et al, 2004] empirically compared the clusterings produced by Bunch to those 
produced by an algorithm whose results are within a known approximation of the global 
optimum.  
[Mitchell, 2002] reports on the use of Bunch to recover the architecture of dotty and Bunch 
itself. The result of the clustering is compared manually to an expert’s decomposition. In both 
case it is concluded that Bunch produces valid clusterings.  

                                                      
21 [Shokoufandeh et al, 2004] used Bunch with the default settings. 
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[Tzerpos and Holt, 1999] use Bunch to evaluate an implementation of the MoJo similarity 
metric, which is discussed in paragraph 6.3.2.  
[Mitchell and Mancoridis, 2002] describe experiments with Bunch to investigate the effect of 
several user-defined parameters. Five subject systems were analysed, with the number of 
entities varying between 13 and 413. The MQ metric is used to evaluate the results.  
 
[Anquetil and Lethbridge, 1999] use Bunch to experiment with different clustering 
configurations. They experiment with various different feature choices and determine the 
quality of the clustering based on precision and recall, which are discussed in paragraph 
6.3.1. Four large software systems, written in C and Pascal (140-2000 KLOC), are used as 
test subjects.  
[Anquetil and Lethbridge, 1999] distinguish two types of features: formal and non-formal 
features. Formal features directly affect the behaviour of the software, for example type 
references, variable references and procedure calls. Non-formal features do not directly affect 
the behaviour of the software, for example frequently used words in identifiers or comments. 
Based on their experiments, [Anquetil and Lethbridge, 1999] conclude that non-formal 
features can also produce good clusterings. These features have the advantage over formal 
features that they offer less redundancy. 

6.2.5 Alborz 
[Sartipi and Kontogiannis, 2002] describe a supervised clustering technique for procedural 
software. The technique represents the analysed system with an attributed relational graph in 
which the nodes represent source code entities, like for example source-files, functions, data 
types and global variables. The edges in this graph represent relationships between the 
entities, like for example calls, defines, updates and declares.  
 
The clustering algorithm uses the “maximal association” coefficient, which calculates the 
similarity of two entities based on the maximum number of shared features. Data mining 
techniques are used to extract the values for the coefficient from the attributed relational 
graph.  
 
The clustering algorithm is based on the k-means algorithm, which is described in the “Square 
error clustering algorithms” section in paragraph 6.1.5. The algorithm is designed to be able to 
handle large search spaces. This is achieved by dividing the clustering space into a number 
of smaller, user-selected subspaces, and iteratively processing these subspaces. The impact 
of incorrect placements is reduced in two ways: First of all, later iterations can reassign 
entities that were assigned to some cluster in earlier iterations. Second, at the end of each 
iteration the user can manually correct misplacements. 
 
The describe approach has been implemented in a tool called Alborz. This tool has been 
applied to six industrial software systems, (35 to 74 KLOC). The clustering results are 
evaluated with the precision and recall metrics, which are described in paragraph 6.3.1. 
Precision varied between 43% and 94%, and recall between 33% and 100%. These results 
are considered satisfactory [Sartipi and Kontogiannis, 2002].  

6.2.6 LIMBO 
[Andritsos and Tzerpos, 2003] use the LIMBO algorithm to reconstruct the architecture of 
procedural source code.  
 
The LIMBO algorithm (scaLable InforMation Bottleneck) is an agglomerative hierarchical 
algorithm that is based on information loss minimization. The algorithm uses a feature matrix 
as input. In this matrix the rows denote entities, in this case source files, and the columns 
boolean features, for example developer-names, directory paths or dependencies to source 
files. This allows the combination of structural and non-structural features. 
As all agglomerative hierarchical algorithms, LIMBO starts with an initial clustering in which 
every entity is converted into a cluster. Based on the entropy of the feature matrix, clusters 
are combined until a predefined number of clusters remains. The algorithm combines the pair 
of clusters that gives the smallest reduction of the uncertainty (entropy) of the feature matrix. 
Besides stopping when a certain number of clusters has been reached, the algorithm also 
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stops combining clusters when subsequent clusters only differ in the allocation of one entity or 
the merging/splitting of one cluster. This is determined with the MoJo metric22, which is 
described in paragraph 6.3.2. 
 
[Andritsos and Tzerpos, 2003] report the application of LIMBO to Linux (955 files, 750 KLOC) 
and Tobey (939 files, 250 KLOC). The MoJo metric is used to compare the result with that of 
several other clustering algorithms, including Bunch and ACDC. In this experiment all 
clustering algorithms used the same structural features. LIMBO’s decompositions achieved a 
lower (=better) MoJo value than those produced by the other algorithms.  
The addition of features based on the developer-names, source directory, lines of code 
(discretized) and development time (month and year) improved LIMBO’s clusterings further. 

6.2.7 InSight 
Klocwork InSight [Klocwork, 2005] is a commercial architecture reconstruction and analysis 
tool. As described in paragraph 3.3.7, InSight identifies nine architectural views, including the 
code, package and component views. Some of these views are extracted from the source 
code, whereas the user defines the others. This paragraph describes how the latter is 
achieved 
 
At the basis of InSight’s code, package and component views lies the “summary model” 
[Mansurov and Campara, 2003]. This model essentially is an attributed graph G=(N,E) 
where N=Nr » Ns and E=Er » Es. Nr and Er represent entities defined in the source code 
and relations specified in the source code between these entities respectively. The nodes in 
Nr have an attribute that stores a reference to the concerned location in the source file. Ns 
represents the set of summary nodes, which are user-defined aggregations of node sets. 
Finally, EsŒNsµN represents the set of edges between summary nodes and the nodes they 
aggregate.  
 
[Mansurov and Campara, 2003] informally describe three operations on the summary model: 
• Aggregation defines a new summary node that aggregates a set of child nodes.  
• Detalization is the inverse of aggregation. It removes a summary node and replaces it 

with its child nodes.  
• Trimming moves a node to another location in the graph. 
 
With these three operations users can manually reconstruct an architecture from source code. 
Users can also experiment with the summary model to ask “What if?” questions. These can 
be answered by applying envisioned changes, after which InSight visualises their impact on 
the architecture. 

6.2.8 ACT 
[Bauer and Trifu, 2004] describe an elaborate architectural-clustering method called 
“architecture aware, adaptive clustering”. This method combines clustering and pattern 
detection to recover meaningful system decompositions. The method represents the static 
structure of the software as a graph in which nodes represent classes and weighed edges 
relations between these classes. The weights represent semantic information about classes 
and are determined with “architectural clues”. Three types of architectural clues are identified, 
namely method types, library classes and design patterns.  
 
Prolog rules are used to detect instances of seven structural design patterns in the source 
code. The detected patterns are Template method, Abstract factory, Strategy, Composite, 
Proxy, Adapter and Façade [Gamma et al, 1995]. 
 

                                                      
22 The MoJo similarity metric is defined as the minimal number of move- and join-operations 
required to transform one clustering into the other or vice versa. This metric is described in 
paragraph 6.3. 
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The method-types classify methods according to three criteria:  
• The kind of a method describes its function. Examples are constructor, empty, accessors, 

template, factory and normal.  
• The inheritance statue of a method describes the role of the method in an inheritance 

tree, if inheritance is present at all. Possible values are implementing, extending, 
overriding, adding or new. 

• The usage criterion classifies methods according to their usage into initialisation, public 
interface, protected interface and implementation methods. 

 
The third type of architectural clue, library classes, is used to detect library modules. Based 
on the number of classes that call a suspected library class, a library recogniser module 
detects library classes. This is similar to the method [Tzerpos and Holt, 1997] described. 
 
The architectural clues are used to determine the coupling between the classes from six 
points of view [Trifu, 2003]:  
• Inheritance coupling takes the different contexts of inheritance relations into account. 

This is necessary because inheritance can be used for many different purposes, including 
specialisation and implementation reuse. 

• Aggregation coupling distinguishes composition from the other aggregation types. 
• Association coupling refers to coupling through method parameters, method return 

types and local variables. 
• Access coupling determines the coupling through access of class attributes. 
• Call coupling determines the degree of coupling by the number of method calls between 

the classes. 
• Indirect coupling is coupling through common usage of a resource. The assumption that 

this type of coupling relates classes is based on the software engineering principle of few 
interfaces; grouping classes that use the same resource reduces the number of 
subsystems that depend on the subsystem with the used class [Müller and Uhl, 1990]. 

For details on how these types of coupling are related to the architectural clues the interested 
reader is referred to [Trifu, 2003]. 
 
The weights of the edges between the classes are based on the weighted sum of the values 
for the six types of coupling. The weight of each type is based on personal experience and 
intuition [Trifu, 2003]. The resulting graph is clustered with the “modified-MST” algorithm. This 
algorithm is an improved version of the MST algorithm discussed in paragraph 6.1.5 (“Graph-
theoretic clustering algorithms” section), which uses a different heuristic to obtain the clusters. 
 
[Trifu, 2003] describes the implementation of architecture aware, adaptive clustering in a 
framework called Adaptive Clustering Testbed (ACT). ACT is used to compare the results 
obtained with the described method to a conventional clustering technique. This technique 
does not use the architectural clues and does not consider indirect coupling [Trifu, 2003]. The 
resulting clusterings are assessed using both the MoJo metric (see paragraph 6.3.2) and the 
average cohesion and coupling of the clusters.  
 
Two case studies were performed to compare architecture aware, adaptive clustering to the 
conventional clustering method, namely using the Java AWT library (482 classes, 142 KLOC) 
and the SSHTools project (507 classes, 76 KLOC) as input. The results show that 
architecture aware, adaptive clustering produces more accurate clusterings than the 
conventional clustering technique. 

6.3 Clustering result evaluation 
This paragraph discusses several methods to assess the output of the clustering process. 
The selection is based on [Wen and Tzerpos, 2004a] and [Mitchell, 2002]. 
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In general clusterings are evaluated with an external or internal assessment, or a relative test, 
as is described in paragraph 6.1.7. These methods can be applied to architectural clusterings 
as follows: 
1. External assessment: In a manual inspection it is checked if the proposed clustering 

seems appropriate. Often the developers of the system are consulted. However, this 
method is highly subjective.  

2. Internal assessment uses metrics that only consider the proposed clustering itself. This 
evaluation method takes the goal of architectural clustering, program comprehension, into 
account indirectly through the choice of the metric. 

3. A relative test compares the clustering result to an a priori structure. This is considered 
the ideal assessment method to evaluate the quality of architectural clusterings [Mitchell, 
2002], [Koschke, 2000]. However, it has the disadvantage that an expert’s decomposition 
must be available to which the clustering result can be compared. 

 
The first and last methods are most frequently used in architectural clustering literature. This 
paragraph discusses several evaluation methods that fall in the last category. These methods 
compare the similarity of the produced clustering to an expert’s decomposition using some 
similarity measure. Note that these similarity measures are not the same as the similarity 
measures used during the clustering process (which are described in paragraph 6.1.4). Those 
quantify the similarity of two entities, whereas the measures discussed here quantify the 
similarity of two clusterings.  

6.3.1 Precision and recall 
[Anquetil and Lethbridge, 1999] use precision and recall to compare a clustering result to an a 
priori structure created by experts on the analysed systems. The latter is called an expert 
decomposition. 
 
In a clustering any pair of entities can either be placed in the same cluster or in a different 
one. In the first case this is called an intra pair and in the second an inter pair. Let K and D be 
two partitionings of the same entities such that K is produced by an architectural clustering 
method and D is an expert decomposition. Then precision is defined as the percentage of 
intra pairs in K that are also intra pairs in D. Recall is defined as the percentage of intra pairs 
in D that are also intra pairs in K. 
 
Figure 24 shows two partitionings labelled K and D of the entity-set {x1,…,x6}. Partitioning K 
consists of the clusters K1 and K2. Partitioning D consists of the clusters D1 and D2. Observe 
that the only difference between K and D is the placement of x4. In this example K1 contains 
six intra-pairs, K2 one, and D1 and D2 both three. Of the seven intra-pairs in partition K, D 
contains four, so precision=4/7=57%. Of the six intra-pairs in D, K contains four, so 
recall=4/6=67%. 
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Figure 24: Precision/recall example 

 
Though frequently used to evaluate clustering results, precision/recall has several limitations 
[Mitchell and Mancoridis, 2001]. First of all, the calculation does not consider edges. Every 
incorrect placement has the same weight. In literature incorrect placements that affect many 
edges are usually considered more important than those that affect little edges, which 
suggests that the calculation should also consider the edges. Second, the measurement is 
sensitive to the number and size of the clusters. A few misplaced modules in a cluster with 
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relatively few members have much more impact on precision/recall than when the cluster has 
many members. Finally, the number and size of the clusters impacts precision/recall. 
 
[Koschke, 2000] presents a framework for the evaluation of clustering algorithms for 
architecture reconstruction. This framework compares the produced decompositions against 
expert decompositions with a metric that is based on precision and recall. 

6.3.2 MoJoQuality, EdgeMoJo and MoJoFM 

MoJoQuality 
[Tzerpos and Holt, 1999] define the MoJo metric for the comparison of two decompositions. It 
the distance between two decompositions in terms of the minimal number of move and join 
operations that is required to transform one decomposition into the other. A move operation 
relocates a single entity from one cluster to another cluster. A join operation merges two 
clusters. Let K and D be two decompositions of a system consisting of N entities and let 
mno(K,D) be the minimum number of move and join operations to transform K into D. If x∞y 
refers to the minimum of x and y, MoJo(K,D) is defined as [Tzerpos and Holt, 1999]: 
 ( ) ( ) ( ), , ,MoJo K D mno K D mno D K= ↓  (26) 
[Wen and Tzerpos, 2003] describe an efficient algorithm to compute the MoJo distance 
between two decompositions, K and D. The total computational complexity of this algorithm is 
O(N·log N + (L+M) ·L·M), where L and M are the number of clusters in K and D 
respectively. 
 
Figure 25 shows two partitionings labelled K and D of the entity-set {x1,…,x6}. K and D 
consist of the clusters K1 and K2, and D1 and D2 respectively. Observe that the only 
difference between K and D is the placement of x2 and x4. The minimum number of move 
and join operations to transform K into D or vice versa is two, so MoJo(K,D)=2. 
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Figure 25: MoJo Example 

 
If K refers to a decomposition produced by a clustering algorithm and D to an expert 
decomposition, [Tzerpos and Holt, 1999] define the quality of K relative to D as 

 ( ) ( ),
, 1 100%

MoJo K D
MoJoQuality K D

N
 

= − × 
 

 (27) 

 
MoJoQuality(K,D)=100% indicates that the clustering is the same as the expert 
decomposition. Because any partition of N entities can be transformed into any other partition 
using N moves [Tzerpos and Holt, 1999], MoJo(K,D)§N. Hence MoJoQuality(K,D)¥0%.  
Suppose that in the example of Figure 25 K is a decomposition produced by a clustering 
algorithm, and D the expert decomposition. Because six entities are clustered, 
MoJoQuality(K,D)=(1-2/6)µ100%=67%. 
 
[Tzerpos and Holt, 2000] describe two case studies where the MoJoQuality metric is used to 
evaluate the quality of decompositions produced by the ACDC algorithm. The two 
decompositions achieve a MoJoQuality of 56% and 64%. This is claimed to be among “the 
higher ones an automatic clustering algorithm can hope to achieve” [Tzerpos and Holt, 2000].  
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This matches with the results reported by [Trifu, 2003]. Relative to the existing package 
structure of two software systems, the method described by [Trifu, 2003] achieves a 
MoJoQuality of about 50% to 65%.  

EdgeMoJo 
A disadvantage of the MoJo metric is that it does not take edges into account. Suppose that a 
clustering algorithm is used to decompose a system consisting of N entities twice, producing 
decompositions K1 and K2, and that D is an expert decomposition of the analysed system. 
Further suppose that K1 and K2 both have one entity, say x1 and x2 respectively (x1∫x2), that 
is placed in a different cluster in D, and that x1 has one edge to other entities and x2 has ten. 
Then MoJo(K1,D)=MoJo(K2,D), indicating that K1 and K2 are equally good. But because the 
misplacement of x2 is clearly more important than that of x1, K1 is actually better than K2. 
 
[Wen and Tzerpos, 2004a] describe an extended version of MoJo, called EdgeMoJo, which 
takes the number and weight of edges into account. This metric first calculates the MoJo 
value, after which the additional cost imposed by the edges is calculated. [Wen and Tzerpos, 
2003] show that the order in which the MoJo metric performs the move and join operations is 
not relevant. Therefore, the EdgeMoJo algorithm starts with the join operations, after which 
the move operations are performed.  
Let Knew denotes the cluster an entity x is moved to, Kold the cluster x used to be placed in, 
|z| the absolute value of z and W(x,Ki) the summed weight of the edges between x and the 
entities in cluster Ki. In the EdgeMoJo metric each move operation of entity x has the weight 
m(x), instead of one as in the MoJo metric, with:  
 

 ( )
( ) ( )
( ) ( )

, ,
1

, ,
new old
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m x

W x K W x K
−

= +
+

 (28) 

 
Figure 26 shows the same partitionings as Figure 25 but now with edges between the entities. 
All edges have a weight of one. Recall that the only difference between K and D is the 
placement of x2 and x4 and that MoJo(K,D)=2. The aggregate weight between x2 and the 
entities in K1 W(x2,K1)=2. Similarly, W(x4,K1)=1, W(x2,D2)=3 and W(x4,D2)=2. Therefore 
the cost of relocating x2 is m(x2)=1+1/5=1,2. Similarly, m(x4)=1+1/3=1,3. This gives 
EdgeMoJo(K,D)=2,5. 
 

x1

x3

x5

x4

x2

x6

x1

x3

x5

x4

x2

x6

K1 K2 D1 D2

Partition K Partition D

 
Figure 26: EdgeMoJo example 

MoJoFM 
[Wen and Tzerpos, 2004b] describe an improved version of the MoJo metric, called MoJoFM. 
This metric solves some anomalies of the MoJo metric, such as the tendency of MoJo to 
consider clusterings with singleton clusters23 very good. However, MoJoFM does not take the 
edges into account. 

MoJo for hierarchical decompositions 
The metrics discussed so far compare two partitionings, so two clusterings without hierarchy. 
[Shtern and Tzerpos, 2004] informally describe a method to compare hierarchical 

                                                      
23 Clusters containing one entity. 
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decompositions. Essentially the method converts both hierarchical decompositions into a set 
of partitionings and applies an existing similarity metric for partitionings to them. Next, the 
obtained set of metrics is aggregated to produce a single value that indicates the similarity of 
the hierarchical decompositions. 
 
A hierarchical decomposition K is converted into a partitioning as follows. Suppose that a tree 
in which the nodes represent clusters and entities represents a hierarchical decomposition. 
Further, suppose that the edges of this tree represent containment relations between clusters 
and entities. Let the level of a cluster in K be the number of edges between the cluster and 
the root of the tree representing K. Further, let height(K) be the depth of the tree 
representing K.  
For each level l of K (1§l<height(K)) a partioning is constructed as follows (adapted from 
[Shtern and Tzerpos, 2004]): 

1. Assign each entity in each cluster with a level larger than l to its ancestor at level l. 
This produces a hierarchical decomposition K’ such that of height(K’)=l+1.  

2. Create a new clustering Kl that contains the clusters that contain the leaves of K’. 
Now height(Kl)=1, so Kl is a partitioning of the classes. 

 
The left side of Figure 27 shows an example of a hierarchical decomposition of four levels. 
This decomposition classifies the entity-set {x1,…,x9} into the clusters A, A1, A2, A3, A4, A5 
and A6. On the right side of the figure the result of step 1 and 2 of the above algorithm are 
shown for l=2. Observe that the classes originally placed in A5 and A6 are now placed in A4.  
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Figure 27: Example conversion of a hierarchical  
decomposition (left) into a partitioning (right) for level 2 

 
Let K and M be two hierarchical decompositions. The similarity of K and M is computed as 
follows. First K and M are both converted to a set of partitionings using the method described 
above. Next, it is ensured that both of these sets have the same size. Let hk and hm be 
height(K) and height(M) respectively, and let Ki be the partitioning of K obtained with the 
above procedure for level i (1§i<hk). If hk∫hm, the decomposition with the lowest height is 
extended by copying its most detailed partition. For the case hk<hm decomposition Khk-1 is 
copied (hm-hk) times to obtain the partitionings numbered hk up to hm-1 of K. The case 
hk>hm is treaded likewise with k and m exchanged. Suppose for example hk=3 and hm=5, as 
is shown in Figure 28. Then the partitionings for level 3 and 4 of K are copies of that for level 
2. 
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Figure 28: Example of level copying 
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To calculate the similarity of K and M, some similarity metric for partitionings, for example 
MoJo, is applied to every pair of decompositions at the same level. Let Kj and Mj be the 
partitionings of K and M respectively the previous algorithm produced for level j 
(1§j<(hkÆhm))24. Now the similarity is calculated for every level. Let Sj be the similarity of Kj 
and Mj, and wj the weight of level j. The overall similarity sim is calculated with [Shtern and 
Tzerpos, 2004]: 
 

 ( )2

1 1
with 1

k m k mh h h h

j j j
j j

sim w S w
↑ ↑

= =

= ⋅ =∑ ∑  (29) 

 
[Shtern and Tzerpos, 2004] use a linear weighting scheme that assigns equal weights to all 
levels, as is applied in (29). 

6.3.3 EdgeSim and MeCl 
The methods discussed in the previous paragraphs compare two decompositions based on 
the placement of entities in clusters. [Mitchell and Mancoridis, 2001] present two methods for 
comparing partitionings that are based on the relations between the entities. Both methods 
are based on the module dependency graph Bunch uses (see paragraph 6.2.4). In a module 
dependency graph G=(V,E), V represents the set of entities (e.g. source files) to be 
clustered and E a bag of weighted edges between entities in V. If the entities represent 
source files, the edges in E represent dependencies between source files.  

EdgeSim 
Let A and B be two partitionings of G into l and m different clusters respectively. Further, let 
A contain the clusters {A1,…,Al} and B the clusters {B1,…,Bm}. [Mitchell and Mancoridis, 
2001] distinguish two types of edges:  
• Intra-edges that do not cross a cluster boundary. 
• Inter-edges that do cross a cluster boundary. 
 
The set F of intra-edges in both A and B, and the set Q of inter-edges in both A and B are 
defined as (adapted from [Mitchell and Mancoridis, 2001]): 
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 (30) 

 
The set U represents the set of edges that are either intra-edges or inter-edges in both A and 
B. 
Let weight(E) and weight(U) be the sum of the weights of the edges in E and U 
respectively (if an edge has no associated weight, a weight of one is assumed). Using these 
definitions the EdgeSim measurement is now calculated with ([Mitchell and Mancoridis, 
2001]): 
 

 ( ) ( )
( )

, 100%
weight

EdgeSim A B
weight E

ϒ
= ×  (31) 

 
Figure 29 shows two partitionings labelled A and B of the entity-set {x1,…,x8}. A consists of 
the clusters A1 and A2, and B consists of the clusters B1, B2 and B3. Observe that the 
difference between A and B is the placement of x2, x4, x5 and x6. The edges in the set F of 
intra-edges in both A and B are drawn in blue, and the edges in set Q of inter-edges in both A 

                                                      
24 Æ gives the maximum of two numbers. 
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and B are drawn in red. The first contains 5 edges and the second 1. In total the module 
dependency graph contains 11 edges. Since the weight of all edges is one, this gives 
EdgeSim(A,B)=6/11µ100%=55%. 
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Figure 29: EdgeSim example 

MeCl 
The MeCl measure is also based on edge similarities. Again, let A and B be two partitionings 
of G into the clusters {A1,…,Al} and {B1,…,Bm} respectively. Let FA(Ai) denote the set of 
intra-edges in cluster Ai (1§i§l) and QB(Bj) the set of inter-edges connected to entities in Bj 
(1§j§m). Then the set Ui,j of edges that are intra-edges in Ai and inter-edges connected to 
entities in Bj is defined as [Mitchell and Mancoridis, 2001]: 
 ( ) ( ),i j A i B jA Bϒ = Φ ∩ Θ  (32) 

Using (32) the set of edges that became intra-edges in Bj is defined as [Mitchell and 
Mancoridis, 2001]: 
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If weight(E) and weight(UB) are the sum of the weights of the edges in E and UB 
respectively25, the MeCl measure is calculated with [Mitchell and Mancoridis, 2001]: 
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Figure 30 shows the same two partitionings as Figure 29. The setU1,1 of edges that are intra-
edges in A1 and inter-edges connected to entities in B1 consists of the edge from x1 to x2, and 
of the edge from x2 to x3. These edges are drawn in blue. U1,2 equals U1,1. U1,3 and U2,1 are 
empty and U2,2 and U2,3 both consist of the red edge from x6 to x7. This gives 
MeCl(A,B)=(1-3/11)µ100%=63%. 
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Figure 30: MeCl example 

A disadvantage of both EdgeSim and MeCl is that the placement of entities in clusters is not 
considered at all [Wen and Tzerpos, 2004].  

                                                      
25 Again, if an edge has no associated weight a weight of one is assumed 
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7 Case study: Architectural clustering 
This chapter describes the second of the two case studies described in this thesis. This case 
study investigates the use of clustering-based architecture reconstruction methods, using the 
theory described in chapter 6. These methods automatically reconstruct a structural view of a 
software architecture from source code. In this chapter the terms “clustering-based 
architecture reconstruction” and “architectural clustering” are used interchangeably.  

7.1 Case study goals 
Clustering-based architecture reconstruction techniques use mathematical clustering 
techniques to reconstruct architectural components. These techniques find some natural 
grouping of data elements, in this case source code elements. A view of the system’s as-built 
architecture is constructed by defining abstractions that group source code elements.  
 
Chapter 6 describes several methods for architectural clustering reported in literature. 
Although it is known that it is not possible to reconstruct architectures from source code fully 
automatically [Müller et al, 1993], several publications indicate that the architectural views 
reconstructed this way can serve as good starting points for manual refinement. Based on this 
we formulate the following hypothesis: 
 

H3: Automatic clustering-based architecture reconstruction methods can 
reconstruct an architectural view of the Océ Controller from its source code 
that is a good starting-point for manual refinement. 

 
We use the MoJoQuality metric to quantify “good”. It will be used to compare the clustering 
result to the result of a manual reconstruction of the architecture. The latter will be referred to 
as the expert decomposition. Paragraph 7.2.2 describes how this decomposition is obtained. 
The motivation for choosing the MoJoQuality metric is described in the “Assessment of 
output” section in paragraph 7.2.1. Based on clustering results reported in literature26, we 
consider a decomposition produced by architectural clustering good if it has a MoJoQuality of 
at least 60% relative to an expert decomposition.  
 
During its lifetime the Océ Controller has been modified extensively. As described in 
paragraph 2.1.3, the internal structure of software systems that are continuously modified 
inevitably deteriorates, which obfuscates the architecture. This means that in the original 
version the architecture is present in a purer form than in later versions. Since architecture 
reconstruction is usually performed for software of which several versions have been 
released, it is likely to be applied to software of which the architecture has deteriorated 
significantly. We speculate that this reduces the effectiveness of clustering-based architecture 
reconstruction techniques. If this is the case, incorporating information from multiple versions 
in the clustering process could improve the quality of the result. This leads to the following 
hypothesis: 
 

H4: Utilizing information obtained from source code of older versions can improve 
the quality of the output of architectural clustering algorithms for more recent 
versions of a system. 

 
The “Combining version information” section in paragraph 7.2.1 describes how the 
information of the older versions is used in the clustering process. 
 
An architectural clustering is considered to be better than another clustering if it achieves a 
lower EdgeMoJo value. The EdgeMoJo metric is used here because it gives a more detailed 
assessment of a decomposition’s quality than MoJoQuality. Because it produces a non-
normalised result it cannot be used for H3 however. The “Assessment of output” section in 
paragraph 7.2.1 describes the reasons for choosing this metric in more detail. 
 
                                                      
26 More precisely, we base this on [Tzerpos and Holt, 1999], [Wen and Tzerpos, 2004b] and 
[Trifu, 2003]. 
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A workbench has been built that uses clustering techniques to reconstruct a static view of a 
software architecture from source code. This workbench can incorporate information obtained 
from the source code of multiple versions of a system into the clustering process. The 
workbench is applied to the Océ Controller to confirm the two hypotheses. 

7.2 Architectural-clustering architecture 
This paragraph discusses the architecture of the architectural-clustering workbench. Before 
the actual architecture is described, the decisions that led to it are discussed. 

7.2.1 Initial Choices 
The following issues need to be considered in a clustering task [Jain et al, 1999]: 
1. Entity representation. 
2. Similarity metric. 
3. Algorithm choice (how to group the entities). 
4. Data abstraction. 
5. Assessment of output. 
 
This paragraph describes how the architectural-clustering workbench handles these issues. 
Paragraph 6.1 gives a detailed description of the nature of these issues.  

Entity representation & feature selection 
Most researchers agree that architectural clustering approaches based on structural criteria 
and naming conventions are the most promising ones [Tzerpos and Holt, 2000]. Recall from 
paragraph 1.2 that most of the Océ Controller is written in an object-oriented programming 
language (C++). In object-oriented software classes are the most important building blocks 
[Booch et al, 1999]. They provide an initial grouping of closely related data and functions 
[Mitchell, 2002]. Architectural clustering approaches for object-oriented source code reported 
in literature often choose classes as the entities to be clustered. We therefore decided that 
the set of classes extracted from the source code would form the entity set. Clusters grouping 
a number of classes will be called subsystems, or simply clusters. 
 
Based on [Tzerpos and Holt, 2000], [Mitchell, 2002] and [Trifu, 2003] we decided that the 
clustering will be based on structural relations between the classes. Other approaches use 
different kinds of information, like for example ownership information, as is described in 
paragraph 3.5.4. However, this kind of information is not always available. If the complete27 
source code of a system is available, all structural relations between classes are available. 
Because this is the minimal amount of information that must be available for architecture 
reconstruction to make sense, an approach based on this kind of information has the widest 
applicability. 
 
We distinguish the three most important types of relationships between classes in object-
oriented systems [Booch el at, 1999]:  
• Association: a structural relationship between two classes that specifies one class is 

connected to another. 
• Generalization: the object-oriented mechanism via which more specific classes 

incorporate the structure and behaviour of more general classes. 
• Dependency: a “using” relationship that specifies a change in one class may affect 

another class.  
 
If two classes are related by any of these relations, it is possible that multiple instances of this 
relation exist. For example if a class c1 has three methods that all reference a class c2, these 
lead to three dependencies from c1 to c2. The clustering can take the actual number of 
relation instances into account, or just its presence. To our knowledge no work has been 
published describing the effect of this choice on the quality of the clustering result in the 
context of object-oriented software. We therefore decided to define a user-specified 

                                                      
27 Here “complete” means that a working system can be compiled from the source code.  
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parameter pc (c for combine), that specifies if only the presence, or also the number of 
instances of a relation between two classes must be taken into account: 
• pcªfalse fl take the number of instances of each class-relation into account. 
• pcªtrue fl take only the relation’s presence into account, not the number of instances. 
 
In various publications it is suggested to use different weights for the different relationship-
types, making certain types more important than others [Mitchell, 2002], [Trifu, 2003].  
However, to our knowledge no work exists that describes how different choices for the 
weights of the object-oriented structural relation-types affect the quality of the clustering 
result. We therefore decided to introduce a user-specified parameter for each relationship-
type that specifies the weight of instances of this relation in the similarity calculation. This 
leads to three parameters, pwa, pwg and pwd, which specify the weight of association, 
generalization and dependency relations respectively.  

Similarity metric and algorithm choice 
Given the entity representation and feature selection chosen in the previous paragraph, a 
clustering algorithm is required that can cluster an entity set with inter-entity features28. Bunch 
[Bunch, 2005] is a tool that implements several clustering algorithms that operate on this kind 
of data. It has been used in various architectural-clustering experiments and is known to 
produce clusterings within a bounded approximation of the optimal clustering [Shokoufandeh 
et al, 2004]. Because Bunch has been implemented as a generic clustering tool, it can easily 
be integrated in an architecture-reconstruction workbench.  
 
Because Bunch seemed the most appropriate choice, we decided to use Bunch in the 
architectural-clustering workbench. Based on experiences with Bunch reported by [Mitchell, 
2002], we decided to use the hill-climbing algorithm and the TurboMQ similarity metric. 
Paragraph 6.2.4 describes this algorithm, the TurboMQ metric, and several applications of 
Bunch.  
 
Note that we use Bunch differently than the applications reported in literature. The difference 
is threefold: 
• We use Bunch to cluster object-oriented software, whereas the applications reported in 

literature cluster procedural code29. This affects the entity representation and feature 
selection, and not the clustering algorithm itself. Hence, this does not invalidate the 
conclusions of [Shokoufandeh et al, 2004].  

• We distinguish multiple different relationship-types with different weights, whereas the 
applications reported in literature use the same weights for all relationship-types. 
However, Bunch has been designed to support different weights for the relationships. A 
small experiment revealed that the weights have the expected effect on the clustering 
result. 

• Applications reported in literature use information from one version. In some cases we 
use information from multiple versions, as is described in the “Combining version 
information” section in this paragraph. This however only affects the number of features, 
and not the clustering algorithm itself. Hence, this does not affect the conclusions of 
[Shokoufandeh et al, 2004]. 

Data abstraction 
Bunch automatically generates names for the created clusters. These names are based on an 
increasing sequence number and the level of the cluster in the decomposition. However, 
these names have little meaning to software maintainers. Ideally the workbench gives 
meaningful names to the clusters. Because we consider the decomposition produced by the 
architectural clustering as a starting point that needs to be refined manually, using the names 
Bunch generated is no significant restriction. Therefore we decided to leave the issue of 

                                                      
28 These are features that describe relationships between the entities, as is described in 
paragraph 6.1.3. 
29 As described in paragraph 6.2.4 those approaches use source files as entities, and 
dependencies between source files as features. 
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automatically giving meaningful names to the clusters as future work and use the names 
Bunch generated. 

Assessment of output 
As described in paragraph 6.3, architectural clustering methods usually assess their output by 
comparing it to some expert decomposition, or by manually checking if it seems appropriate. 
In literature consensus is that the first method is to be preferred [Mitchell, 2002], [Koschke, 
2000], so we choose to implement this method in the workbench. 
 
To validate hypothesis H3 a metric is needed that produces a normalised result that can be 
compared to values for similar cases reported in literature. Paragraph 6.3 describes several 
metrics for the comparison of automatically generated decompositions to expert 
decompositions. We choose to use the MoJoQuality metric [Tzerpos and Holt, 1999] because 
it is a normalised metric for comparing clustering results to expert decompositions for which 
reference values have been published.  
 
The EdgeMoJo metric [Wen and Tzerpos, 2004a] is a non-normalised metric that uses a 
similar approach as MoJoQuality. Unlike MoJoQuality, this metric also takes the relations 
between the classes into account. Incorrect class-placements that affect many relations are 
considered more important than those that affect a few relations. Several recent publications 
concerning comparison metrics for clusterings30 state that that it is important to take edge-
information into account also. Because we agree with this, we decided to use the EdgeMoJo 
metric to validate hypothesis H4. Because it is not normalised, this metric cannot be used to 
compare the quality of architectural clusterings of different systems (so for hypothesis H3), 
but it can be used to determine if changes to the clustering process lead to an improvement of 
the result (assuming that the same classes are clustered).  
 
Due to the size of the Océ Controller (the last version contains 2661 classes) both the expert 
decomposition and the decomposition Bunch produces must be hierarchical. To our 
knowledge the approach [Shtern and Tzerpos, 2004] described is the only method for 
comparing hierarchical decompositions that is reported in literature31. We therefore decided to 
use this approach to assess our decompositions.  
 
For more information on the two similarity metrics and the conversion approach the reader is 
referred to paragraph 6.3.2. 

Combining version information 

Approach 
Hypothesis H4 states that the use of information from older versions of the Océ Controller 
during the clustering process can improve the quality of a decomposition of the last version. In 
this context “improve” means that this decomposition comes closer to an expert’s 
decomposition.  
 
The underlying assumption is that the original architecture of the system has deteriorated and 
that this reduces the effectiveness of architectural clustering.  
When a system is refactored its internal structure improves again. This makes it unlikely that 
the “structuredness” of systems is decreasing monotonically. It is even possible that after a 
refactoring a system’s envisioned architecture is implemented more accurately than in the first 
version. Therefore it is not necessarily the first version of the system in which the architecture 
is present in its purest form. This must be taken into account when choosing the versions to 
combine. 
 
Figure 31 illustrates the difference between architectural clustering based on a single version 
and on multiple versions. Let {V1,…,Vn} be the versions of the analysed system, where Vj is 
                                                      
30 For example [Mitchell and Mancoridis, 2001] and [Wen and Tzerpos, 2004a]. 
31 Actually, this method describes transformations that allow using a metric for partitionings to 
compare hierarchical decompositions. 
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released before version Vj+1 (1§j<n). From now on we assume that an architectural view of 
the most recent version, Vn, is reconstructed, since maintenance will usually be done on this 
version. Of each version Vi that is involved in the clustering process (1§i§n) a model Mi is 
constructed. Each of these models describes a single version of the system in terms of 
classes and the relations among them, as is described in paragraph 6.1.3.  
If architectural clustering only uses information from version Vn (the last one), it uses 
clustering to construct an architectural model An from Mn. This is illustrated on the left side of 
Figure 31.  
If architectural clustering uses information from for example versions V1 and Vn, the models 
M1 and Mn are combined, producing a model M1,n. The construction of the architectural 
model An is then based on M1,n. This is illustrated on the right side of Figure 31. This 
paragraph describes two methods for combining information from multiple versions. 
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Figure 31: Architectural clustering based on a single (left)  

and multiple versions (right) 
 
Before the architectural-clustering workbench can be described further, it must be described 
how two models of system-versions are combined. Recall that these models consist of 
classes and structural relations among these classes. In the remainder of this paragraph 
these two are addressed separately, starting with the classes.  

Combining the classes 
The first question is which classes are selected from the two models. Let us assume that one 
of the models represents the version of which the architecture is reconstructed, Vn. A 
decomposition that contains the united sets of classes of Vn and some version is likely to 
contain classes that are no longer present in Vn. Because this shows unexpected classes to 
maintainers we argue that this must be avoided.  
 
On the other hand, a decomposition of Vn that only contains the classes that were also 
present in the other version will not have much value either, because it is likely to leave some 
of the classes of Vn unclassified.  
 
We therefore decided that the produced decomposition must contain the classes in Vn and no 
more.  

Combining the relations 
The second question is how the structural information of the two models is combined. From 
the preceding discussion it is obvious that only the classes present in the last version must be 
clustered. This means that information from other versions must be incorporated through the 
relationships. Set operations like union and intersection can be used to combine sets, but 
their use leads to unexpected results, as is demonstrated below.  
 
Let C be the set of all classes of all versions, and T the set of relationship-types between the 
classes. As described earlier in this chapter, multiple instances of a relationship may be 
present between two classes. Therefore each relation has a source, target, type and count. 
The count value represents the number of instances of the relation. The set of class-relations 



 85

R is defined such that it contains each distinct triple of a source, target and type at most once. 
Hence, if Í the set of natural numbers R Œ CµCµT µ Í.  
We will refer to the third component of R as the type-component, and to the fourth component 
as the count-component. An element of R is called a class-relation.  
 
Sets of class-relations can be combined with set operations like union and intersection. Due 
to the count-component in R, applying these operations directly to two of these sets leads to 
strange results. For example, suppose that a system consists of two classes, x and y, and 
that only one relationship-type, say t, is present in the model. Suppose further that two 
versions of the system exist, V1 and V2, with sets of class-relations R1 and R2 respectively. 
Suppose also that in version V1 n1 instances of relation t exist from x to y, and in version V2 
n2 instances (n1∫n2). This gives the class-relation sets R1={(x,y,t,n1)} and R2={(x,y,t,n2)}. 
Now R1… R2={(x,y,t,n1)}…{(x,y,t,n2)}=«. However, it is highly unlikely that this represents 
the set of class-relations present in both versions because the two versions probably do have 
some relations in common. We therefore cannot use the normal set operations to combine 
sets of class-relations. 
 
Below two operations to combine sets of class-relations are described that do not have this 
problem. They are described using the definitions of C, T and R given earlier in this chapter. 
The first operation is class-relations-intersection, which intersects two sets of class-relations. 
The second is class-relations-union, which unites two sets of class-relations.  
 
Class-relations-intersection, denoted by …r, is an operation with type RµRØR that gives the 
class-relations present in both sets of class-relations, ignoring differences in the count 
component. Informally, the class-relations-intersection of two sets of class-relations Ri and Rj 
starts by intersecting Ri and Rj with the count-component removed. Next, each tuple of the 
result is extended with a count-component that is the minimum of the count-components of 
the corresponding tuples in Ri and Rj.  
If ni∞nj refers to the minimum of two values ni and nj, the class-relations-intersection of two 
sets of class-relations Ri,RjŒR is defined as: 

 ( ) ( ) ( ){ }, , , , , , , , ,i r j i j i i j jR R x y t n n x y t n R x y t n R= ↓ ∈ ∧ ∈∩  (35) 

Consider the following example. Suppose that the set of classes C={x1,x2,x3} and the set of 
relationship-types T={a}. Further suppose we have two sets of class-relations, namely 
R3={(x1,x2,a,3),(x1,x3,a,1)} and R4={(x1,x2,a,1),(x2,x3,a,3)}. Then  
R3…r R4={(x1,x2,a,1)}. 
 
Class-relations-union, denoted by »r, is an operation with type RµRØR that gives the class-
relations present in any of the two sets. In general, when uniting sets, two types of elements 
can be distinguished: those present in both sets, and those present in one but not in both 
sets. The class-relations-union operator treats these two types differently. First, the class-
relations union of two sets of class-relations Ri and Rj calculates the (normal) intersection of 
the two sets without the count-component, and adds a count-component to each tuple that is 
the maximum of the count-components of the corresponding tuples in Ri and Rj. Second, the 
obtained set is extended with the tuples in Ri for which no corresponding tuple in Rj exists 
and vice versa. 
 
In order to define the class-relations-union operator more precisely, we need an operator to 
test the membership of an element in a subset of R without considering the count-component. 
We therefore define the class-relations-membership operator œr. This operator takes an 
element (x,y,t,n) of R and a subset RxŒR, and gives either true or false. If Í is the set of 
natural numbers, it is defined as: 
 ( ) ( )( ), , , : , , ,r x xx y t n R m x y t m R∈ ⇔ ∃ ∈ ∈`  (36) 
The class-relations-membership operator gives true if the provided set contains an element 
that equals the provided element on the first three components. Otherwise this operator gives 



 86

false. For example suppose that we have the sets of classes and relationship-types defined 
above and R5={(x1,x2,a,3)}. Then (x1,x2,a,1)œr R5 is true and (x1,x3,a,3)œr R5 is false.  
 
If niÆnj refers to the maximum of two values ni and nj, the class-relations-union of two sets of 
class-relations Ri,RjŒR is defined as: 

 
( ) ( ) ( ){ }

{ } { }
, , , , , , , , ,i r j i j i i j j

i r j j r i

R R x y t n n x y t n R x y t n R

r R r R r R r R

= ↑ ∈ ∧ ∈

∈ ∈ ∈ ∈

∪

∪ ∪
 (37) 

For example, suppose that we have the sets of classes and relationship-types defined earlier 
and R6={(x1,x2,a,3)} and R7={(x1,x2,a,1),(x2,x3,a,3)}. Then  
R6»r R7={(x1,x2,a,3),(x2,x3,a,3)}. 

7.2.2 Workbench architecture 
Based on the decisions described in the previous paragraph the architecture of the 
architectural-clustering workbench can now be defined. Figure 32 shows a conceptual view of 
it. The boxes indicate processing steps and the black arrows directed dataflows.  
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Figure 32: Conceptual view of the workbench 

 
Figure 32 illustrates two typical usage scenarios of the workbench: 
1. Automatic generation of a decomposition with clustering (fine dotted blue arrow).  
2. Assessment of the clustering result (coarse dotted red arrow). 
 
Both scenarios start with the extraction of facts from the source code. The first scenario 
represents the normal process when using clustering to reconstruct an architecture from 
source code. In this scenario the dependency graph that was extracted from the source code 
is clustered and the result is visualised.  
 
The second scenario is a validation scenario that is used to validate the approach. In this 
scenario the clustering result is compared to an expert decomposition. This decomposition is 
obtained in two steps. First the classes found during the fact extraction step are organised 
according to their location in the source tree. Although our reconstruction approach does not 
need this information, in the case of the Océ Controller it is available and not using it would 
make the manual construction of the expert decomposition much more labour intensive. 
Second, an editor is used to refine the resulting “draft” decomposition. The resulting expert 
decomposition is then compared to the clustering result. 
 
Figure 33 shows a process view of the workbench architecture. The rectangles represent 
processes and the black arrows directed communication channels. The dotted lines represent 
the data flows of the two scenarios discussed above. 
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Figure 33: Process view of the workbench 

 
The Sniff+ module extracts the facts from the source code. Because of the large size of the 
Océ Controller’s and the experiences in the previous case study (see chapter 5), it is 
expected that this is a computation-intensive step. Therefore we decided to store the results 
in a database, in this case MySQL [MySQL, 2005a]. The Bunch module implements the 
clustering process. During the conversion of the facts into a format Bunch accepts the Bunch 
Export module takes several user-specified parameters into account. This is discussed in 
more detail in the “Bunch Export, Bunch & Bunch Import” section of this paragraph. 
 
The expert decomposition is obtained in the two steps shown in Figure 32. First, the classes 
are organised according to the structure of the source tree. This is implemented in the module 
labelled “source-tree based clustering”. We expect this to be a reasonable approximation of 
the expert decomposition. In the second step an expert uses Rigi to refine this approximation.  
 
The Shrimp module allows users to browse a decomposition, but without editing possibilities. 
The last module, labelled MoJo, implements the comparison of two decompositions to assess 
the quality of the clustering result. 
 
The import and export modules contain “glue-logic” that connects the third party applications 
to the database. Because of the limitations of the XSLT language encountered in the first 
case study, a different language is required. Java [Java, 2005] is chosen because it is a 
mature and stable programming language, and because the most important third party 
applications used in the workbench (MySQL, Sniff+, Bunch and MoJo) have a Java API. 
 
The next paragraphs describe each of these modules in more detail. Before the actual 
modules are discussed, the meta-model used for MySQL is discussed. This model is 
discussed separately because it affects all modules. 

Meta-model 

The model 
The meta-model of the workbench is an abstraction of the source code from which the input 
for the clustering process is derived. It needs to accommodate the classes and the three 
types of structural relations among them that were identified in the “Entity representation & 
feature selection” section in paragraph 7.2.1. Since the clustering uses information from 
multiple versions of the Océ Controller, the model must accommodate multiple versions.  
 
Based on existing meta-models of architecture reconstruction workbenches32, the meta-model 
for the workbench has been defined. Figure 34 shows an ER model [Silberschatz et al, 2002] 
of the result. In this figure the rectangles represent (ER) entity-sets, diamonds relationships 

                                                      
32 More precisely, this model is based on the FAMIX [Bär et al, 1999], MeMoJ [Bauer and 
Trifu, 2004], Columbus [Columbus, 2003] and HisMo [Ducasse et al 2004] meta-models.  
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between entity-sets and ellipses attributes. For notational convenience lines are used to 
represent one-to-one and one-to-many relationships (the numbers denote the cardinality). 
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Figure 34: Clustering workbench meta-model 

 
The entities that are clustered (the classes) are the central component of the meta-model. In 
the model a class is associated with certain versions of the system, indicating its presence in 
these versions. A set of versions forms a history of a system. 
 
As described in paragraph 7.2.1 three types of relationships between classes are 
distinguished:  
• Associations 
• Generalizations 
• Dependencies  
In the meta-model these are represented by the corresponding entities. Each relationship is 
associated with two classes, and is present in one or more versions. Because multiple 
association and dependency relations can exist between two classes, a numeric “count” value 
is associated with these relations. An alternative would be to allow duplicate tuples in the 
association and dependency relations, but that would increase the space complexity of 
instances of the model significantly without adding any information.  
The count-value is not relevant for the generalization relationship because by definition only 
one such relationship can exist between two classes. 
 
The right side of Figure 34 models decompositions of the analysed system. A decomposition 
classifies classes of a certain version of the system. It contains a set of subsystem-trees, 
which is modelled by the recursive relation of the subsystem entity. Each subsystem groups a 
set of classes. 

Relation schemas 
Based on the ER model in Figure 34 the schemes of the clustering workbench’s tables are 
defined. The left column in Table 19 shows them using the notation [Silberschatz et al, 2002] 
introduced. In this notation the underlining indicates primary keys. The right column in Table 
19 shows abbreviated names of the relations, which are used in the remainder of this chapter. 
For example the Class relation will be referred to as the C relation and the ClassV relation as 
CV. 
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Association (ID, SourceID, DestinationID) A (id,sid,did) 
AssV (AssID, VersionID, Count) AV (aid,vid, c) 
Class (ID, Name, Scope, SourceFile) C (id,n,s,f) 
ClassV (ClassID, VersionID) CV (cid,vid) 
Decomposition (ID, Description, BaseVersionID) DC (id,d,bid) 
Dependency (ID, FromID, ToID) D (id,fid,tid) 
DepV (DependencyID, VersionID, Count) DV (did,vid,c) 
Generalization (ID, ParentID, ChildID) G (id,pid,cid) 
GenV (GeneralizationID, VersionID) GV (gid,vid) 
History (ID, Description) H (id,d) 
SsClass (ClassID, SubsystemID) SC (cid,sid) 
Subsystem (ID, DecompositionID, ParentID, Name) S (id,did,pid,n) 
Version (ID, Description, HistoryIndex, HistoryID) V (id,d,hix,hid) 

Table 19: Clustering workbench relation schemes 

Notation 
Relational algebra [Silberschatz et al, 2002] will be used to refer to the meta-model. This 
algebra uses the s, P, » and ´ operators to refer to selection, projection, union and inner 
join respectively. To illustrate this we give a few examples: 
• svid=5(CV) selects the tuples from the CV relation that have the vid attribute set to 5. 
• ÷id (C «C.id=CV.cid svid=5(CV)) takes the inner join of the C relation and a subset of the 

CV relation (the tuples with vid=5), and projects the id attribute of the resulting relation. 
This expression gives the set of IDs of classes present in version 5.  
The C.id=CV.id predicate is called the join condition. If the join condition is omitted a 
join is performed on the attributes in the two relations that have the same name. 

• aidGsum(c) as d (AV) is an example of an aggregation operation. It gives a relation with two 
attributes, aid and d, such that d contains the summation of the AV relation’s c attribute 
when this relation is grouped by the aid attribute.  

 
A small subset of tuple relational calculus will also be used. In this notation t[a] denotes the 
value of attribute a of tuple t and rœR denotes a tuple r in relation R. For example: 
• tœC ⁄ t[id]=7 refers to a tuple t in the C relation of which the id attribute is 7. 
• tvœCV ⁄ tv[cid]=4 ⁄ tv[vid]=2 refers to a tuple tv in the CV relation of which the cid 

attribute is set to 4 and the vid attribute to 2. This tuple indicates that the class with ID 4 
is part of the version with ID 2. 

 
For a more complete description of tuple relational calculus and relational algebra the 
interested reader is referred to [Silberschatz et al, 2002]. 

MySQL 
As described in the previous paragraph the database in the workbench stores the facts that 
are extracted from the source code and the created decompositions. MySQL is a relational 
database that claims to be “the world’s most popular open-source database with over six 
million installations” [MySQL, 2005a].  
The workbench uses the MySQL database because it is a stable, proven database. MySQL 
Connector /J [MySQL, 2005b] is used to interface with the import and export modules.  
 
During the installation MySQL is configured for optimal performance on large databases with 
a small number of concurrent clients. To eliminate the performance penalty induced by 
transaction support (logging mechanisms, see [Silberschatz et al, 2002]), the import and 
export modules do not use transactions. This is possible because only one module is active 
simultaneously. 
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MySQL supports several different storage engines. The workbench uses the MyISAM storage 
engine for all tables in the meta-model. This engine is chosen because it is the fastest engine 
that provides persistent storage [Lentz, 2004]. Temporary tables are stored with the 
MEMORY storage engine, which is even faster than the MyISAM storage engine, but does 
not provide persistent storage when MySQL is shut down.  

Sniff+ & Sniff Import 
In the first case study, Columbus/CAN is used for fact extraction. As is described in the 
“Encountered problems” section in paragraph 5.4.3, Columbus/CAN is not able to extract 
facts from the complete Océ Controller. Therefore a different fact extractor is required for this 
case study. The Sniff+ parser is used in several reverse engineering frameworks and 
performs well in various comparisons of reverse engineering tools (see paragraph 3.3.6). 
Further, Sniff+ has a Java API that provides access to its parsing results. Therefore it is 
decided to use Sniff+ for fact extraction.  
 
In the workbench the Sniff Import module uses the Sniff API to extract facts from the source 
code and write these to the database. This API is based on a publish-subscribe model. 
Subscribers register classes that contain handler functions for various entity-types. Sniff+ 
contains a publisher module that calls these methods during the extraction. Examples of such 
classes are the SymbolHandler and the ReferenceHandler classes. 
 
Sniff+ identifies entities like classes and methods with an internal identifier. However, this 
identifier is not unique across multiple Sniff+ sessions. Because the different versions are 
extracted from the source code in separate Sniff+ sessions, a new unique identifier for the 
classes is required. The Sniff Import module bases this identifier on the id attribute of the C 
relation, which is an automatically generated primary key.  
 
If multiple versions of a system are analysed and one version has already been loaded in the 
database, subsequent versions can contain the same classes.  During the extraction of these 
versions only new classes are added to the C relation. This however requires a unique 
identification of the classes. Class-names and scopes do not provide a unique identification 
for the classes for two reasons:  
• The Océ Controller consists of multiple executables. Because these executables are 

compiled separately this allows duplicate class names and scopes to be used.  
• Some branches of the source tree are nearly identical copies of other branches. 

Examples are stubs, nearly identical test tools, and experimental copies of subsystems 
that are stored for future use. In these cases, based on configuration- and make-files, the 
build-process selects certain branches of the source-tree. Sniff+ does not take the 
configuration- and make-files into account, producing duplicate class-names and scopes. 

 
Within a single version of the Océ Controller a combination of the class-name and the path of 
its source-file can uniquely identify classes. Therefore it is decided to use the combination of 
the f and n attributes of the C relation to uniquely identify classes during the addition of 
classes to the database.  
 
Recall that three types of relationships between the classes are extracted, namely 
generalizations, associations and dependencies. Let xa and xb be two classes with database 
IDs ia and ib respectively. Then source code constructs are mapped to these relationship 
types as follows: 
• Generalization: suppose xa inherits from xb. This inheritance leads to a tuple tgœG with 

tg[cid]=ia ⁄ tg[pid]=ib. 
• Association: suppose xa has a member variable of type xb, or a pointer to type xb. This 

leads to a tuple taœA with ta[sid]=ia ⁄ ta[did]=ib ⁄ ta[c]=na, where na is the number 
of association-instances from xa to xb. 

• Dependency: suppose xa contains a method that refers to a variable of type xb, a method 
of xb, or an attribute of xb, such that xa∫xb. This leads to a tuple tdœD with td[fid]=ia ⁄ 
td[tid]=ib ⁄ td[c]=nd, where nd is the number of dependency-instances from xa to xb. 

The GV, AV and DV relations are updated accordingly.  
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Dependencies from a class to itself are called self-dependencies. Observe that such 
dependencies are not extracted from the source code. This is done because self-
dependencies are trivial; any well-designed class exhibits high cohesion and hence self-
dependencies [Sommerville, 2004]. Furthermore, self-dependencies are not relevant for the 
clustering because they do not relate two different entities.  
 
Associations of a class to itself are called self-associations. Unlike self-dependencies they are 
extracted from the source code because of their relevance at the architectural level; they 
indicate recursive object structures. Like self-dependencies, self-associations are not relevant 
for the clustering process. 

Bunch Export, Bunch & Bunch Import 
The Bunch Export module creates a file containing the module dependency graph (MDG). 
Bunch reads the entities to be clustered and the relations between them from this file. After 
the clustering process is completed, the Bunch Import module writes the produced 
decomposition to the database. Note that the MDG-file is not limited to the dependency 
relationship type, but can contain any kind of relationship.  

Bunch Export 
Each line in the MDG-file written by the Bunch Export module specifies a single edge in the 
module dependency graph. Together, the lines in the MDG-file specify the bag of edges E of 
the module dependency graph G=(N,E), where N represents the set of nodes (the classes). 
N is not specified explicitly in the MDG-file, but implicitly by E.  
Let x1,x2œN be two classes. A line in the MDG-file in the following format represents a 
relation from x1 to x2 with weight w [Mitchell, 2002]: 

x1 x2 w 
 
The workbench consecutively writes the contributions of the associations, generalizations and 
dependencies to the MDG-file to obtain E. A mapping between the meta-model of the 
workbench and these three contributions, Ea, Eg and Ed respectively is defined below.  

Bunch Export: queries for one version 
Let v be the ID of the version that must be clustered. The Ea(v) relation contains the 
contribution of the associations to E for version v. It is obtained by joining relation A with the 
subset of the AV relation that is related to version v. More precisely, Ea(v) is calculated by 
joining the tuples in A with sid∫did to the tuples in AV with vid=v. Tuples in A with sid=did 
(self-associations) are removed because Bunch cannot handle edges that start and end in the 
same node. Because such relations have no effect on the clustering, this does not affect the 
clustering result. Finally, a projection selects the appropriate attributes: 
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In (38) pc is the user-specified parameter described in paragraph 7.2.1 that specifies if the 
number of instances, or just the presence of a relationship between two classes must be 
considered. Further, pwa, is a user-specified parameter that defines the weight of association 
relations (see paragraph 7.2.1 also). Observe that the edges point from the child class to its 
parent. This direction is chosen because the child depends on the parent and not the other 
way around. 
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The Eg(v) relation contains the contribution of the generalizations to E for the version 
identified by v. It is obtained in a similar way as Ea(v), namely by selecting the subset of 
relation GV that is related to the version v identifies, and joining the resulting relation with the 
G relation: 
 ( ) ( )( ), ,   

wgg cid pid p id gid vid vE v G GVσ= =← Π ´  (39) 

GV has no c attribute because by definition only a single generalization relation can exist 
between two classes. Analogue to pwa, pwg is a user-defined parameter that specifies the 
weight of generalization relations. 
 
The Ed(v) relation contains the contribution of the dependencies to E for the version identified 
by v. The calculation of this relation is slightly more complex than that of the previous 
relations. By our definition of the relationship types, an association from class x1 to class x2 
also implies a dependency from x1 to x2. A similar argument can be held for generalizations: If 
x1 inherits from x2, x1 is likely to use methods or attributes of x2. Therefore this generalization 
usually leads to a dependency from x1 to x2.  
[Booch et al, 1999] state that such redundant dependencies can be omitted from UML models 
because associations and generalizations imply a dependency. To our knowledge no work 
has been published on how the omission of these relations affects the output of architectural 
clustering. We therefore define a user-specified boolean parameter pi (i for ignore) such that: 
• piªfalse fl Eg(v) includes all dependencies in the version. 
• piªtrue fl a dependency d is only included in Eg(v) if 

o Ea(v) contains no association a with a[sid]= d[fid] ⁄ a[did]= d[tid] and 
o Eg(v) contains no generalization g with g[cid]= d[fid] ⁄ g[pid]= d[tid]. 

 
In the case piªfalse, the Ed(v) relation is obtained by joining the D relation with the subset of 
the DV relation that is related to the version identified by v, similar to the calculation of Ea(v) 
and Eg(v). However, if piªtrue, some dependencies must be ignored. This is achieved by 
subtracting the sets of associations and generalizations from the set of dependencies.  
If pwd is a user-defined parameter that specifies the weight of dependency relations, analogue 
to pwa, Ed(v) is defined as: 
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In (40) the Ed’(v) relation is obtained by joining the D relation with the subset of the DV 
relation that is related to the version v identifies. For the case piªfalse, Ed(v) equals Ed’(v). 
For the case piªtrue, Ed(v) only contains tuples in Ed’(v) for which no corresponding tuple in 
Ea(v) or Eg(v) exists. This is calculated by projecting the fid and tid attributes of Ed’(v), and 
subtracting the projections of the sid and did attributes of Ea(v), as well as that of the cid 
and pid attributes of Eg(v). The resulting set of tuples with schema (fid,tid) is joined with 
Ed’(v) to obtain the c attribute.  
 
The translation of the expressions in (38), (39) and (40) into SQL queries is trivial and is 
omitted from this thesis. 
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Bunch Export: queries for intersection of versions 
Class-relations from multiple versions can be combined with the class-relations-intersection 
…r and class-relations-union »r operators defined in paragraph 7.2.1. In both cases the 
contributions of the associations, generalisations and dependencies are written to MDG-file 
consecutively. This is equivalent to the definitions in paragraph 7.2.1 because these three 
sets are disjoint (they have a different type attribute).  
 
The class-relations-intersection operator …r gives the relations present in both versions and is 
implemented with a set of SQL queries. Recall that according to (35), Ri…r Rj consists of the 
tuples (x,y,t,c) for which a pair of tuples exists in the sets of class-relations Ri and Rj that are 
equal to each other on the first three components. The c component of the resulting tuples is 
set to the minimum value of the c component of the two corresponding tuples in Ri and Rj.  
 
The implementation of the class-relations-intersection operator is based on the queries for 
one version. Since all three relationship-types are treated in the same way we only describe 
the implementation for the associations here. This implementation is based on the Ea(v) 
relation (38) defines. Because the implementation handles each relationship-type separately 
this relation has the schema (sid,did,c).  
Let u and v be the IDs of the two versions of which the class-relations-intersection is 
calculated. The implementation starts with projecting the sid and did attributes of Ea(v) and 
Ea(u) in order to remove the c attribute. Next the resulting relations are intersected to obtain 
the relation Ei,a’(u,v), which contains the associations present in both versions. Then the 
implementation obtains the minimum value of the count component for every association. 
This is calculated by uniting Ea(v) and Ea(u), grouping the resulting tuples on {sid,did}, and 
selecting the tuple with the minimum value of the c attribute of each group. The result is 
joined with Ei,a’(u,v) to select only those associations that are present in both Ea(v) and 
Ea(u). 
 
Using the definition of Ea(u) and Ea(v) in (38), the contribution of the associations to the 
class-relations-intersection Ei,a(u,v) of two versions u and v is defined as: 
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Ei,g(u,v) and Ei,d(u,v) are calculated likewise for the generalization and dependency 
relations respectively.  

Bunch Export: queries for union of versions 
The class-relations-union operator »r gives the relations present any of the two versions and 
is implemented with a set of SQL queries. (37) defines the »r operator as the union of three 
subsets. Let s1, s2 and s3 be these subsets, numbered ascending from top to bottom and left 
to right:  
• Subset s1 is defined as the tuples (x,y,t,c) for which a pair of tuples exists in Ri and Rj 

that are equal to each other on the first three components. The c component of the tuple 
in s1 is set to the maximum of the c components of the corresponding tuples in Ri and Rj.  

• Subset s2 is defined as the tuples (x,y,t,c) from Ri for which no tuple (x,y,t,n) exists in 
Rj (for any nœÍ).  

• Subset s3 is obtained in the same way as s2, but with Ri and Rj exchanged.  
Observe that s1, s2 and s3 are disjoint by definition.  
 
Similar to the implementation of the previous operator the implementation of the class-
relations-union operator handles each relationship-type separately. Because s1, s2 and s3 are 
disjoint sets (without duplicates of course) that are united to get the result, taking the 
maximum can after the union instead of before it does not affect the result. Let w and v be the 
IDs of the versions of which the class-relations-union is calculated. The implementation unites 
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Ea(w) and Ea(v), groups the result on {sid,did} and takes the tuple with the highest value of 
the c attribute of each group. This produces the Eu,a(w,v) relation, which contains the 
contribution of the associations to the class-relations-union of version w and v: 
 ( ) ( ) ( ) ( )( ), , max,  u a sid did a acE w v E w E v← ∪G  (42) 

Eu,g(w,v) and Eu,d(w,v) are calculated likewise for the generalization and dependency 
relations respectively.  

Clustering the MDG 
After the Bunch Export module created the MDG-file, Bunch clusters it. For the experiments 
that showed the quality of the decompositions produced by Bunch, [Shokoufandeh et al, 
2004] used the default settings. The architectural clustering workbench does this too, with one 
exception. In the workbench, Bunch is configured to generate “tree format” output. Activating 
this setting does not affect the clustering itself, but only the format of the output. If a tree 
format is chosen the complete dendrogram, instead of just one slice, is written to the output-
file [Mitchell, 2002]. This gives a hierarchical decomposition, instead of a partitioning. If no 
tree format is chosen each output file contains a slice of the dendrogram and the output files 
together contain the complete dendrogram. 

Bunch Import 
The Bunch Import module reads the clustering result from the output-file written by Bunch. 
For each cluster defined in this file a tuple is created in the S relation. The classes and 
clusters placed within each cluster are handled as follows: 
• For each class with ID x in a cluster with ID s a tuple t is added to the SC relation with 

t[cid]=x ⁄ t[sid]=s. This places the class in the cluster. 
• For each cluster with ID s’ in a cluster with ID s the tuple t in the S relation with t[id]=s’ 

is updated such that t[pid]:=s. This makes the cluster with ID s’ a child of the cluster 
with ID s. 

 
Recall that in the MDG-file the set of vertices of the module dependency graph is represented 
implicitly by the set of edges. However, some classes in the system version of which the 
architecture is reconstructed may not be involved in any association, generalization or 
dependency relation at all, for example classes that only write a configuration file. Due to the 
implicit definition of the vertices the clustering algorithm does not classify these classes. If 
such unclassified classes exist, the Bunch Import module creates a cluster in the root of the 
decomposition that contains the unclassified classes. This is called the “unconnected classes” 
subsystem.  

MoJo  
This module implements the assessment of the clustering output. This is achieved by 
converting two hierarchical decompositions into two sets of partitionings. This produces a 
partitioning for each level of the hierarchical decomposition. Next, the MoJoQuality and 
EdgeMoJo metrics are used to compare each pair of partitionings of the same level. 
Paragraph 6.3.2 describes the conversion process and the two metrics, and paragraph 7.2.1 
the reasons for choosing this approach. 
 
The MoJo module implements both the conversion into partitionings and the two metrics, 
using the implementation of [Tzerpos, 2005]. The decompositions are extracted from the 
database with SQL queries.  
 
The conversion of the hierarchical decompositions into partitionings handles each of the two 
decompositions separately. Recall that in this process each level of the decomposition is 
handled separately (level is defined in paragraph 6.3.2). If l is the level considered in the 
current iteration, this iteration assigns all classes in a cluster with a level higher than l to the 
parent of this cluster at level l. Each iteration produces a decomposition consisting of the 
classes and the subsystem they are placed in. For a more complete description the reader is 
referred to paragraph 6.3.2. This paragraph describes the implementation of the approach. 
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Before a hierarchical decomposition is converted to a partitioning, a temporary relation TS is 
created with the schema (subsystemid, level, idAtlevel). The attributes of this relation will 
be referred to with the bold parts of their names. For each subsystem in the decomposition a 
tuple exists in TS. For each tuple in TS the sid attribute represents the ID of the subsystem in 
the S relation, and the l attribute the level of the subsystem. The idl attribute represents the 
id of the subsystem at level l or less that contains the entities in the subsystem sid identifies. 
This is explained further in the algorithm description given below.  
 
Let d be the ID of the decomposition that is converted. The algorithm starts with an 
initialisation step, in which for each tuple sœ S with s[did]=d a tuple t is added to TS with 
t[sid]=t[idl]=s[id] and t[l]=the level of subsystem s. 
Next, the algorithm iterates over the levels of the decomposition in descending order (starting 
with the highest level). Level 0 is excluded because it is trivial; all classes are part of the 
application. For each level l (l>0) two actions are performed in the order shown below: 
1. A partitioning is exported to an RSF-file. In this partitioning the classes are not placed in 

the subsystem identified by TS[sid], but in the subsystem identified by TS[idl].  
2. Every tuple tœTS with t[l]=l is updated such that t[idl] is set to the ID of the parent of 

the subsystem identified by the old value of t[idl]. More precisely, for a tuple sœS with 
s[id]=t[idl] (s refers to the subsystem under consideration), t[idl]:=s[pid] ⁄ 
t[l]:=t[l]-1.  

 
The above algorithm converts the hierarchical decomposition into a set of partitionings. The 
MoJo module applies this procedure to both decompositions. Usually these are the clustering 
result and the expert decomposition. If the two decompositions have a different number of 
levels, the deepest level of the shallower decomposition is copied. 
 
Next, the set of relations is exported to an RSF-file and the MoJo implementation of [Tzerpos, 
2005] is used to calculate the MoJoQuality and EdgeMoJo values for each level. If L is the 
number of partitionings after the above procedure for two hierarchical decompositions A and 
B, and al and bl are two partitionings obtained this way for level l (1§l§L), this procedure 
compares al and bl. For each value of l the EdgeMoJo implementation starts with the 
calculation of MoJo(al,bl). Next, the additional cost of the edges and MoJoQuality(al,bl) 
are calculated. This produces two vectors EM=(em1,…,emL) and MQ=(mq1,…,mqL) that 
contain the EdgeMoJo and MoJoQuality values respectively for the different levels. As [Shtern 
and Tzerpos, 2004] suggested the workbench uses a linear weighting schema for the levels. 
Therefore, MoJoQuality(A,B) and EdgeMoJo(A,B) are obtained with: 
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The computational complexity of the algorithm to calculate MoJo(al,bl) for two partitions al 
and bl, is O(n·log n + (|al|+| bl|)·|al|·|bl|), where n is the number of classes that are 
clustered and |al| and |bl| the number of clusters in al and bl respectively [Wen and Tzerpos, 
2003]. [Wen and Tzerpos, 2004a] do not describe the algorithm used to calculate the 
additional cost of the edges and the computational complexity of this algorithm.  

Shrimp & RSF Export 
The workbench uses Shrimp33 to visualise the decompositions. Shrimp is chosen because it 
is designed to browse through large hierarchical information spaces, such as decompositions 
of large systems. The RSF Export module uses SQL queries to write a decomposition to a 
structured RSF-file, which Shrimp then reads. This file contains the classes of a single 
version, and the relations stored in the database for this version.  
 

                                                      
33 For more information about Shrimp the reader is referred to paragraph 3.5.1. 
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Figure 35 shows a view of the static structure of version 8a of the Océ Controller that is 
created with Shrimp. In this view the small squares represent classes and the arrows 
relationships between the classes. All 2.661 classes are placed in a single subsystem. Three 
types of relations are shown: associations (1.818, in red), generalizations (2.215, in blue) and 
dependencies (10.663, in green). This view is a typical example of the views obtained when 
converting the facts extracted from the source code to an architectural view without defining 
higher-level abstractions. Because of the large number of classes and relations shown this 
view gives no insight at all in the structure of the Océ Controller.  
 

 
Figure 35: Initial unstructured view of the Océ Controller 

 
Figure 36: View of the Océ Controller based on association relations 
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Figure 36 shows a view of the static structure of the Océ Controller in which only the 
association relations are shown, in this case using a spring-layout. The arrows point from the 
source to the destination of the associations. Observe that several groups of related classes 
can be distinguished. This confirms that the association relations can be used to group the 
classes.  
 
Figure 37 shows two other views of the Océ Controller that are also based on a spring-layout. 
On the left side a view with generalization relations is shown. The arrows point from the child 
to the parent class. Observe that several clusters can be distinguished here also.  
On the right side a view obtained when applying a spring layout to the dependency relations 
is shown. The edges have been omitted here because they obfuscate the view too much. 
Observe that in this view the clusters are smaller than in the other views. The reason for this 
is that there are much more dependencies than associations or generalizations, which leads 
graph with a higher connectivity. 
 

Figure 37: Views of the Océ Controller based on generalization (left) 
and dependency relations (right) 

Source-tree based clustering 
The module labelled “source-tree based clustering” (STBC) is needed for validation purposes 
only. It creates a decomposition for a single version based on the structure of the source tree. 
This decomposition is used as a starting point for the expert decomposition, which in turn is 
used to determine the quality of the clustering result.  
The algorithm for the construction of this decomposition is based on the assumption that 
classes that are defined in source-files in the same directory belong together. The resulting 
clusters are hierarchically related by their location in the source tree. Based on approaches 
reported in literature34 we expect this to be a good starting point for refinement by an expert. 
 
The source tree of the Océ Controller contains both the source code and the documentation. 
If only source-files are considered this tree contains many empty directories and directories 
with a single subdirectory. If every directory is converted into a subsystem this is expected to 
lead to a poor quality decomposition because such directories do not add any structural 
information. Therefore they must be ignored during the construction of the decomposition. 
This is achieved by considering the source tree as an abstract tree, reducing it, and using the 
result to construct a decomposition.  
 
The STBC module creates a directed graph G=(Nc » Nd, E) that represents the source tree, 
where E represents the set of edges and Nc » Nd the set of nodes. Nc represents the set of 
classes present in the version of which the architecture is reconstructed and Nd the set of 
distinct directories where classes in Nc are defined. Since empty directories do not define 
classes this definition of Nd filters out empty directories. 
E contains an edge from node na to nb (naœ Nd, nbœ Nc » Nd) if and only if directory na 
contains nb. The latter can be a directory or a class. If G has no single root node a root node 

                                                      
34 More specific, we refer to [Choi and Scacchi, 1990], [Tzerpos and Holt, 2000] and 
[Demeyer, 2004]. 
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nr is created, E is extended with an edge from nr to every node in Nd that has no parent, and 
nr is added to Nd. Observe that Nd contains the interior nodes and the root node, and Nc 
contains the leaf nodes of the tree.  
 
After the tree has been constructed, the algorithm reduces it by removing all nodes ny from Nd 
that have a parent node nx and a single child node nz that is not a leaf node (so nzœNd)35. 
The edges from nx to ny, and from ny to nz are removed from E, and an edge from nx to nz is 
added to it.  
This is repeated until no more nodes can be removed from the tree. Then, for every interior 
node in the tree, a cluster is created. Each cluster created this way contains the classes and 
clusters that are represented by child nodes of the node representing the cluster. 
 
After the algorithm has terminated, a subsystem is created in the S relation for every interior 
node ni of the tree (so niœ Nd\{nr}, nr refers to the root node). Let ti be the tuple that defines 
a subsystem. In case ni is not a direct child of the root node, ti[pid] is set to the value of the 
id attribute of the tuple in S that represents the parent node of ni. In case ni is a direct child of 
the root node, ti[pid] is set to zero. For every leaf node nc of the tree (so ncœ Nc) a tuple tc is 
added to the SC relation such that tc[cid] refers to the class represented by nc and tc[sid] to 
the tuple in S that represents the parent node of nc. 
 
On the left side, Figure 38 shows an example of G. The large circles represent nodes in Nd 
(directories), with their name placed inside the circle. The smaller dots represent nodes in Nc 
(classes). The edges represent the containment of a class or directory in another directory. 
The right of Figure 38 shows G after the reduction algorithm has terminated. Observe that the 
B, D and H nodes have been removed from the tree.  
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Figure 38: Example source-tree before (left) and after the reduction (right). 

Rigi & RSF Import 
An expert must refine the decompositions produced by the “source-tree based clustering” 
module. This is done with Rigi, which is described in paragraph 3.3.3. 
 
Rigi reads the RSF-file written by the RSF Export module. Experts on the architecture then 
use Rigi to improve the decomposition the “source-tree based clustering” module produced, 
after which the RSF Import module writes the resulting RSF-file back to the database.  

                                                      
35 The “no leaf node” condition is necessary for cases where only one class is defined in a 
directory. If a directory, say d, contains several of these directories, omitting this condition 
causes several classes to be placed in the cluster representing d. This is not desired because 
it removes too much structural information. 
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7.3 Implementation validation & parameter tuning 
Before the workbench could be used to reconstruct the architecture of the Océ Controller it 
had to be ensured that its implementation was correct. Further, the proper values of the user-
specified parameters had to be determined. As paragraph 7.3.2 describes we determined a 
set of parameter values that produced the best clusterings for two subsystems of the Océ 
Controller. These values were then used to cluster the complete Océ Controller. Instead of 
using the two subsystems we also attempted to use a specially built guinea-pig application. 
However, difficulties obtaining the expert decomposition to which the clustering result is 
compared forced us to abandon this route and use the two subsystems. 

7.3.1 Validation 
The validation of the implementation of the architectural-clustering workbench amounts to 
checking that the used third-party applications perform the expected functions and that the 
import and export modules apply the proper transformations. The separate modules are 
tested individually, or together with a few closely related modules.  

Sniff and Sniff Import 
The Sniff+ and Sniff Import module are tested by extracting the meta-model from the source 
code of several small programs with a known structure. The produced meta-model is then 
compared to the expected model. This procedure has been applied to two programs: 
• The application used to validate the pattern detection prototype, which is described in 

paragraph 5.3. 
• A small application based on the blackboard pattern [Buschmann et al, 1999]. This 

application is designed to use a wide range of source-code constructs for the association, 
generalization and dependency relations. This application is called the simple-blackboard 
application and is described in paragraph 7.3.2. 

 
The tests show that all classes and class-relations are extracted from the source code, with 
one exception: associations created with C++ templates [Stroustrup, 1997]. Although Sniff+ 
can handle their use and the Sniff API has facilities for them, they are not exported. The Sniff 
API documentation states that template support will be added in a future version of Sniff+. 
However, because templates are not used very often in the Océ Controller this has little 
impact on the clustering result. 

Bunch Export 
To test the implementation of the Bunch Export module an MDG-file for the simple-blackboard 
application is exported. This application is described in the corresponding section in 
paragraph 7.3.2. Recall that five different user-specified parameters are defined that all 
influence the exported information: 
• pwa, pwg and pwd: numeric parameters that specify the weight of association, 

generalization and dependency relations respectively. 
• pc and pi: boolean parameters that reduce the amount of information that is written to the 

MDG-file. The pc parameter specifies whether the instance-count or just the presence of 
class-relations must be written to the MDG-file. The pi parameter specifies whether or not 
redundant dependencies must be omitted from the MDG-file. 

 
The Bunch Export module is tested using three distinct values for the numeric parameters, 
and all possible combinations of the boolean parameters. The numeric parameters do not 
affect the control flow of the Bunch Export module but are written to the output directly. 
Therefore it is not necessary to test different combinations of the numeric parameters.  
 
The above method is applied to the Bunch Export module, using the test application of the 
pattern detection prototype (see paragraph 5.3) as input. This application contains all types of 
relations identified in the meta-model. Further, it contains enough classes to be realistic, but 
not too many to make manual assessment of the output impossible.  
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In all cases the Bunch Export module wrote the same information to the MDG-file as was 
calculated manually.  

Bunch, Bunch Import, RSF Export & Shrimp 
Recall that the workbench uses an existing implementation of Bunch [Bunch, 2005], which 
has been used in various case studies. Therefore the Bunch module is only tested 
superficially by applying it to the simple-blackboard application and the test application for the 
pattern detection prototype. The produced decompositions are inspected visually with Shrimp. 
This is done with various values of the user-specified parameters. In all cases the produced 
result seemed correct. 
 
Because these tests use Shrimp, the Bunch Import, RSF Export and Shrimp modules are also 
tested in this process. These three modules are tested further through the application of small 
test-inputs that (non-exhaustively) enumerate several input combinations. The output 
matched the expected result. Since the Bunch Import, RSF Export and Shrimp modules are 
relatively simple, this is sufficient to assess their correctness with sufficient confidence.   

MoJo 
Recall that the implementation of the MoJo module uses an existing implementation of the 
similarity metrics that was obtained from [Tzerpos, 2005]. This implementation is used in 
several case studies, including the ones described in [Wen and Tzerpos, 2004a]. We 
therefore tested this implementation only superficially. For several small, manually 
constructed decompositions the output equalled the values found by manual calculation of the 
metrics. 
 
The implementation of the transformation of hierarchical decompositions into partitionings is 
tested by applying it to several decompositions and checking the resulting partitionings 
manually. Several decompositions Bunch produced for the test application of the pattern 
detection prototype served as input. The partitionings matched the expected result.  

Source-tree based clustering 
The source-tree based clustering module is tested by applying it to Grizzly (see paragraph 
1.2). Grizzly is chosen because its source-tree is sufficiently complex to allow a realistic test, 
yet small enough to allow manual application of the algorithm.  
 
The output of the source-tree based clustering module matched the decomposition that was 
produced manually. 

RSF Export, Rigi, RSF Import 
The RSF Export, Rigi and RSF Import modules are also tested by applying them to an 
application and checking the results manually. The simple-blackboard application is used as 
input because its size is sufficient for a realistic test, but manual assessment of the output is 
also possible. In these tests all three modules behaved as expected. 

7.3.2 Parameter tuning 
During the transformation of the meta-model into the module dependency graph, five user-
specified parameters are used, as is described in paragraph 7.2.2. Summarizing, these 
parameters are: 
• pwa, pwg and pwd: numeric parameters that specify the weight of association, 

generalization and dependency relations respectively. 
• pc and pi: boolean parameters that reduce the amount of information that is written to the 

MDG-file. The pc parameter specifies if the instance-count or just the presence of class-
relations must be written to the MDG-file. The pi parameter specifies whether or not 
redundant dependencies must be omitted from the MDG-file. 

We call the tuple (pwa,pwg,pwp,pc,pi) a parameter-tuple. 
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Since these parameters directly affect the input of the clustering process, they are likely to 
affect the quality of its output too. To our knowledge no work has been published that 
describes the effect of these parameters on the clustering result in the context of object-
oriented software.   
 
As described in paragraph 1.2, the Océ Controller is relatively large. Therefore clustering its 
module dependency graph is relatively time consuming; on the platform described in Table 27 
clustering the MDG-file of the most recent version once takes about eighteen minutes 
(including Bunch Export and Import). The following MoJo calculation takes about five minutes. 
Therefore, the number of tested parameter-tuples must be limited significantly. Besides this, 
the numeric parameters (that have no upper bound) make it impossible to test all different 
parameter-tuples anyway.   
 
We address this issue with practical approach. First, we search for the set of near-optimal 
parameters for two relatively small subsystems of the Océ Controller. This allows a 
reasonably large area of the total search space to be investigated. Next, the parameter-tuples 
that lead to the best clustering for these subsystems are used to cluster the complete Océ 
Controller. In this process the clustering result is compared to an expert decomposition with 
the EdgeMoJo metric. Because the clustering algorithm Bunch uses is non-deterministic, the 
average EdgeMoJo value of ten different clusterings is calculated for each parameter-tuple.  
 
Instead of using subsystems of the Océ Controller to reduce the number of parameter-tuples, 
a specially developed guinea-pig application can also be used. Because the Océ Controller is 
based on the blackboard architectural style (see paragraph 2.4.3) a simple blackboard-based 
application was built and it was attempted to find the set of near-optimal parameter-tuples for 
it. Recall that the clustering result is compared to the result of a manual decomposition. We 
attempted to obtain this “expert” decomposition by asking ten experienced architects and 
designers to reconstruct an architecture for the simple-blackboard application. Surprisingly, 
this led to ten different decompositions. Because insufficient time was available to devise a 
method for combining these decompositions into one, it was decided to use subsystems of 
the Océ Controller instead. The next section describes the “simple-blackboard” application 
and the experiment to obtain an expert decomposition for it.  

Simple-blackboard application 
Ten experienced software architects and designers were asked to reconstruct an architecture 
for a specially-built guinea-pig application. They based this on information that is similar to the 
information available in practical architecture-reconstruction situations: 
• A class diagram showing the static structure of the program. In practice, such a diagram 

is extracted from the source code, either manually or with tools like Sniff+. In practice only 
some of the classes will have meaningful names. In our experiment this is mimicked by 
giving about half the classes meaningful names that reflect their roles in the application. 
In the class-diagram the classes are positioned such that the number of edge crossings in 
minimised, mimicking the application of an edge-crossing minimization algorithm to the 
extracted diagram. 

• An (incomplete) description of the dynamic behaviour. In practice, the architects would 
extract this information from the source code. Because of time limitations this is explained 
to them verbally in our experiment. 

• Answers to questions of the architects on specific details about the application were 
also given verbally. This mimics the iterative process [Demeyer et al, 1998] described, 
where the reconstructor obtains information about the software by analysing how specific 
aspects are handled. 

 
Obviously the placement of the classes in the diagram can influence how the architects 
decompose the application. Using a different diagram for each architect with randomly placed 
classes could circumvent this. However, with these diagrams it would be much harder to 
explain the dynamic behaviour to the architects. Due to time limitations this was not 
considered possible. However, the architects were told explicitly that they should not let the 
placement of the classes influence their decisions. While creating their decomposition several 
architects made small tree-like diagrams to visualise possible decompositions that had a 
completely different structure than the provided class diagram. So although it is possible that 
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the class diagram’s structure influenced the architects, we feel that the chosen approach 
sufficiently matches a practical architecture reconstruction case.  
 
Figure 39 shows the class diagram of the simple-blackboard application. The diagram uses 
the static-structure notation of UML [Booch et al, 1999]. To simplify the diagram some 
dependencies have been omitted. More precisely, dependencies from class ca to cb for which: 
• an association from ca to cb exists or 
• ca inherits from cb  
are omitted from the diagram, as [Booch et al, 1999] suggested. 
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Figure 39: Simple-blackboard application class diagram 

 
The application implements a simple data processing application that has been designed with 
extensibility in mind. Because the future interactions among the processing units are hard to 
predict, the architecture is based on the blackboard architectural style [Buschmann et al, 
1999]. Some of the architects were not very familiar with this style. In those cases it was 
explained to them first. The application has three data processing classes, KSA, KSB and 
KSC. KSA reads a file from disk and places its content on the blackboard in a Content1 class. 
KSA uses two other classes, A1 and A2. KSB is triggered by the presence of Content1 data 
on the blackboard and uses this data as input for a set of complicated calculations. The 
results of these are placed on the blackboard in a Content2 class. KSB uses two other 
classes, B1 and B2 to perform the calculations. KSC is triggered by the presence of the 
Content2 class on the blackboard. This data is used as input for a complicated calculation, a 
part of which is inherited from the C3 class (reuse through inheritance). The results of this 
calculation are written to disk by KSC. 
 
To prevent the triviality of the application from influencing the decomposition, the architects 
were told that each class represents a significant size, and that the diagram shows only public 
properties and methods, not the private ones. Further, they were told that they would not have 
to worry about limitations with respect to the number of human resources available. 
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Surprisingly, all architects produced a different decomposition. These are described in 
Appendix 5. To our knowledge no work has been published on the merging of a set of 
architectural decompositions. We have experimented with an approach that assigns an 
“attractive force” to each pair of classes that specifies their affinity. These forces are based on 
the decompositions produced by the architects. If an architect places two classes in the same 
subsystem this creates an attractive force between them. The decompositions are combined 
by summing the total forces for each pair of classes in the set of decompositions. In our 
experiments the dominant (i.e. strongest) forces determine the final combined decomposition, 
but a mechanism based on spring-layouts might be preferable. If architects have created a 
hierarchical decomposition, the attractive force between two classes increases with the 
number of levels on which the two classes are placed in the same subsystem. Because of 
time limitations we were not able to investigate the combining of decompositions further and 
decided to leave this as future work. 
  
Besides the ten decompositions, Appendix 5 also describes the reasons that led to them. The 
majority of the architects based their decomposition on functional criteria. The architects that 
did consider the class-relations all considered dependencies to be the least important. The 
large number of dependencies in Figure 39 probably caused this. Inheritance was considered 
an important, but not compulsory indicator for a subsystem boundary. For the clustering 
parameters this suggests that the weight of inheritance relations (pwg) should be relatively 
low. The architects attempted to keep associations, especially the compositions, within a 
single subsystem. For the clustering process this suggests that the associations relations 
should have a relatively high weight (pwa).  
 
Because of time limitations, and because an expert decomposition of the Océ Controller 
needs to be constructed anyway to assess the quality of the clustering result, it was decided 
not to use the simple-blackboard application to find a set of near-optimal parameters for the 
clustering process. Instead, two subsystems of the Océ Controller are used for this purpose. 
The question of how to merge a set of decompositions is left as future work. 

Grizzly & Rip Worker 
Instead of the simple-blackboard application, the Grizzly and RIP Worker subsystems 
described in paragraph 1.2 are used to determine a set of near-optimal parameter-tuples. 
These are then used to cluster the complete Océ Controller.  
The expert decompositions of the Grizzly and RIP Worker subsystems are constructed with 
the two-step process described in paragraph 7.2.2. First, the “source-tree based clustering” 
module is used to create an approximation of the expert decomposition. Next, the architecture 
and design documents, together with information from the original developers, are used to 
refine this decomposition. The input of the original developers was especially valuable to 
classify classes in the implementation that are not mentioned in the design documentation. 
 
Because it is not possible to enumerate all possible parameter-tuples, a subset must be 
selected. Recall that three of the five parameters are numeric and two of them are booleans. 
For each of the numeric parameters the search space is initially set to {0,1,2,3,4,5,6}. This 
gives a total of 7µ7µ7µ2µ2=1372 combinations to investigate, each requiring ten executions 
of the clustering algorithm. Because combinations containing zero for all three numeric 
parameters do not export any information to the MDG-file these are not used. This leaves 
1368 combinations to test.  
 
To speed up the calculations AutoIt [AutoIt, 2005] scripts have been used to automate the 
clustering process. For every different parameter-tuple these scripts use the Bunch Exporter 
module to create an MDG-file. Next they repeat the following four steps ten times: 
1. Cluster the MDG-file with Bunch. 
2. Write the decomposition to the database with the Bunch Importer module. 
3. Calculate the MoJoQuality and EdgeMoJo values with the MoJo module. This module 

writes these values to a file, which is used to determine the quality of the clustering for 
each parameter-tuple. 

4. Remove the decomposition written in step 2 from the database. 
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In the remainder of this chapter the cycle of exporting the MDG-file once and the tenfold 
execution of these four steps is called a ten-clusterings cycle. 
 
Grizzly and the RIP Worker have been processed separately, both on the platform described 
in Table 27. For Grizzly the ten-clusterings cycle took about four minutes, resulting in a total 
execution time of about 5488 minutes (91 hours) to test the 1372 combinations. For the RIP 
Worker this was about 3:20 (m:ss), resulting in a total execution time of about 4573 minutes 
(76 hours).  
 
Table 20 shows the five best and five worst parameter-tuples for Grizzly and the RIP Worker, 
and the resulting EdgeMoJo and MoJoQuality. Observe that the two sets of best parameter-
tuples are disjoint. For Grizzly the EdgeMoJo metric varies between 101,7 for the best and 
169,7 for the worst decomposition. The MoJoQuality varies between 69,0% for the best and 
57,3% for the worst decomposition. For the RIP Worker these figures are 42,6 and 67,9, and 
66,3% and 55,0% respectively. These figures indicate that the choice of the clustering 
parameters affects the quality of the clustering result significantly.  
 

Grizzly RIP Worker 
pwa pwg pwd pc pi Edge

MoJo
MoJo 

Quality
pwa pwg pwd pc pi Edge 

MoJo 
MoJo 

Quality 
2 5 5 false false 101,7 69,0% 0 5 2 false false 42,6 66,3% 
1 3 2 false false 102,0 69,0% 2 4 3 false true 42,6 66,4% 
0 0 6 true false 102,2 69,8% 1 6 4 true true 42,7 66,7% 
2 3 5 false true 102,3 68,2% 1 5 2 false true 42,7 67,1% 
1 4 3 false false 102,7 68,9% 2 4 1 true false 42,7 66,0% 

1358 other measurements 1358 other measurements 
4 0 0 false false 169,1 61,2% 1 0 0 true false 67,4 55,0% 
1 0 0 true true 169,4 61,2% 5 0 0 false true 67,6 54,8% 
3 0 0 false true 169,4 61,2% 3 0 0 true false 67,8 55,1% 
6 0 0 false true 169,6 61,2% 3 0 0 true true 67,8 54,8% 
0 3 0 false false 169,7 57,3% 4 0 0 true false 67,9 55,0% 

Table 20: Best five parameter-tuples for Grizzly and the RIP Worker 
 
Appendix 6 shows the fifty “best” parameter-tuples and the produced clustering result for 
Grizzly and the RIP Worker. The tuples are sorted ascending according to the EdgeMoJo 
value. Note that, even though a large number of tuples are shown, this does not necessarily 
include the optimal parameter-tuple (assuming such a tuple exists). The reason for this is that 
only a subset of the search space has been investigated.  
 
For the tuples that lead to a good clustering it is difficult to distinguish trends. The presence of 
parameter-tuples with zero for the numeric parameters indicates which types of relationships 
are important for the clustering result and which are not. When considering the best fifty 
parameter-tuples for Grizzly, tuples that have pwa=0 also have pwg=0. For the RIP Worker 
several tuples with pwa=0, but none with pwg=0 are present in the top fifty. So in both cases 
no tuples with pwg=0 and pwa∫0 are present in the top fifty. This indicates that ignoring the 
generalizations while taking the associations into account does not lead to a good clustering 
result. In other words, if the associations are used the generalizations must be used too. 
 
With respect to the two boolean parameters (pc and pi) no trends can be distinguished. In the 
best fifty parameter-tuples all four possible combinations are represented equally.  
 
For the parameter-tuples that lead to a poor quality clustering a clear trend is visible; for both 
Grizzly and the RIP Worker, the parameter-tuples with pwd=0 give the worst clustering result. 
Any parameter-tuple with pwd∫0 gives a better clustering result than the same parameter-
tuple with pwd=0. This means that ignoring the dependencies leads to a poor quality 
clustering. Recall that the architects consulted for the reconstruction of the architecture of the 
simple-blackboard application considered dependencies to be the least important 
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architectural-indicator. Instead, most of them based their decomposition on functional criteria. 
The unexpected importance of dependencies for the clustering result can be explained in two 
ways: 
1. Ignoring the dependencies leaves many classes without any connection to other classes 

(unconnected classes). These classes are then placed in the “unconnected classes” 
subsystem, which is probably not the right choice.  

2. The presence and number of dependencies reflects the functional relations between the 
classes better than the associations and generalizations do. 

 
If the first explanation holds, ignoring the dependencies must increase the number of 
unconnected classes much more than ignoring the other relationship-types. Table 21 shows 
the number of unconnected classes and the number of classes that are only connected with 
relations of the tree types, both for Grizzly and the RIP Worker. Observe that the number of 
unconnected classes in both subsystems is about the same. In the RIP Worker the number of 
classes that are only connected with dependency relations is relatively high compared to the 
other relationship types. But for Grizzly this is not the case; much more classes are only 
connected with a generalization than with a dependency. This means that the first explanation 
for the importance of the dependencies for the clustering result does not hold.  
We therefore assume that dependencies are so important for the clustering result because 
they reflect the functional relations between the classes better than the other relationship- 
types. 
 

Type of classes Grizzly RIP Worker 
Unconnected 6 7 
Only connected with dependency 4 19 
Only connected with association 4 1 
Only connected with generalization 9 3 

Table 21: Connectivity of classes in Grizzly and the RIP Worker 
 
Because no single best parameter-tuple could be identified it was decided to use a set of 
tuples instead of a single one. Recall that three different types of clusterings are performed; of 
one version only, and a class-relations-intersection and class-relations-union of two versions. 
Of these, the last produces the largest module dependency graph and therefore takes the 
longest to cluster. As can be seen in Table 25, this clustering takes almost one hour. Since 
each parameter-tuple leads to ten clusterings, we decided to test forty parameter-tuples on 
the Océ Controller.  
The overlap between the set of best tuples for Grizzly and for the RIP Worker is very small. In 
fact, the set of twenty tuples that lead to the best clustering result for each of them are 
disjoint. We therefore decided to use the union of these two sets, leading to forty tuples to 
test. 

7.4 Results of architectural-clustering case study 
Now that a sub-optimal set of parameter-tuples has been identified the Océ Controller is 
clustered. The same procedure as described above is followed, where for every parameter-
tuple ten clusterings are generated and the average quality is determined. To avoid basing 
conclusions on a single case, the architectures of the last two versions of the Océ Controller, 
7d and 8a, are reconstructed. 
 
The paragraphs below describe the results of these experiments. Paragraph 7.4.1 describes 
the results when clustering a module dependency graph that is based on a single version. 
Paragraph 7.4.2 describes the results when information from multiple versions is used. 

7.4.1 Result when clustering one version 
Table 22 shows the five parameter-tuples that, according to the EdgeMoJo metric, produced 
the best clusterings for version 7e (left) and 8a (right) of the Océ Controller. Recall that we 
use the EdgeMoJo metric to compare the clustering result to the result of a manual 
architecture reconstruction. So the parameter-tuples in Table 22 are those that produce 
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decompositions that come closest to a manually reconstructed architecture. Table 32 and 
Table 33 in Appendix 7 show the results for all forty tested parameter-tuples.  
 

Version 7e Version 8a 
pwa pwg pwd pc pi Edge 

MoJo 
MoJo 

Quality
pwa pwg pwd pc pi Edge 

MoJo 
MoJo 

Quality
4 6 1 true true 1.639,4 60,5% 4 6 1 true true 1.477,1 62,5% 
1 4 1 true true 1.644,9 60,5% 2 1 2 true false 1.481,1 62,3% 
1 5 5 true true 1.646,1 60,2% 6 3 4 true false 1.481,3 62,5% 
1 1 5 true false 1.646,8 60,3% 1 4 3 false false 1.483,8 62,4% 
2 5 5 false false 1.648,4 60,4% 2 3 5 false true 1.484,2 62,3% 

Table 22: Best five clusterings for version 7e and 8a of the Océ Controller 
 
As shown in Table 22 a MoJoQuality of 60,5% was achieved for version 7e of the Océ 
Controller. The best clustering for version 8a had a MoJoQuality of 62,5%. Because in both 
cases the MoJoQuality for the best parameter-tuples exceeds 60% we consider these 
decompositions good starting points for manual refinement (see paragraph 7.1). Hence, these 
results confirm hypothesis H3. For both versions the parameter tuple (4,6,1,true,true) 
achieved the best clustering. Although it is tempting to conclude that this is the optimal 
parameter-tuple, this is probably a coincidence. Recall from Table 20 that for Grizzly and the 
RIP Worker different parameter-tuples led to the best clustering result. 
 
To confirm hypothesis H4 the EdgeMoJo metric is used. This means that the addition of 
information from older versions must produce decompositions with an EdgeMoJo value that is 
lower than 1.639,4 for version 7e and lower than 1.477,1 for version 8a.  
 

 
Figure 40: Example of a decomposition the clustering produced for version 8a 

 
It is not possible to describe the produced decompositions completely in this thesis. To 
illustrate them, Figure 40 shows an example of a decomposition the clustering produced for 
version 8a with the parameter-tuple (4,6,1,true,true). This decomposition has a MoJoQuality 
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of 62% and an EdgeMoJo value of 1489. This means that this decomposition has 
approximately the same quality as the average shown in Table 22. In the view blue squares 
denote classes and yellow ones subsystems. The red, blue and green edges denote 
association, generalisation and dependency relations between classes respectively. Observe 
that the edges, especially the dependencies, obfuscate the view slightly. In Shrimp users can 
zoom in on subsystems to get a better view. In Figure 40 one subsystem is enlarged to mimic 
this, which is illustrated by the dotted lines. In the figure the names of several classes are 
shown in labels that refer to the class they are placed in. Labels that touch multiple classes 
refer to the class in the upper left corner. 
 
Figure 41 shows the expert decomposition of version 8a. Observe that this decomposition 
contains fewer subsystems than the decomposition in Figure 40 but these are generally 
larger. The subsystem that matches the one zoomed-in on in Figure 40 is also enlarged here. 
Observe the differences between the two decompositions. For example ::Contradiction and 
::JobState are placed in a separate subsystem. 
 

 
Figure 41: Expert decomposition of version 8a of the Océ Controller 

7.4.2 Result when clustering with multiple versions 
The “Combining version information” section in paragraph 7.2.1 describes the class-relations-
intersection and class-relations-union operations for combining two models of different 
versions of a system. Recall from the same section that the internal structure of software is 
usually not decreasing monotonically. Refactorings that increase it again cause this. In order 
to prevent basing our conclusions on a single case we decided to combine the two 
reconstructed versions with two other versions, namely the first (version 1), and the version 
released before the one of which the architecture is reconstructed. This leads to four different 
version combinations for both the class-relations-union and the class-relations-intersection. 
We leave the testing of other combinations as future work. 

Class-relations-intersection 

Class-relations-intersection with first version 
Table 23 shows the five parameter-tuples that produced the best clusterings for the class-
relations-intersection of the two versions, 7e and 8a, with version 1. Table 34 and Table 35 in 
Appendix 7 show the results for all forty parameter-tuples. 
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Version 7e with 1 Version 8a with 1 
pwa pwg pwd pc pi Edge 

MoJo 
MoJo 

Quality
pwa pwg pwd pc pi Edge 

MoJo 
MoJo 

Quality
0 0 2 false false 1.223,3 73,7% 0 0 6 true false 950,5 78,1% 
0 0 1 true false 1.229,5 73,7% 0 0 1 true false 958,0 78,1% 
0 0 6 true false 1.266,1 73,3% 0 0 2 false false 980,9 77,8% 
1 5 6 false true 1.286,6 72,3% 0 1 1 true false 1.006,3 76,8% 
1 5 5 true true 1.293,5 72,0% 1 6 4 true true 1.006,7 76,7% 

Table 23: Best five clusterings for the class-relations-intersection with version 1 
 
The class-relations-intersection of version 7e and 1 produced decompositions with an 
EdgeMoJo between 1223,3 and 1398,0. The MoJoQuality varied between 73,7% and 70,9%. 
For version 8a the EdgeMoJo varied between 950,5 and 1126,0, and the MoJoQuality 
between 78,1% and 75,5%.  
Compared to the clustering based on the versions alone this is a significant quality 
improvement. The best tuple with the class-relations-intersection of version 7e and 1 has an 
EdgeMoJo value that is 25% lower than the best tuple when clustering 7e alone (from 1.639,4 
to 1223,3). For version 8a the EdgeMoJo improved with 36% (from 1477,1 to 950,5).  
For the parameter-tuples that lead to the worst clustering result, the class-relations-
intersection with version 1 leads to a similar quality improvement, namely of 21% and 32% for 
version 7e and 8a respectively.  
 
From this we conclude that basing the clustering on the class-relations-intersection with 
version 1 leads to a significantly better clustering. This confirms hypothesis H4 (see page 80).   

Class-relations-intersection with previous version 
Table 24 shows the five parameter-tuples that produced the best clusterings for the class-
relations-intersection of the two versions, 7e and 8a, with the version released before them 
(7d and 7e respectively). Table 36 and Table 37 in Appendix 7 show the results for all forty 
parameter-tuples. 
 

Version 7e with 7d Version 8a with 7e 
pwa pwg pwd pc pi Edge 

MoJo 
MoJo 

Quality
pwa pwg pwd pc pi Edge 

MoJo 
MoJo 

Quality
6 2 1 true true 1.642,6 60,2% 6 1 6 false true 1.642,6 59,1% 
1 5 5 true true 1.644,8 60,3% 4 6 2 false true 1.644,7 59,0% 
3 3 4 true true 1.646,9 60,4% 2 4 3 false true 1.649,1 59,1% 
1 5 2 false true 1.651,3 60,3% 6 5 4 false true 1.651,2 59,0% 
4 4 3 false false 1.652,0 60,1% 3 3 1 false false 1.652,3 58,9% 

Table 24: Best five clusterings for the class-relations-intersection 
with the previous version 

 
The class-relations-intersection of version 7e and 7d produced decompositions with an 
EdgeMoJo between 1.642,6 and 1.804,1. The MoJoQuality varied between 60,2% and 
57,4%. For version 8a the EdgeMoJo varied between 1.642,6 and 1.811,8, and the 
MoJoQuality between 59,1% and 56,0%.  
These results are similar to the results achieved when using only information from the version 
of which the architecture is reconstructed. Recall that in that case for version 7e the 
EdgeMoJo value was 1.639,4 to 1.778,7, which is similar to the result achieved here. 
Clustering version 8a with only information from that version achieves decompositions with an 
EdgeMoJo value between 1.477,1 and 1.661,4, which is slightly better than the result 
achieved here. The MoJoQuality metric shows the same pattern. This means that basing the 
clustering on the class-relations-intersection with the previous version does not lead to a 
better clustering result. 
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Class-relations-union 

Class-relations-union with first version 
Table 25 shows the clustering results for the five best clusterings of the class-relations-union 
of version 8a and 1. Table 38 in Appendix 7 shows all forty tested parameter-tuples. 
 

pwa pwg pwd Pc pi Edge  
MoJo 

MoJo 
Quality

3 3 4 true true 1.458,9 62,9% 
4 4 3 false false 1.459,5 62,9% 
3 6 1 false false 1.461,2 62,7% 
1 4 3 false false 1.461,6 62,8% 
6 5 4 false true 1.462,3 62,7% 

Table 25: Best five clusterings for the 
class-relations-union of version 8a and 1 

 
The clustering of the class-relations-union of version 8a and 1 achieved an EdgeMoJo value 
between 1458,9 and 1619,8. In the case where version 8a was clustered alone the 
EdgeMoJo was between 1468,3 and 1661,4. This means that the class-relations-union does 
not lead to an improvement of the quality of the clustering. The MoJoQuality for the class-
relations-union lies between 62,9% and 59,9%, which is also comparable to the result 
achieved when clustering with version 8a alone (62,6% to 59,3%). 

Class-relations-union with previous version 
Table 26 shows the clustering results for the five best clusterings of the class-relations-union 
of version 8a and 7e. Table 39 in Appendix 7 shows all forty tested parameter-tuples. 
 

pwa pwg pwd pc pi Edge  
MoJo 

MoJo 
Quality

4 4 3 false false 1.458,5 62,7% 
6 3 4 true false 1.466,8 62,6% 
4 6 1 true true 1.468,5 62,7% 
6 1 6 false false 1.468,6 62,5% 
3 6 1 false false 1.469,4 62,6% 

Table 26: Best five clusterings for the 
class-relations-union of version 8a and 7e 

 
The clustering of the class-relations-union of version 8a and 7e achieved an EdgeMoJo value 
between 1458,5 and 1622,2. Similar to the class-relations-union with version 1, this is 
comparable to the results when clustering version 8a alone (EdgeMoJo between 1468,3 and 
1661,4). The MoJoQuality metric confirms this. It now has a value between 62,7% and 59,8%, 
which is similar to the value achieved when clustering with version 8a alone (62,6% to 
59,3%). 
 
This leads to the conclusion that combining two versions with the class-relations-union 
operator does not lead to an improvement of the clustering result. We therefore decided not to 
test other combinations of versions. 

7.4.3 Observations 
The quality of the decompositions our architectural clustering method produced is relatively 
good in the sense that they approach the result of a manual architecture reconstruction 
relatively well. In our experiments where the architecture of two versions of the Océ Controller 
was reconstructed the produced decompositions had a MoJoQuality of 60,5% and 62,5% 
respectively. This exceeds the goal of 60% set in paragraph 7.1 and hence confirms 
hypothesis H3.  
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Incorporating information from other versions in the clustering process improved the 
clustering result in some cases: 
• Class-relations-intersection: 

o With the first version: improvement of about 20% to 35%. 
o With the previous version: no improvement. 

• Class-relations-union: 
o With the first version: no improvement. 
o With the previous version: no improvement. 

This confirms hypothesis H4. 
 
The architectural-clustering workbench uses Sniff+ to extract facts from the source code. 
Sniff+ proved to be a reliable and stable fact extractor. The Sniff API caused some problems 
but these could be circumvented in most cases. The only situation where this was not the 
case was with associations that were based on C++ templates. Because of the low number of 
these associations in the Océ Controller this had little impact on the clustering result however. 
 
The workbench uses Bunch to cluster the classes that were extracted from the source code. 
To our knowledge Bunch has not been used to cluster object-oriented software before. 
Considering the quality of the decompositions our workbench produced we conclude that this 
is no problem. 
 
In the experiment the expert decomposition was constructed with a two-step approach: 
1. Reconstruct an approximation of the expert decomposition based on the structure of the 

source-tree.  
2. Refine this approximation using architectural and design documentation, as well as 

information from the system’s architects.  
 
Recall that our approach assumes that an architect will manually refine the produced 
decomposition, which is comparable to step 2 above. This raises the question if our clustering 
method achieves better decompositions than the source-tree based architecture 
reconstruction. The MoJoQuality of the latter decomposition is 91%, which is better than the 
results our method achieved (best MoJoQuality was 78%). This indicates that the structure of 
the source-tree provides valuable information for architecture reconstruction.  
The ACDC clustering algorithm, which is described in paragraph 6.2.3, also uses information 
from the source-tree in the clustering process. It clusters procedural code, using information 
of relations between source code entities (e.g. files or procedures) and of the source-tree 
itself. However, its decompositions have a MoJoQuality of around 60%, which is comparable 
to the quality of the results our method achieved. The high quality of the decomposition 
created from the source-tree of the Océ Controller can be explained in two ways; either the 
algorithm we use to create a decomposition from the source-tree is much better than ACDC, 
or the source-tree of the Océ Controller reflects the architecture relatively well. We speculate 
that the latter is the case. Nevertheless, incorporating source-tree information in the clustering 
process seems to have the potential to improve the quality of the clustering result. Due to time 
limitations we cannot explore this further and have to leave this as future work.  

Execution times 
All performance figures described in this chapter are measured on the test platform of which 
the characteristics are shown in Table 27.  
 

Processor Pentium 4; 2,0 GHz 
Memory 2 GB 
Operating system Windows 2000 SP4 
Java 1.4.2_06 
Sniff+ 4.2 CP2  
MySQL 4.1.8-nt 
Bunch 3.3.6 
Shrimp 2.0 build 2 
Rigi 6.0, version 2-Oct-2003

Table 27: Test system characteristics 
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To speed up the measurements, a second PC has been used for some calculations. During 
the clustering of the Océ Controller for example, each of the two available PCs processed 
about half the set of parameter-tuples. This second PC has the same characteristics as listed 
in Table 27, but with a 2.8 GHz Pentium 4 processor instead. 
 
The execution times to cluster Grizzly and the RIP Worker are described in the “Grizzly & Rip 
Worker” section in paragraph 7.3.2. Table 28 shows some representative examples of the 
time needed to execute the essential steps of the architectural clustering process for the Océ 
Controller. All values are measured in wall-clock time. 
 
Observe in Table 28 that the fact extraction and subsequent Sniff Import take a lot of time. 
This confirms our assumption in paragraph 7.2.2 that led to the use of a database to store the 
extracted facts. About half of this time is spent creating Sniff’s internal meta-data repository 
and parsing the source code. The other half is spent importing this information in the 
database. Both need to be done only once for every analysed version. Note that building the 
complete Océ Controller from source code takes about one to two hours on our test platform, 
which is about one order less. 
Note also the times needed to cluster version 8a alone, and the class-relations-intersection 
and -union (0:18, 0:11 and 0:58 respectively). These values are approximately proportional to 
the size of the respective module dependency graphs.  
 

Task Time  
(hh:mm) 

Fact extraction of version 8a 
(Sniff+ parsing and import in database) 21:19 

Clustering version 8a 
(Bunch Export, Clustering and Bunch Import) 0:18 

Clustering class-relations-intersection of version 8a and 1
(Bunch Export, Clustering and Bunch Import) 0:11 

Clustering class-relations-union of version 8a and 1 
(Bunch Export, Clustering and Bunch Import) 0:58 

MoJo calculations for version 8a 0:05 
Visualization version 8a 
(RSF Export and loading in Shrimp) 0:05 

Table 28: Execution times for the Océ Controller (wall-clock time) 
 
The ten-clusterings cycle described in paragraph 7.3.2 combines several of these steps. 
Table 29 shows the execution times of the executed ten-clusterings cycles. The class-
relations-union of version 7e with the first and the last version have not been measured. 
These times are marked “n.m.” 
 

Time (hh:mm) Task 
7e 8a 

One version 2:58 3:11 
Class-relations-intersection with first version 1:01 1:02 
Class-relations-intersection with previous version 3:03 2:42 
Class-relations-union with first version n.m. 4:41 
Class-relations-union with previous version n.m. 3:34 

Table 29: Execution times of the ten-clusterings cycles (wall-clock time) 

Problems encountered 
The previous paragraphs mention several problems we encountered during this case study: 
• The Sniff API does not export association relations defined with template-based variables. 

Further, the Sniff API exports namespaces with or without the parent namespaces in an 
unpredictable manner. Both issues are described in the “Sniff and Sniff Import” section in 
paragraph 7.3.1. 
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• The models extracted from the source code of the Océ Controller contain classes that are 
not involved in any of the extracted relations. Because they are not connected to other 
classes, the clustering algorithm cannot classify them. The workbench handles this by 
placing these classes in a special subsystem for “unconnected classes”, as is described 
in the “Bunch Export, Bunch & Bunch Import” section paragraph 7.2.2. 

• The source-tree of the Océ Controller contains multiple classes with the same name and 
namespace. Examples are stubs, test tools and experimental versions of subsystems. In 
cases where no other identifiers are available to identify the classes this causes 
problems. This is handled by using the class-name and source-file to identify classes, as 
is described in the “Sniff+ & Sniff Import” section in paragraph 7.2.2. 

 
The size of the Océ Controller caused several problems. First of all, MySQL could only 
execute the queries after tuning it for large databases. Second, a complete cycle of fact 
extraction, clustering and result assessment or visualization took a significant amount of time. 
For one clustering cycle this is no problem, but when a large number of clustering cycles are 
performed it is. Effectively, this limits the number of different clusterings that can be created, 
and hence the number of different parameter-tuples that can be tested. Note that in practical 
clustering-based architecture reconstruction cases only one, or a limited number of 
clusterings are generated. Therefore this limitation applies mainly to projects experimenting 
with different clustering approaches or parameters, and not to practical architecture 
reconstruction cases. 

7.5 Conclusions of the architectural-clustering case study 
This case study aimed to investigate the following hypotheses: 
 

H3: Automatic clustering-based architecture reconstruction methods can 
reconstruct an architectural view of the Océ Controller from its source code 
that is a good starting-point for manual refinement. 

 
H4: Utilizing information obtained from source code of older versions can improve 

the quality of the output of architectural clustering algorithms for more recent 
versions of a system. 

 
Paragraph 7.1 quantifies a decomposition architectural clustering produced as good if it has a 
MoJoQuality of at least 60% relative to the result of a manual architecture reconstruction.  
 
To confirm hypothesis H3 and H4 an architecture reconstruction workbench has been 
constructed that implements clustering-based architecture reconstruction. The implemented 
approach is based on information that is always available from object-oriented source code 
and does not assume the availability of any other information. 
The architecture of two versions of the Océ Controller has been reconstructed with this 
workbench. The resulting decompositions have been compared to expert decompositions to 
compare their quality.  
 
This leads to the following conclusions: 
• Architectural clustering based on structural relations between the classes can reconstruct 

architectural views of object-oriented software that are useful for software maintenance. 
• The execution time is such that clustering the complete Océ Controller is feasible in 

practice. 
• Sniff+ can be used to extract facts from the source code of the Océ Controller with 

reasonable reliability and accuracy. 
• Bunch can also cluster object-oriented software, and not just procedural software. 

Further, Bunch can handle the use of different weights for different types of relations 
instead of using the same weight for all relations. 

• The weight of the relationship-types significantly affects the quality of the clustering result. 
However, in our experiments there was no single combination of weights that produced 
the best clusterings for all analysed pieces of software. 
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• Dependency relations are very important for the quality of the clustering result. In all 
experiments ignoring the dependencies led to a reduction of the clustering result’s quality, 
regardless of the weight assigned to the other relationship-types. 

• The quality of the clustering result improves if the clustering is based on those class-
relations that are also present in the first version of the software (class-relations-
intersection with version one). If instead of the first the previous version is used no 
improvement is achieved. This might be due to the fact that in the previous version the 
architecture is deteriorated much further than in the first version. 

• Architectural clustering based on the class-relations present in the clustered version or 
the first one (class-relations-union) does not lead to better clustering results. The same 
holds for the combination with the previous version instead of the first. 

 
From this case study we conclude that architectural clustering reconstructs an architecture 
from the source code of the Océ Controller that is a good starting point for manual refinement. 
In this refinement some small adjustments need to be made, such as the moving of some 
classes to another subsystem. This confirms hypothesis H3. We further conclude that basing 
the clustering on the class-relations that are also present in the first version of the system 
leads to a better clustering result. This confirms hypothesis H4.  
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8 Conclusions and future work 

8.1 Conclusions 
This thesis started with the following research questions: 
1. Which methods are available for architecture reconstruction? 
2. Can these methods be used to reconstruct the architecture of the Océ Controller? 
3. How good are the results? 
4. How can these methods be improved? 
 
In literature several methods for architecture reconstruction are described, including manual 
reconstruction, pattern detection, architectural clustering and architectural slicing. For large 
software systems completely manual methods are not practical. Of the automatic methods, 
pattern detection and architectural clustering are the most prominent ones. We have applied 
these two methods to the Océ Controller in two case studies.  

8.1.1 Pattern detection 
In literature pattern detection methods that are based on a pattern library have been applied 
frequently and their properties are relatively well known. A disadvantage is that they require 
upfront knowledge on the used patterns and their precise implementation. Implementation 
variations make the latter difficult to specify. The pattern detection method we applied is 
based on mathematical Formal Concept Analysis and does not require a pattern library. It 
detects structural patterns in two subsystems of the Océ Controller.  
 
The method proved to be able to detect frequently used design structures in source code. 
However, even the detection of relatively simple structures in relatively small pieces of source 
code required a lot of calculations. Since this is inherent to the used algorithms, the 
application of this technique to reconstruct architectural views of large object-oriented 
systems, and more specific the Océ Controller, is not considered practical. It is possible to 
detect design patterns in its subsystems though. These have a size of about five to ten 
percent of the complete system. Note that the method detects structural constellations of 
classes, and not named design patterns such as those [Gamma et al, 1995] described.  
 
Besides performance issues, the reduction of the large number of similar patterns in the 
output is also important. Based on the complexity of the patterns we filtered the output, but 
the results show the more advanced filtering is necessary in order for the method to be useful. 

8.1.2 Architectural clustering 
Architectural clustering uses mathematical clustering techniques to group closely related 
source code elements into suitable higher-level abstractions. In the context of architecture 
reconstruction it has mainly been applied to procedural code and only occasionally to object-
oriented software like the Océ Controller.  
 
In several experiments we have applied architectural clustering to reconstruct the architecture 
of two versions of the Océ Controller, using the Bunch tool. To our knowledge this tool has 
not yet been previously used to cluster object-oriented software. The experiments show that it 
is possible to reconstruct architectural views of large object-oriented software systems such 
as the Océ Controller with architectural clustering that are useful for software maintenance. 
Based on experiences reported in literature for procedural code we expected that these views 
required some manual refinement such as the relocation of some classes. Our experiments 
confirmed this, but also showed that the reconstructed views are good starting points for this 
process.  
 
In our experiments the clustering groups classes based on the structural relations between 
them. We distinguished three types of relations; associations, generalizations and 
dependencies. To our knowledge no research has been performed on how these types 
should be converted into the graph that is clustered, and which types are most important for 
the quality of the clustering result. We have experimented with several combinations of 
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relations, assigning different weights to each type. These experiments showed that the 
weights have a significant effect on the quality of the clustering result. However, for each of 
the analysed pieces of software a different combination of weights produced the clustering 
that came closest to a manually reconstructed architecture. Despite this, all our experiments 
clearly showed that the dependencies are more important for the quality of the clustering 
result than associations and generalizations.  
 
The execution time of the clustering process is reasonable, but still substantial for the Océ 
Controller. On our test system it took about five to ten minutes. Extracting the structural 
information from the source code on the other hand takes a lot of time. On our test system it 
took over twenty hours. This is due to the creation of Sniff’s meta-data repository, parsing the 
sources and transferring this information to the workbench’s database. Usually this is only 
done once. If multiple fact extractions are necessary incremental fact extraction could reduce 
the total time significantly. Note that this is a fully automatic process that does not require 
user-interaction.  
 
If multiple versions of a system have been released the clustering process can be based on 
information from multiple versions. To our knowledge architectural clustering case studies 
thus far only used information from a single version. We have experimented with several 
ways to incorporate information from multiple versions in the clustering process. In these 
experiments we observed the following behaviour: 
• In cases where the clustering was only based on the structural relations that were also 

present in the first version the clustering result had a better quality compared to when 
only information from the reconstructed version was used.  

• Basing the clustering on the relations that are present in the reconstructed version and 
the version released before it did not lead to a better clustering result. This might be due 
to the fact that in the previous version the architecture has deteriorated much more than 
in the first version. 

• The clustering can also be based on the relations that are present in the reconstructed 
version or another version. However, neither the combination with the first version, nor 
the combination with the previous version led to an improved clustering result compared 
to the result obtained when using only information from the reconstructed version. 

8.1.3 Concluding remarks 
We therefore conclude that pattern detection without a pattern library is not practical for the 
complete Océ Controller. Architectural clustering on the other hand appears to be a useful 
technique for reconstructing architectural views of this system. Despite that this technique 
works completely automatic, manual refinement of the results is still needed though. 

8.2 Future work 

8.2.1 Pattern detection 
In the pattern detection case study described in chapter 5 many patterns have been found 
that are highly similar to each other. This makes it difficult to use this information for program 
understanding. In paragraph 5.2.4 we have described several filters to remove uninteresting 
patterns from the output, but these are not sufficient. If the method is used in practice better 
filtering is required. It might also be possible to group similar patterns into groups and show a 
single pattern of each group to the user. The similarity of patterns could be based on the 
number of edges that must be added and removed to transform them into each other, as is 
suggested in the “Quality of the results” section in paragraph 5.4.3. 
 
Finding frequently used design constructs in the source code essentially finds frequently 
occurring subgraphs in the class graph. An alternative to the pattern detection used in chapter 
5 might be to use graph compression algorithms that are based on the detection of recurring 
subgraphs. We have built a small prototype that uses the Subdue algorithm [Jonyer et al, 
2001]. This algorithm creates a list of recurring subgraphs and replaces all occurrences of 
these subgraphs with references to this list. However, when this algorithm is used for pattern 
detection the fact that the algorithm looks for perfectly identical subgraphs causes problems. 
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The intertwining of structures often encountered in practice caused this prototype to find no 
patterns at all in two subsystems of the Océ Controller36. Lossy graph compression algorithms 
might introduce the required fuzziness, but due to time limitations we were not able to explore 
this further. Note that the FCA-based approach described in chapter 5 does not have this 
problem.  

8.2.2 Architectural clustering 
The clustering described in chapter 6 assigns names to subsystems that are based on the 
cluster-names Bunch generated. These names have little meaning to humans and should be 
replaced with meaningful names.  
 
The clustering workbench reconstructs the architecture from scratch. Adapting the workbench 
such that the clustering starts from a user-specified state allows users to incorporate their 
knowledge of the architecture. This has the advantage that the workbench can more easily be 
applied to software of which the architecture is partially known. 
 
Our architectural clustering uses several user-specified parameters that affect the information 
on which the clustering is based. As described in paragraph 7.3.2 and 7.4 our experiments 
show that these have a significant effect on the quality of the clustering result for several 
cases. It is not clear however which values in general achieve the best clustering results. We 
have explored many different values, but leave many others unexplored. Further research is 
required on this matter. 
 
We experimented with combing structural information of multiple versions to improve the 
quality of the clustering result. Although several version-combinations have been tested, 
many more combinations are imaginable. Testing these other combinations might reveal 
combinations that lead to even better clusterings.  
 
Our clustering approach is based on structural information about relations between classes. 
The approach does not use information about the structure of the source-tree in which the 
classes are defined. In the case of the Océ Controller the structure of the source tree seems 
to represent information that can be used to improve the quality of the clustering further, as is 
suggested in paragraph 7.4.3. Besides this, dynamic information from for example traces 
could also be beneficial. 
 
In the “Simple-blackboard application” section in paragraph 7.3.2 an experiment is described 
that aimed to find an expert decomposition of a small existing program. In the experiment ten 
architects individually decomposed an architecture. Surprisingly all architects produced a 
different decomposition, giving a set of decompositions from which the expert decomposition 
needed to be derived. We have experimented with several methods to achieve this, but were 
not able to explore this thoroughly due to time limitations. The “Simple-blackboard application” 
section describes several ideas that seem worth investigating. 

                                                      
36 This refers to Grizzly and the RIP Worker subsystems. 
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Appendix 2 Schema of fact extraction output 
This appendix describes the XDR schema [XDR, 2005] of the output of the “fact extraction” 
module of the pattern detection prototype. The “context generation” module takes XML 
satisfying this schema as input. 
 
<?xml-stylesheet type="text/xsl" href="xdr-schema-NoSource.xsl"?> 

<Schema xmlns="urn:schemas-microsoft-com:xml-data" 
xmlns:dt="urn:schemas-microsoft-com:datatypes"> 

<ElementType name="Model" content="eltOnly" order="one"> 
  <element type="Classes"/> 
  <element type="Relations"/> 
</ElementType> 

<ElementType name="Classes" content="eltOnly" order="one"> 
  <element type="Class"/> 
</ElementType> 

<ElementType name="Class" order="many"> 
  <attribute type="xmi.id"/> 
 <attribute type="name"/> 
</ElementType> 

<ElementType name="Relations" content="eltOnly" order="one"> 
  <element type="A"/> 
 <element type="I"/> 
 <element type="C"/> 
</ElementType> 

<ElementType name="A" order="many"> 
 <attribute type="C1"/> 
 <attribute type="C2"/> 
</ElementType> 

<ElementType name="I" order="many"> 
 <attribute type="C1"/> 
 <attribute type="C2"/> 
</ElementType> 

<ElementType name="C" order="many"> 
 <attribute type="C1"/> 
 <attribute type="C2"/> 
</ElementType> 

<AttributeType name="C1" dt:type="string"/> 

<AttributeType name="C2" dt:type="string"/> 

<AttributeType name="xmi.id" dt:type="string"/> 

<AttributeType name="name" dt:type="string"/> 

</Schema> 
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Appendix 3 Galicia import schema 
This appendix describes the import format of Galicia for binary contexts. The “context 
generation” module of the pattern detection prototype produces XML that satisfies this XDR 
schema [XDR, 2005]. 
 
<?xml-stylesheet type="text/xsl" href="xdr-schema-NoSource.xsl"?> 

<Schema xmlns="urn:schemas-microsoft-com:xml-data" 
xmlns:dt="urn:schemas-microsoft-com:datatypes"> 

<ElementType name="BIN" content="eltOnly" order="one"> 
  <element type="OBJS"/> 
  <element type="ATTS"/> 
 <element type="RELS"/> 
</ElementType> 

<ElementType name="OBJS" content="eltOnly" order="one"> 
  <element type="OBJ"/> 
</ElementType> 

<ElementType name="OBJ" order="many" content="textOnly"> 
  <attribute type="id"/> 
</ElementType> 

<ElementType name="ATTS" content="eltOnly" order="one"> 
  <element type="ATT"/> 
</ElementType> 

<ElementType name="ATT" order="many" content="textOnly"> 
 <attribute type="id"/> 
</ElementType> 

<ElementType name="RELS" content="eltOnly" order="one"> 
  <element type="REL"/> 
</ElementType> 

<ElementType name="REL" order="many"> 
 <attribute type="idObj"/> 
 <attribute type="idAtt"/> 
</ElementType> 

<AttributeType name="id" dt:type="number"/> 

<AttributeType name="idObj" dt:type="number"/> 

<AttributeType name="idAtt" dt:type="number"/> 

</Schema> 
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Appendix 4 Galicia export schema 
This appendix describes the XML export format Galicia uses for concept lattices with an XDR 
schema [XDR, 2005].  
 
<?xml-stylesheet type="text/xsl" href="xdr-schema-NoSource.xsl"?> 
<Schema xmlns="urn:schemas-microsoft-com:xml-data" 
xmlns:dt="urn:schemas-microsoft-com:datatypes"> 

<ElementType name="LAT" content="eltOnly" order="one" model="closed"> 
 <attribute type="Desc"/> 
 <attribute type="type"/> 
  <element type="MINSUPP"/> 
  <element type="OBJS"/> 
  <element type="ATTS"/> 
  <element type="NODS"/> 
</ElementType> 

<ElementType name="MINSUPP" order="one" content="textOnly"> 
  <attribute type="id"/> 
</ElementType> 

<ElementType name="OBJS" content="eltOnly" order="one"> 
  <element type="OBJ"/> 
</ElementType> 
<ElementType name="OBJ" order="many" content="textOnly"> 
  <attribute type="id"/> 
</ElementType> 

<ElementType name="ATTS" content="eltOnly" order="one"> 
  <element type="ATT"/> 
</ElementType> 
<ElementType name="ATT" order="many" content="textOnly"> 
 <attribute type="id"/> 
</ElementType> 

<ElementType name="NODS" content="eltOnly" order="one"> 
  <element type="NOD"/> 
</ElementType> 
<ElementType name="NOD" order="many"> 
 <attribute type="id"/> 
  <element type="EXT"/> 
  <element type="INT"/> 
  <element type="SUP_NOD"/> 
</ElementType> 

<ElementType name="EXT" content="eltOnly" order="one"> 
  <element type="OBJ"/> 
</ElementType> 

<ElementType name="INT" content="eltOnly" order="one"> 
  <element type="ATT"/> 
</ElementType> 

<ElementType name="SUP_NOD" content="eltOnly" order="one"> 
  <element type="PARENT"/> 
</ElementType> 

<ElementType name="PARENT" content="eltOnly" order="one"> 
 <attribute type="id"/> 
</ElementType> 

<AttributeType name="id" dt:type="number"/> 
<AttributeType name="Desc" dt:type="string"/> 
<AttributeType name="type" dt:type="strng"/> 

</Schema> 
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Appendix 5 Architect decompositions 
This appendix describes the decompositions produced by ten architects and designers of the 
simple-blackboard application, which is described in paragraph 7.3.2. The decompositions are 
shown in a simplified version of the class diagram, which places the classes in the same way 
as Figure 39. The boxes around groups of classes denote the subsystems. In case a 
hierarchical decomposition was produced, the hierarchy is visualised through containment of 
the boxes. Besides the actual decomposition, the considerations that led to the decomposition 
are also described. 
 
1 Project organisation and class 

functionality were the primary 
criteria. Each team represents a 
subsystem that is testable in 
isolation (drivers/stubs). 
 
First split in blackboard and clients.
Three client-subsystems are 
identified, S1, S2, S3. Blackboard 
split in data and control part, S4 
and S5. Content1 and Content2 
are not part of a specific client, so 
they were added to S4.  
 

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1

S5S4

S3 S2

 No hierarchy needed. Only generalisation and inheritance are considered; no 
dependencies. 
 

2 Class functionality was the primary 
criterion. Three client subsystems 
are identified that are conceptually 
equivalent (S1, S2, S3). Each is an 
object KSx with helper objects. 
 
Blackboard is split in data and 
control part (S5 and S4).  
Content1 and Content2 are not part 
of a specific client. Because they 
are not related they are not placed 
together in a subsystem. Since 
they are small a separate 
subsystem for each is not  

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1 S2

S5

S4

S3

 necessary. Since they are related to the data they were added to S5. 
 

3 Inter-class relations and class 
functionality were the primary 
criteria. The priority of the relations, 
sorted from very important to 
unimportant, is: composition, 
inheritance, association, 
dependency. The last two were not 
considered while building the 
decomposition. 
 
Composition relations led to S1 
and S2. S3 implements 
comparable functionality. All client- 
related classes together form S4. 

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1

S7S6

S5 S4

S3

S2

 S6 is formed because of the inheritance relation with BlackboardContent. For functional 
reasons S6 and Blackboard together form S7. S5 contains the remaining class. 
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4 Initially a client-server view was 
applied and the role of the classes 
was considered. The blackboard 
classes represent the server and 
the others the clients. This led to 
S4 and S5.  
 
Next, all three clients are clients of 
the blackboard, and are not directly 
related to each other. Therefore S4 
is decomposed further into S1, S2, 
S3. 

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1

S4

S3

S2

S5

  
5 Main decomposition criteria were 

functionality, exchangeability and 
allocation to development teams.  
 
Initially a data (passive, S5), 
processing (active, S4) and 
remaining part (S6) are 
distinguished. Functional 
arguments led to S1, S2 and S3. 
These are exchangeable 
processing components.  
 
S5 is not split further.  

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2

S6

S5

S4

S3

S2S1

   
6 Class functionality was the main 

decomposition criterion.  
 
At the top level a division in generic 
(S8) and specific classes (S5) is 
made. S8 is split in a data (S7) and 
a processing part (S6). S5 is split in 
an I/O (S4) and a processing part 
(S2). S4 is further split in an input 
(S3) and an output part (S1).  
 

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S1

S8
S7

S6

S5
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7 The decomposition criteria were 

functional differences, generality, 
volatility and to a lesser extent size. 
Initial division in generic and 
specific parts. Volatile classes are 
placed together to isolate change. 
Small non-volatile parts that do not 
justify a separate subsystem are 
placed with generic parts. This led 
to S4 and S1, S2 and S3.  
S2 is not split because it is not very 
complex. S1 is split into S5 and S6 
because of the inheritance 
relationship; S5 apparently is a 
generic part 

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source
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C2
S6
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S3S2S1
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8 Development considerations and 
functional arguments were the 
main criteria. Subsystem 
boundaries are placed where well-
defined interfaces are desired. All 
three relation-types are considered 
equally important, but execution-
dependencies are more important 
than the other dependencies. 
 
A client (S5) and a data part (S6) 
are distinguished. Clients have 
relationships with almost 
everything except each other,  

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source

KSB

B1 B2

KSA

A2 A1

KSC

C3C1

C2
S2S1

S4

S3

S6

S5

 giving S1, S2 and S3. Content is simple, so part of S6. Clients have much interaction with 
KnowledgeSource, so separate subsystem (S4). Control could be part of S6 or S4. S4 is 
chosen. 
 
Alternative that was considered but not chosen: KSA, KSB and KSC form an interface to 
the data. If they are generic A1, A2, B1, B2. C1, C2 and C3 could be placed in a library. 
 

9 Functionality was the main 
criterion, together with the 
blackboard style. Subsystem 
decomposition in data, control and 
algorithm parts (S9 and S5, no 
division algorithm-control found). 
 
Three clients of data part found, 
S1, S2 and S3. In case of a client-
server relation the server defines 
the interface (unless there are 
many servers), so Content1 and 
Content2 are added to their 
producers (S1 and S2). S4 is put  

BlackboardBlackboard
Content

Content2 Content1 Control
Knowledge

Source
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B1 B2
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A2 A1
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C2
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S2
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S9

 separate since it contains a generic interface that is implemented by KSA, KSB and KSC. 
If its classes are large, S9 is split into S6, S7 and S8. 
 

10 Initial division in a generic (S6) and 
a specific (S5) part with 
KnowledgeSource and 
BlackboardContent as re-use 
interfaces. A blackboard structure 
with clients is recognised. 
 
Functional dependencies for clients 
led to three clients, S1, S2 and S3. 
All three relationship-types were 
taken into account. 
Content1 and Content2 are not 
associated with a single client, so 
they are added to special 
subsystem (S4). 
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Content2 Content1 Control
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Appendix 6 Clustering results for Grizzly & RIP Worker 
This appendix gives the fifty parameter-tuples that produced the best clustering results for 
Grizzly and the RIP Worker (see paragraph 7.3.2). Note that this does not necessarily include 
the optimal parameter-tuple because a subset of the search-space has been investigated. 
 
The columns labelled “pwa“,“pwg“,“pwd“,“pc“ and “pi“ contain the five user-specified parameters 
of the Bunch Export module. The values of the boolean parameters, pc, pi, are denoted as “T” 
and “F” for true and false respectively. The “MQ” and “EM” columns refer to the MoJoQuality 
and EdgeMoJo metrics respectively. The column labelled “AV” contains the average value of 
the metric for ten different clusterings. The column labelled “SD” contains the standard 
deviation for these clusterings. The parameter-tuples are sorted ascending according to the 
EdgeMoJo value. The left side of the table contains the best 25 tuples, and the right side the 
other ones. 

Grizzly 
MQ (%) EM MQ () EM pwa pwg pwd pc pi 

AV SD AV SD 
 pwa pwg pwd pc pi 

AV SD AV SD 
2 5 5 F F 69 1,5 102 8,0  1 1 6 T F 69 1,2 104 6,7 
1 3 2 F F 69 1,3 102 6,4  3 1 4 T T 68 1,6 104 8,4 
0 0 6 T F 70 1,8 102 8,9  3 1 6 T T 68 0,9 104 3,8 
2 3 5 F T 68 1,5 102 8,5  1 6 6 F F 68 0,9 104 4,8 
1 4 3 F F 69 1,1 103 6,0  4 4 1 T F 68 1,7 104 8,7 
3 6 5 F T 68 1,4 103 8,0  6 2 6 F T 69 1,2 104 6,4 
4 4 3 F F 68 1,2 103 7,6  4 1 4 T F 69 1,7 104 6,1 
3 2 4 F T 69 1,0 103 5,7  4 5 2 T T 68 1,4 104 6,7 
6 5 4 F T 69 0,9 103 6,7  5 6 2 F F 68 1,5 104 6,6 
1 2 3 F T 68 1,5 103 7,3  5 5 5 T F 69 1,1 104 4,2 
3 3 1 F F 68 1,3 103 6,3  5 6 2 T T 68 1,6 104 7,5 
6 2 5 F T 69 1,6 103 7,3  5 5 4 T T 68 1,5 104 7,4 
3 6 1 F F 69 1,0 103 3,7  6 4 3 F T 69 1,3 104 4,5 
0 0 2 F F 70 1,2 104 5,1  1 1 3 T F 69 1,5 105 6,8 
6 2 1 T T 69 0,9 104 6,3  6 4 1 T T 68 1,5 105 6,3 
1 5 5 T T 69 1,2 104 4,1  6 3 6 T F 68 1,5 105 7,5 
4 2 5 F F 69 0,9 104 5,8  4 6 6 T T 69 1,0 105 3,8 
6 1 6 F T 68 0,8 104 5,6  1 6 6 T F 68 1,1 105 8,6 
0 0 1 T F 70 1,3 104 5,4  6 1 2 T T 68 1,2 105 3,0 
2 1 2 T F 68 0,9 104 5,9  1 4 5 T T 69 1,7 105 5,3 
1 3 6 T F 69 1,5 104 4,7  5 2 5 T F 69 1,3 105 4,5 
2 1 2 F F 68 1,3 104 6,7  3 4 4 T T 68 1,6 105 6,3 
1 5 3 T F 69 1,3 104 6,9  2 1 5 T F 69 1,1 105 3,1 
2 6 3 T F 68 1,6 104 6,7  2 6 5 F F 69 0,9 105 3,1 
4 4 4 T T 68 1,1 104 5,0  1 1 6 F F 68 1,5 105 7,7 

Table 30: The fifty parameter-tuples that give the best clustering of Grizzly 
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RIP Worker 
MQ (%) EM  MQ () EM pwa pwg pwd pc pi 

AV SD AV SD  
pwa pwg pwd pc pi 

AV SD AV SD 
0 5 2 F F 66 2,1 43 1,6  5 5 4 T T 66 1,7 43 1,6 
2 4 3 F T 66 2,2 43 1,7  3 5 1 F F 66 2,4 43 2,1 
1 6 4 T T 67 2,6 43 2,0  0 4 1 F F 66 2,1 43 1,6 
1 5 2 F T 67 2,0 43 1,3  1 1 6 F T 66 2,3 43 1,9 
2 4 1 T F 66 2,9 43 1,8  5 2 3 T T 65 2,7 43 1,9 
1 4 1 T T 66 2,8 43 1,7  3 1 1 T F 66 2,7 43 2,0 
0 1 1 T F 66 2,3 43 2,3  3 2 4 T T 65 1,9 43 2,5 
1 5 6 F T 65 1,9 43 1,0  5 6 5 F F 65 1,8 43 1,2 
6 3 4 T F 66 2,0 43 1,4  5 3 3 F T 67 2,3 43 1,8 
1 1 5 T F 66 2,0 43 1,7  5 3 4 T F 66 1,7 43 1,2 
3 3 2 T T 66 2,3 43 2,2  2 5 2 T T 65 2,3 43 1,5 
3 3 4 T T 66 2,0 43 1,1  0 2 6 T F 65 2,1 43 1,3 
4 1 1 T F 66 2,5 43 1,9  2 4 2 T T 65 2,6 43 1,7 
4 4 4 T F 67 1,6 43 1,5  0 6 4 F F 66 1,9 43 2,6 
5 1 6 T T 65 2,4 43 1,4  2 4 4 F F 66 2,4 43 2,4 
6 1 6 F F 65 2,2 43 1,5  3 2 6 T F 66 3,1 43 3,7 
4 6 1 T T 66 2,0 43 1,3  4 4 2 T T 66 3,1 43 4,2 
4 5 4 T F 67 1,9 43 1,9  1 5 4 F F 66 2,4 43 2,1 
3 1 2 F T 66 3,0 43 2,6  3 3 3 T T 65 2,2 43 1,9 
4 6 2 F T 65 2,3 43 1,2  2 3 3 T T 66 2,6 43 2,3 
1 4 1 T F 66 2,6 43 1,7  3 6 6 F F 66 1,9 43 2,0 
0 1 3 T F 67 2,6 43 2,7  4 3 4 F T 66 2,3 43 2,4 
4 4 5 F F 67 2,4 43 3,0  0 2 4 T F 65 2,4 43 2,0 
2 1 2 F F 65 1,7 43 1,7  2 5 1 F T 65 1,8 43 1,2 
1 1 6 T F 66 1,8 43 1,2  0 2 5 F F 65 2,1 44 1,6 

Table 31: The fifty parameter-tuples that give the best clustering of the RIP Worker 
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Appendix 7 Clustering results for Océ Controller 
This appendix gives the clustering results for the Océ Controller (see paragraph 7.4), using 
the same notation as in Appendix 6. Note that this does not necessarily include the optimal 
parameter-tuple because a subset of the search-space has been investigated.  
 

MQ (%) EM  MQ (%) EM pwa pwg pwd pc pi AV SD AV SD  
pwa pwg pwd pc pi AV SD AV SD 

4 6 1 T T 61 0,6 1.639 18  4 6 2 F T 60 0,4 1.655 10 
1 4 1 T T 61 0,5 1.645 17  3 3 2 T T 60 0,2 1.655 7 
1 5 5 T T 60 0,6 1.646 24  4 1 1 T F 60 0,4 1.656 11 
1 1 5 T F 60 0,5 1.647 23  3 1 2 F T 60 0,5 1.656 20 
2 5 5 F F 60 0,5 1.648 17  4 4 4 T F 60 0,5 1.656 13 
1 5 6 F T 60 0,5 1.649 18  4 4 3 F F 60 0,4 1.657 12 
3 3 4 T T 60 0,4 1.649 23  6 2 1 T T 60 0,4 1.657 13 
5 1 6 T T 60 0,3 1.650 8  2 1 2 T F 60 0,3 1.657 19 
3 6 5 F T 60 0,6 1.650 17  2 3 5 F T 60 0,5 1.658 13 
6 5 4 F T 60 0,4 1.652 13  1 6 4 T T 60 0,5 1.659 16 
6 1 6 F T 60 0,6 1.652 15  1 4 3 F F 60 0,4 1.659 10 
3 2 4 F T 60 0,5 1.652 18  1 5 2 F T 60 0,4 1.660 14 
6 2 5 F T 60 0,3 1.653 10  4 2 5 F F 60 0,9 1.670 51 
2 4 3 F T 60 0,6 1.653 16  3 6 1 F F 60 1,4 1.670 63 
1 3 2 F F 60 0,5 1.653 18  3 3 1 F F 60 1,2 1.671 61 
6 3 4 T F 60 0,5 1.653 12  0 5 2 F F 59 2,3 1.721 97 
1 2 3 F T 60 0,4 1.654 8  0 1 1 T F 59 1,6 1.730 79 
2 4 1 T F 60 0,5 1.654 19  0 0 6 T F 58 0,3 1.773 15 
4 5 4 T F 60 0,5 1.654 16  0 0 1 T F 58 0,4 1.775 21 
6 1 6 F F 60 0,3 1.655 13  0 0 2 F F 58 0,4 1.779 15 

Table 32: Clustering result for version 7e of the Océ Controller 
 

MQ (%) EM  MQ (%) EM pwa pwg pwd pc pi AV SD AV SD  
pwa pwg pwd pc pi AV SD AV SD 

4 6 1 T T 62 0,5 1.477 30  3 3 1 F F 62 0,3 1.495 11 
2 1 2 T F 62 0,5 1.481 17  6 5 4 F T 62 1,7 1.500 84 
6 3 4 T F 62 0,5 1.481 18  3 6 5 F T 62 1,3 1.501 62 
1 4 3 F F 62 0,5 1.484 17  4 4 1 T F 62 0,9 1.502 57 
2 3 5 F T 62 0,4 1.484 13  1 1 5 T F 62 1,4 1.503 73 
1 5 6 F T 62 0,5 1.484 17  3 1 2 F T 62 1,1 1.504 66 
3 6 1 F F 62 0,5 1.484 13  1 6 4 T T 62 1,0 1.506 67 
3 3 2 T T 62 0,6 1.486 19  4 5 4 T F 62 1,6 1.513 89 
4 2 5 F F 62 0,7 1.486 17  2 4 1 T F 62 1,6 1.513 75 
6 2 5 F T 62 0,3 1.486 8  3 3 4 T T 62 1,2 1.514 73 
4 4 4 T F 62 0,6 1.486 17  6 1 6 F T 62 1,6 1.517 86 
4 6 2 F T 62 0,4 1.489 18  4 4 3 F F 62 1,5 1.518 90 
1 5 5 T T 62 0,4 1.489 21  1 4 1 T T 62 1,4 1.523 78 
5 1 6 T T 62 0,3 1.490 8  1 5 2 F T 61 2,2 1.530 125 
1 3 2 F F 62 0,3 1.490 12  0 5 2 F F 61 0,7 1.536 21 
3 2 4 F T 62 0,4 1.491 15  2 4 3 F T 61 1,8 1.540 97 
2 5 5 F F 62 0,5 1.492 17  0 1 1 T F 60 2,2 1.594 111 
1 2 3 F T 62 0,4 1.493 16  0 0 2 F F 60 0,3 1.631 14 
6 2 1 T T 62 0,4 1.493 14  0 0 6 T F 60 0,4 1.637 11 
6 1 6 F F 62 0,5 1.493 11  0 0 1 T F 59 1,5 1.661 83 

Table 33: Clustering result for version 8a of the Océ Controller 
 

MQ (%) EM  MQ (%) EM pwa pwg pwd pc pi AV SD AV SD  
pwa pwg pwd pc pi AV SD AV SD 

0 0 2 F F 74 1,1 1.223 107  2 4 1 T F 71 1,3 1.357 108 
0 0 1 T F 74 1,0 1.229 107  6 1 6 F F 71 1,2 1.358 95 
0 0 6 T F 73 0,5 1.266 59  6 1 6 F T 71 0,4 1.359 44 
1 5 6 F T 72 2,1 1.287 152  3 3 4 T T 71 0,7 1.361 72 
1 5 5 T T 72 1,3 1.293 107  3 3 1 F F 71 1,5 1.365 120 
0 1 1 T F 72 0,8 1.302 74  6 2 1 T T 71 1,0 1.366 86 
2 4 3 F T 72 1,2 1.311 99  3 2 4 F T 71 0,8 1.367 72 
1 4 1 T T 72 0,9 1.311 72  4 4 4 T F 71 0,4 1.372 44 
2 3 5 F T 72 1,4 1.315 121  1 3 2 F F 71 0,5 1.372 49 
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1 6 4 T T 72 1,4 1.315 119  4 6 1 T T 71 0,5 1.373 49 
1 2 3 F T 72 1,1 1.316 96  6 3 4 T F 71 0,4 1.374 46 
0 5 2 F F 72 1,2 1.335 111  4 1 1 T F 71 0,7 1.376 70 
6 5 4 F T 72 1,2 1.335 111  3 6 1 F F 71 0,8 1.377 67 
4 4 3 F F 72 1,4 1.340 114  1 4 3 F F 71 0,5 1.379 48 
4 6 2 F T 71 0,7 1.345 65  5 1 6 T T 71 0,4 1.380 42 
3 6 5 F T 71 0,7 1.346 64  3 1 2 F T 71 0,8 1.380 71 
2 1 2 T F 71 1,0 1.347 86  1 1 5 T F 71 0,4 1.381 42 
2 5 5 F F 71 0,4 1.347 43  1 5 2 F T 71 0,6 1.383 55 
3 3 2 T T 71 0,9 1.353 85  4 2 5 F F 71 0,3 1.393 40 
6 2 5 F T 71 0,5 1.354 46  4 5 4 T F 71 0,9 1.398 85 

Table 34: Clustering result for class-relations-intersection of version 7e and 1 
 

MQ (%) EM  MQ (%) EM pwa pwg pwd pc pi AV SD AV SD  
pwa pwg pwd pc pi AV SD AV SD 

0 0 6 T F 78 0,7 950 75  6 1 6 F T 76 0,8 1.072 73 
0 0 1 T F 78 0,5 958 46  5 1 6 T T 76 0,4 1.075 40 
0 0 2 F F 78 0,5 981 64  6 1 6 F F 76 0,7 1.075 57 
0 1 1 T F 77 1,0 1.006 87  4 2 5 F F 76 0,6 1.076 48 
1 6 4 T T 77 0,7 1.007 70  3 3 1 F F 76 0,7 1.077 59 
2 4 3 F T 77 0,9 1.016 84  2 1 2 T F 76 0,8 1.077 65 
4 6 1 T T 77 1,0 1.022 97  2 3 5 F T 76 0,7 1.079 57 
3 2 4 F T 76 1,2 1.031 104  2 4 1 T F 76 0,9 1.079 80 
1 5 5 T T 76 1,0 1.033 91  1 2 3 F T 76 0,7 1.080 64 
3 1 2 F T 76 1,2 1.038 107  6 3 4 T F 76 0,6 1.083 54 
0 5 2 F F 76 0,9 1.039 83  1 4 3 F F 76 0,7 1.085 61 
3 3 2 T T 76 0,7 1.039 63  4 4 3 F F 76 0,5 1.085 40 
6 2 1 T T 76 1,0 1.040 89  1 1 5 T F 76 0,5 1.086 45 
6 5 4 F T 76 0,8 1.041 85  3 6 1 F F 76 0,7 1.091 58 
3 3 4 T T 76 0,7 1.043 66  1 5 6 F T 76 0,5 1.093 43 
1 5 2 F T 76 0,9 1.046 84  4 1 1 T F 76 0,6 1.102 51 
4 6 2 F T 76 0,9 1.046 78  3 6 5 F T 76 0,2 1.105 29 
6 2 5 F T 76 0,8 1.051 65  4 4 4 T F 76 0,3 1.115 27 
4 5 4 T F 76 0,8 1.059 65  1 4 1 T T 75 0,2 1.122 21 
2 5 5 F F 76 0,7 1.062 68  1 3 2 F F 75 0,4 1.126 31 

Table 35: Clustering result for class-relations-intersection of version 8a and 1 
 

MQ (%) EM  MQ (%) EM pwa pwg pwd pc pi AV SD AV SD  
pwa pwg pwd pc pi AV SD AV SD 

6 2 1 T T 60 0,7 1.643 28  3 3 1 F F 60 0,4 1.659 16 
1 5 5 T T 60 0,3 1.645 23  1 5 6 F T 60 0,4 1.660 12 
3 3 4 T T 60 0,6 1.647 30  3 6 1 F F 60 0,3 1.661 19 
1 5 2 F T 60 0,5 1.651 17  6 2 5 F T 60 0,5 1.661 12 
4 4 3 F F 60 0,5 1.652 23  6 1 6 F T 60 0,4 1.662 13 
1 1 5 T F 60 0,5 1.652 25  2 3 5 F T 60 0,5 1.663 13 
4 5 4 T F 60 0,5 1.654 16  6 3 4 T F 60 0,6 1.663 21 
4 6 2 F T 60 0,6 1.654 14  2 1 2 T F 60 0,4 1.663 9 
2 5 5 F F 60 0,5 1.655 24  3 3 2 T T 60 0,4 1.664 18 
3 1 2 F T 60 0,5 1.655 14  1 4 3 F F 60 0,6 1.665 17 
3 6 5 F T 60 0,3 1.655 9  1 3 2 F F 60 0,5 1.667 14 
1 4 1 T T 60 0,4 1.656 17  3 2 4 F T 60 1,5 1.672 65 
1 6 4 T T 60 0,4 1.656 14  2 4 3 F T 60 1,0 1.684 81 
4 6 1 T T 60 0,3 1.656 14  2 4 1 T F 60 1,0 1.684 57 
5 1 6 T T 60 0,4 1.657 23  4 2 5 F F 59 1,3 1.686 77 
6 5 4 F T 60 0,4 1.657 8  0 5 2 F F 59 0,6 1.707 17 
4 1 1 T F 60 0,5 1.657 18  0 1 1 T F 59 0,6 1.707 17 
1 2 3 F T 60 0,5 1.658 15  0 0 2 F F 58 0,4 1.787 27 
6 1 6 F F 60 0,4 1.659 14  0 0 6 T F 58 0,3 1.788 18 
4 4 4 T F 60 0,4 1.659 10  0 0 1 T F 57 1,0 1.804 51 

Table 36: Clustering result for class-relations-intersection of version 7e and 7d 
 

MQ (%) EM  MQ (%) EM pwa pwg pwd pc pi AV SD AV SD  
pwa pwg pwd pc pi AV SD AV SD 

6 1 6 F T 59 0,3 1.643 26  6 2 1 T T 59 0,4 1.662 22 
4 6 2 F T 59 0,4 1.645 27  6 1 6 F F 59 0,4 1.663 15 
2 4 3 F T 59 0,4 1.649 10  4 4 3 F F 59 0,4 1.663 10 



 138

6 5 4 F T 59 0,4 1.651 12  1 4 1 T T 59 0,3 1.664 16 
3 3 1 F F 59 0,3 1.652 16  1 3 2 F F 58 0,6 1.665 17 
1 6 4 T T 59 0,4 1.653 17  1 5 6 F T 59 0,5 1.666 16 
1 2 3 F T 59 0,3 1.653 14  4 4 4 T F 59 0,5 1.666 19 
1 5 5 T T 59 0,4 1.654 16  3 1 2 F T 59 0,5 1.666 19 
6 2 5 F T 59 0,5 1.655 18  4 6 1 T T 59 0,3 1.669 15 
3 6 1 F F 59 0,5 1.655 12  6 3 4 T F 58 1,3 1.669 55 
2 5 5 F F 59 0,4 1.657 15  4 5 4 T F 58 1,4 1.674 68 
1 1 5 T F 59 0,6 1.657 13  3 3 2 T T 58 1,7 1.675 69 
4 1 1 T F 59 0,4 1.657 14  5 1 6 T T 58 1,3 1.679 54 
2 1 2 T F 59 0,2 1.657 13  1 4 3 F F 58 1,3 1.682 64 
2 4 1 T F 59 0,4 1.658 11  2 3 5 F T 58 1,4 1.689 73 
4 2 5 F F 59 0,4 1.658 13  0 1 1 T F 58 0,6 1.704 18 
1 5 2 F T 59 0,5 1.659 20  0 5 2 F F 57 0,6 1.718 18 
3 3 4 T T 59 0,5 1.659 13  0 0 2 F F 56 0,6 1.799 28 
3 2 4 F T 59 0,3 1.659 11  0 0 1 T F 56 0,4 1.801 26 
3 6 5 F T 59 0,5 1.660 14  0 0 6 T F 56 0,5 1.812 18 

Table 37: Clustering result for class-relations-intersection of version 8a and 7e 
 

MQ (%) EM  MQ (%) EM pwa pwg pwd pc pi AV SD AV SD  
pwa pwg pwd pc pi AV SD AV SD 

3 3 4 T T 63 0,6 1.459 19  4 6 2 F T 63 0,3 1.471 10 
4 4 3 F F 63 0,4 1.460 14  1 6 4 T T 63 0,4 1.471 11 
3 6 1 F F 63 0,3 1.461 9  2 3 5 F T 62 0,5 1.472 17 
1 4 3 F F 63 0,3 1.462 12  2 1 2 T F 63 0,4 1.473 9 
6 5 4 F T 63 0,4 1.462 9  6 3 4 T F 62 0,6 1.476 23 
6 1 6 F F 63 0,4 1.462 10  4 4 4 T F 62 0,5 1.478 16 
1 5 5 T T 63 0,5 1.463 18  3 6 5 F T 63 1,0 1.480 47 
4 2 5 F F 63 0,7 1.463 18  1 2 3 F T 63 1,6 1.483 96 
2 4 1 T F 63 0,4 1.463 13  3 3 1 F F 62 1,2 1.488 76 
2 5 5 F F 63 0,4 1.464 10  1 5 2 F T 62 1,1 1.488 60 
4 5 4 T F 63 0,3 1.464 11  1 3 2 F F 62 1,1 1.492 69 
1 4 1 T T 63 0,4 1.465 10  3 3 2 T T 62 1,2 1.500 65 
5 1 6 T T 63 0,4 1.465 13  6 1 6 F T 62 1,3 1.501 93 
6 2 5 F T 63 0,4 1.465 14  1 5 6 F T 62 1,0 1.501 77 
3 1 2 F T 63 0,5 1.466 11  0 1 1 T F 62 0,5 1.513 21 
4 1 1 T F 63 0,5 1.468 14  4 6 1 T T 62 1,7 1.524 114 
2 4 3 F T 62 0,5 1.469 16  0 5 2 F F 61 1,5 1.535 85 
6 2 1 T T 63 0,5 1.469 17  0 0 1 T F 60 1,3 1.605 79 
3 2 4 F T 63 0,4 1.470 12  0 0 6 T F 60 1,4 1.613 73 
1 1 5 T F 63 0,5 1.470 20  0 0 2 F F 60 1,3 1.620 74 

Table 38: Clustering result for class-relations-union of version 8a and 1 
 

MQ (%) EM  MQ (%) EM pwa pwg pwd pc pi AV SD AV SD  
pwa pwg pwd pc pi AV SD AV SD 

4 4 3 F F 63 0,4 1.459 25  6 2 1 T T 63 0,5 1.478 19 
6 3 4 T F 63 0,4 1.467 15  6 1 6 F T 62 0,4 1.482 13 
4 6 1 T T 63 0,4 1.468 15  3 3 2 T T 62 0,4 1.483 14 
6 1 6 F F 62 0,2 1.469 21  1 5 5 T T 62 0,3 1.483 9 
3 6 1 F F 63 0,3 1.469 8  3 1 2 F T 62 0,3 1.484 15 
6 5 4 F T 63 0,4 1.471 16  5 1 6 T T 62 0,3 1.485 9 
2 1 2 T F 63 0,4 1.471 30  4 6 2 F T 62 0,5 1.486 16 
6 2 5 F T 62 0,3 1.472 14  1 5 2 F T 62 0,4 1.487 12 
2 5 5 F F 63 0,5 1.472 15  1 3 2 F F 62 0,7 1.487 24 
3 3 1 F F 63 0,4 1.473 13  1 6 4 T T 62 1,2 1.495 64 
1 4 3 F F 63 0,5 1.473 16  2 3 5 F T 62 1,4 1.497 91 
3 3 4 T T 63 0,3 1.474 9  4 1 1 T F 62 1,2 1.501 72 
1 5 6 F T 62 0,4 1.474 14  0 1 1 T F 62 0,5 1.502 35 
1 1 5 T F 62 0,3 1.475 15  3 2 4 F T 62 1,3 1.504 86 
2 4 1 T F 62 0,3 1.475 12  4 4 4 T F 62 1,7 1.505 87 
2 4 3 F T 62 0,4 1.476 13  4 2 5 F F 62 1,5 1.507 87 
1 2 3 F T 63 0,4 1.476 21  0 5 2 F F 61 1,9 1.558 102 
1 4 1 T T 62 0,2 1.477 10  0 0 6 T F 60 0,2 1.595 19 
3 6 5 F T 62 0,4 1.477 13  0 0 2 F F 60 0,3 1.600 19 
4 5 4 T F 63 0,6 1.477 15  0 0 1 T F 60 1,0 1.622 68 

Table 39: Clustering result for class-relations-union of version 8a and 7e 


